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Abstract

The main objective in sampling is to select a sample from a population in order
to estimate some unknown population parameter, usually a total or a mean of
some interesting variable. When the units in the population do not have the same
probability of being included in a sample, it is called unequal probability sam-
pling. The inclusion probabilities are usually chosen to be proportional to some
auxiliary variable that is known for all units in the population. When unequal
probability sampling is applicable, it generally gives much better estimates than
sampling with equal probabilities. This thesis consists of six papers that treat
unequal probability sampling from a finite population of units.

A random sample is selected according to some specified random mechanism
called the sampling design. For unequal probability sampling there exist many
different sampling designs. The choice of sampling design is important since it
determines the properties of the estimator that is used. The main focus of this
thesis is on evaluating and comparing different designs. Often it is preferable to
select samples of a fixed size and hence the focus is on such designs.

It is also important that a design has a simple and efficient implementation in
order to be used in practice by statisticians. Some effort has been made to improve
the implementation of some designs. In Paper II, two new implementations are
presented for the Sampford design.

In general a sampling design should also have a high level of randomization. A
measure of the level of randomization is entropy. In Paper IV, eight designs are
compared with respect to their entropy. A design called adjusted conditional
Poisson has maximum entropy, but it is shown that several other designs are very
close in terms of entropy.

A specific situation called real time sampling is treated in Paper III, where a
new design called correlated Poisson sampling is evaluated. In real time sampling
the units pass the sampler one by one. Since each unit only passes once, the
sampler must directly decide for each unit whether or not it should be sampled.
The correlated Poisson design is shown to have much better properties than
traditional methods such as Poisson sampling and systematic sampling.

Key words: conditional Poisson sampling, correlated Poisson sampling, entropy,
extended Sampford sampling, Horvitz-Thompson estimator, inclusion probabil-
ities, list-sequential sampling, non-rejective implementation, Pareto sampling,
Poisson sampling, probability functions, ratio estimator, real-time sampling, re-
peated Poisson sampling, Sampford sampling, sampling designs, splitting method,
unequal probability sampling.
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1 Introduction

In sampling we are interested in some characteristics of a finite population of
units. A forester may be interested in the total volume of timber in a forest
stand, in which case each tree is a unit in the population of trees. For an up-
coming election we may be interested in the proportion of people in favour of
some political party among the eligible voters. A company may be interested
to find out how satisfied their customers are with the service or product that is
provided. Sampling is used to gain such information without measuring all units
in the population.

population sample

Figure 1: Illustration of population and sample.

By using sampling theory, it is possible to get a sufficiently good estimate of the
parameter of interest at a reasonably low cost. Of course, the low cost is the
main reason why sampling is so widely used. We are daily presented with the
results from different statistical surveys. Most of these surveys, all the serious
ones, are based on the theory of sampling. This advantage of sampling is also
a problem since the number of surveys has increased to a level that has become
a burden for the respondents. As a result there is a problem with non-response
in many statistical surveys. Non-response occurs when some of the units in the
selected sample cannot be measured or refuse to be measured. The problem
of non-response is not treated in this thesis. For different methods to handle
non-response, see eg. Sarndal & Lundstrom (2005).

Before a sample can be selected, we usually need to list the units in the population.
This list is called the sampling frame. It is important that the frame is correct



and matches the population of interest. Otherwise there will be errors in the
estimates due to the frame imperfections. It is assumed throughout this thesis
that the frame is perfect. It is also important that the selected units are correctly
measured, otherwise there will be measurement errors.

The only type of error that we focus on in this thesis is the sampling error. The
sampling error comes from the fact that only a sample is observed and not the
entire population. Of course, when performing a statistical survey it is important
to consider all possible sources of error.

A simple way to take a sample of size n is to let all the possible samples have
the same probability of being selected. This is called simple random sampling
and then all units have the same probability of being chosen. Each unit can be
represented by a numbered ball, as in figure 1. Then we put all the balls in an
urn and draw n balls without replacement to select a sample.

When the units do not have the same probability of being selected we call it
unequal probability sampling, which is a part of the title and the main topic of
this thesis. When unequal probability sampling is applicable, it usually produces
much better estimates than sampling with equal probabilities. When the inclusion
probabilities, 7;, are prescribed for all units, unequal probability sampling is also
called wps-sampling, where ps stands for proportional to size.

A common belief among non-samplers is that good samples should be miniature
versions of the population, i.e. if the population consists of 50% males, then the
sample should also do so. In general this is not true. If it was true, there would be
no use for unequal probability sampling. Since the goal most often is to estimate
a population parameter, a sampling procedure is good if it allows for efficient
unbiased estimation of the parameter of interest.

A sampling design describes the probability mechanism used to select a sample.
For unequal probability sampling there exist many different sampling designs that
can be used. Unfortunately there exists no universally best design. In general
it depends on the population and the sampling situation which design is the
best one. However, in practice we never have complete information about the
population since then there would be no need for sampling. Hence other more
general criteria, such as the level of randomness, must be used when choosing
a sampling design. Many different designs are presented and evaluated in this
thesis.

During the last 15 years several new designs for 7ps-sampling have been presented.
The splitting method introduced by Deville & Tillé (1998) is the most general
one of them all. It can reproduce all other designs, though not always in a simple
way. The fine idea behind the splitting method has led to several new designs.



This thesis contains six papers, much of the focus is on comparing different designs
and also on improving the implementation of some designs. In section 2, some
background and notation are given. The mps sampling situation is described
in section 3 and some important designs and results are presented in section 4.
A case called real-time sampling, which is treated in Paper III, is introduced in
section 5. Section 6 gives a short introduction to the sampling situation in Papers
V and VI. Sampling designs can have different degrees of randomization and a
measure of randomness, called entropy, is introduced in section 7. The six papers
are summarized in section 8. In section 9, conclusions and open problems are
presented.

2 Definitions and notation

The finite population of N units is denoted by U = {1,2, ..., N}. We are interested
in selecting a sample from U in order to estimate some parameter, often a total
or a mean of some variable. In this thesis sampling without replacement (WOR)
is treated, i.e. each unit can only be selected once. Thus a sample s is a subset of
the population Y. It is also possible to sample units with replacement (WR) but
such methods generally give less efficient estimation and are not treated here.

A random sample is selected according to a sampling design. Formally, a sampling
design is a discrete probability distribution on a support () of possible samples
s C U. The probability of getting the sample s is denoted by p(s) and we
have p(s) > 0 for all s € Q). Since it is a probability distribution we also have
> scoP(s) = 1. The following example illustrates two different sampling designs.

Example 1. If the population has four units U4 = {1,2,3,4}, there are six
possible samples of size n = 2:

s1={1,2), so={1,3}, s3 = {1,4}, 4= {2,3}, 55 = {2,4}, 56 = {3,4}.

In figure 2, two different designs for selecting one of the 6 samples are illustrated.
Design 1 corresponds to simple random sampling where each possible sample has
the probability 1/6 of being selected. For this design we can select one of the
samples by spinning wheel 1. Design 2 has different probabilities for the samples.
Samples 1-3 are each selected with probability 1/9 and the samples 4-6 are each
selected with probability 2/9. A sample from design 2 can be selected by spinning
wheel number 2. In practice there are often too many possible samples to directly
select a sample. Instead a sample is often selected by randomly choosing the units
in a suitable way. O
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Figure 2: Ilustration of two different sampling designs for selecting one of the 6
possible samples in example 1.

1 2

An important event in sampling is the inclusion of unit 7 in the sample. That
event is usually indicated by the inclusion indicator I;, defined as

1 if unit ¢ is included in the sample
I; = .
0 otherwise.

Thus [; is a Bernoulli random variable. A random sample can be described by
the vector of inclusion indicators I = (I3, I, ..., Iy) and a sample which is the
outcome of I is usually denoted by x. Hence there are two different notations for
a sample, we use s to denote a subset of & and each s corresponds uniquely to a
binary vector x € {0, 1}7.

The inclusion probabilities of the units are important characteristics of a sampling
design. The inclusion probability for unit ¢ is defined as

m=Pr(l;=1)=E(L) =Y _ zp(x).
P

These m; are called first-order inclusion probabilities. Generally the inclusion
probability for unit ¢ can be calculated by summing the probabilities of the sam-
ples that contain unit 7.

Example 2. For design 1 in example 1, we see that each unit is included in three
samples and every sample has probability 1/6. Hence the inclusion probabilities



are 1/2 for all four units. For design 2, the inclusion probability is 3/9 for unit 1
and 5/9 for the units 2, 3 and 4. O

The second-order inclusion probabilities of a sampling design are defined as

P

Thus 7;; is the probability that both unit ¢ and unit j are included in the sample.
The inclusion probabilities of first and second-order are needed for estimation
and variance estimation.

3 Basics about mps sampling

Usually the goal is to estimate the total of some variable y, which has value y; for
unit ¢. Thus we want to estimate Y = Zfil y;- All the y;s are unknown before
a sample has been selected. In order to use unequal probability sampling we
need some auxiliary information. It is often the case that we know the value of
another variable z; > 0 for each unit « € U and we suspect that y is approximately
proportional to z. The following example illustrates one possible situation.

Example 3. If the objective is to estimate the total amount of pollution from a
number of factories, then we may know or strongly suspect that larger factories
generate more pollution than smaller factories. If we have access to some auxiliary
information z about the size of the factories, that information can be used. Such
information may be the number of employees, the size of the buildings or the
number of units produced last year and so on. In this situation we want to
sample large factories with higher probabilities than small factories since large
factories will contribute more to the total amount of pollution. By doing so
we can get a much better estimate than if the factories are selected with equal
probabilities. O

The information available to us before a sample is selected is the labels, ¢ =
1,2, ..., N, of the units and the value of z; for each unit 7. Then we want to select
each unit with probability m; = cz;, where ¢ is a positive constant. Usually it is
preferable to select samples of fixed size n, since that often leads to more efficient
estimators and it becomes easier to control the cost of collecting the sample.
When the sample size n is fixed it is required that Zf\il T =n.

Now assume that the m;s are known and that Zf\il m; = n. If we can select a
sample so that the inclusion probabilities are m;, i = 1,2, ..., N, then it is possible



to use the Horvitz-Thompson (HT') estimator

N
Yir =3 i—] (1)
i=1 "

of the unknown total Y. It is easily shown that this estimator is unbiased, i.e.
E(Yyr) =Y. For a fixed sample size, the variance of the HT-estimator can be

written as 5
~ 1 Yi  Yj
VaI'(YHT) = —5 Z (7Tij — 7TZ‘7T]‘) <— — —J) . (2)

T, Ts
ijeu ¢ J

If y is approximately proportional to z, then the variance of the HT-estimator
will be low. This can be seen since if there is perfect proportionality, all the ratios
y;/m; are equal and var(Yyr) = 0.

It is important to notice that (2) in practice never can be calculated since it
requires full knowledge of all the y;s. Hence we must be able to estimate the
variance of the HT-estimator from a single sample, otherwise we have no clue
about the precision of the estimate. For this purpose it is possible to use the
Sen-Yates-Grundy estimator and it can be written as

— ~ 1 T4 — TG;T05 i i 2
Val‘syg(YHT) = —5 Z % <y— — &) IZI] (3)

i,j€U w ¢ J

If m;; > 0 for all 4, j € U, this is an unbiased estimator of var(Yyr).

4 Some 7ps designs and results

In this section, some of the important designs for mps-sampling are presented
together with related results.

4.1 The Poisson design

A simple way to select a sample with unequal inclusion probabilities is by a
method known as Poisson sampling. For Poisson sampling, each unit 7 is selected
independently of the others with probability m;. As a result the sample size
is random when using Poisson sampling. A random sample size is usually not
desirable, since it often leads to less efficient estimators. However, an advantage
of Poisson sampling is its very simple implementation. It is also easy to estimate



the variance of the HT-estimator due to the fact that the inclusion indicators are
independent. The Poisson design has the following probability function

p(x) = waia —m)T x e {0, 1}, (4)

The Poisson design is important since the implementation of some of the other
designs is based on Poisson sampling.

4.2 The conditional Poisson design

If a fixed sample size n is desired, it is possible to generate Poisson samples and
accept the sample only if the sample size is n. The resulting design is called
conditional Poisson (CP) sampling and it was studied by Héjek (1964) and it is
also treated in his posthumous book (H&jek, 1981). Since not all samples are
accepted, this procedure affects the inclusion probabilities. Let p;, 2 =1,2,..., N,
be the parameters for Poisson sampling, i.e. each unit 7 is included independently
of the others with probability p;. Also let I;, i = 1,2,..., N, be the inclusion
indicators for Poisson sampling, i.e. the I;s are independent and I; ~ Be(p;). If
only samples of size n are accepted, we get the inclusion probabilities

ﬂgn):Pr(Ii:HSN:n), (5)

(n)

where Sy = Zjvzl I;. The inclusion probabilities 7;"’ can be calculated recur-

sively by the following formula

o, w0 =p)(—n") ©)
L/ —p) =)

where 7\ = 0,7 =1,2,..., N. Formula (6) is essentially due to Chen et al. (1994)

i

and can be found in e.g. Tillé (2006, p. 81). We give a proof of this formula.

Proof of (6). First we notice that

PI‘(IZ = ]_,SN :n)

;. = Pr(l; =1|Sy =n) S
P = I,S](V_i) =n—1) _Pr(S](V_i) =n-—1)
B Pr(Sy =n) — b Pr(Sy=n) ’

I;. The last equality follows from the fact that I; and S](V_i)

where 54 = > izl



are independent. With the same notation and technique we also have

1-m"" = Pr(;=0|Sy=n—1)= Pr <lf’lr(25(; iNn:_nl)_ 1)
_ Pr(l; = O,S](V_i) =n—1) _q _pi)Pr(S](V_i) =n— 1).
Pr(Sy=n—-1) Pr(Sy =n—1)
Then we get
™ _pi Pr(Sv=n-1)
0 T Top Pr(Sx=mn)
from which (6) follows since SN, 7T£n) =n. O

If the parameters p;, i = 1,2,..., N, with Zi]ilpi = n are used we only have
ﬁfn) ~ p;. We need to adjust the p;s in order to get the inclusion probabilities 7,
1 =1,2,...,N. The parameters can be adjusted by a simple iterative procedure

due to Aires (2000),
pit +1) = pi(t) + (m — 7 (1), t=0,1,2, ... (7)

(t) corresponds to the inclusion probabilities of CP-sampling when
the parameters p;(t) are used. These 7TZ-(") (t) must be calculated in each step,
preferably by using (6). However, if p;(0) = m;, we usually only need to do a few
number of iterations. If adjusted parameters are used, we call it adjusted CP-
sampling, which yields correct inclusion probabilities. The probability function

for CP-sampling is

where 7Ti(n)

N N
) =CIpr—p) " xe (0.}, X =Y wi=n (@
i=1 i=1
where C' is a normalizing constant.

The presented implementation of CP-sampling can be slow since in some situ-
ations many Poisson samples must be generated before we get a sample of size
n. There also exist other implementations of the CP-design. One of them is a
list-sequential implementation, cf. Traat et al. (2004) or Tillé (2006). In a list-
sequential implementation the sampling outcome is first decided for unit 1, then
for unit 2 and so forth. The list-sequential implementation of CP-sampling is
usually very efficient for moderate size populations. For very large populations
there exists no efficient implementation of CP-sampling.

In Paper I, a new design called repeated Poisson (RP) sampling is presented.
The RP-design is extremely close to the CP-design and has an efficient imple-
mentation even for very large populations. The implementation of the RP-design
uses Poisson sampling to repeatedly add or remove units until the sample size
becomes n, which usually happens after only a few iterations.



4.3 The Pareto design

Pareto sampling was introduced by Rosén (1997a, b). Let p;, i = 1,2,..., N, with
E@']Lpi = n be the parameters. To select a sample we generate Uy, Us, ..., Uy,
where the U;s are independent U(0, 1) random variables. Then the Pareto ranking
variables
Ui/ =Uy)
pi/(1—=pi)’
are calculated. The sample consists of the n units with the smallest @); values.
If p;, i = 1,2,..., N, are used as parameters, this procedure only yields inclusion
probabilities m; &~ p;. As for CP-sampling, the parameters must be adjusted in
order to give exactly the prescribed inclusion probabilities. It is rather compli-
cated to do exact adjustment for this design. Different methods for adjusting the
parameters for both CP-sampling and Pareto sampling have been derived and
studied by Lundqvist (2009). A simple approximation of the adjusted parame-
ters is given by Bondesson et al. (2006). The approximation corresponds to using
the new ranking variables

~ (1 —pi)(pi — 3
Qi:Qi.eXp<p( pd)2(p 2))7

Q, i=1,2,.. N,

where d = 3_N | p;(1 —p;). Then the inclusion probabilities will be even closer to
the p;s. Most often Pareto sampling is used without adjustment since the ;s will
be very close to the p;s for fairly large populations. In this case the resulting bias
of the HT-estimator (1) will usually be negligible. The advantage of the Pareto
design is that the implementation is simple and very efficient. Samples can be
rapidly generated even for large populations. For Pareto sampling the probability
function can be written as

N N
p<X) = Hp@m(l - pi)liwi X Z CpTk, ‘X| =n, (9)
i=1 k=1

where the constants ¢, are defined by integrals and approximately ¢, oc 1 — py,
see e.g. Bondesson et al. (2006) for details.



4.4 The Sampford design

The Sampford design was introduced by Sampford (1967) and is one of the first
mps designs for fixed sample size. This design is exact, i.e. it yields exactly
the prescribed inclusion probabilities 7;, i = 1,2,..., N, with le\il m; = n. No
adjustment is needed for the parameters. The probability function for the design
is

N N
px)=CJ[al (1 —m) " x> (1= m)ae, x€{0, 1}V, |x|=n, (10)
=1 k=1

where C' is a normalizing constant.

The first implementation of this design was given by Sampford (1967) and it
can be described in the following way. First one unit is drawn with replacement
according to the probabilities m;/n, i = 1,2,...., N. Then n — 1 further units
are drawn with replacement according to the probabilities p; o< 7; /(1 — 7;), with
Ei]\il p, = 1. If all the n units are distinct, then the sample is accepted. Of course,
the algorithm may be restarted as soon as a doublet is drawn. In general this is
a very slow procedure since a large proportion of the samples will be rejected.

Another implementation is to first select one unit according to the probabilities
mi/n, © = 1,2,...,N. Then a Poisson sample is selected among all units with
the probabilities m;, « = 1,2, ..., N. If the Poisson sample has size n — 1 and all
n units are distinct, then the sample is accepted. Otherwise the procedure is
repeated from the beginning. Traat et al. (2004) made an improvement of this
implementation. The first unit is selected in the same way. Then a conditional
Poisson sample of size n — 1 is selected by using a list-sequential method. If all
n units are distinct the sample is accepted.

Bondesson et al. (2006) presented another rejective implementation of the Samp-
ford design by noticing the fact that the Sampford design is very close to the
Pareto design. A Pareto sample can often be accepted as a Sampford sample by
using an acceptance-rejection technique. This implementation is rather technical
and some approximations must be used in practice.

The main results of Paper II are two new implementations of the Sampford design
that are non-rejective. The idea behind the most efficient of these two new
implementations is to adjust the drawing probabilities for the first selected unit
and then to generate a Poisson sample under the conditions that the sample size
is n and that the first selected unit is included. The procedure can be described as
follows. The first unit should be selected according to the drawing probabilities

mi(1— Wl(n_l))

%= =N n—1)’
Sy (=)

i=1,2,.., N,

10



(n—1)

where T; corresponds to the inclusion probabilities for conditional Poisson

sampling with parameters p; = m; and sample size n — 1. These Wi("fl) can
rapidly be calculated by using formula (6). Assume that unit k& was selected in
the first draw. Then a Poisson sample should be selected under the conditions
that the sample size is n and that unit k is selected. This corresponds to selecting

a conditional Poisson sample of size n using the parameters p;(k), where
. T, 1 7£ k
pilk) = { 1, i=k

If a list-sequential method is used to select the conditional Poisson sample, this
is a non-rejective implementation of the Sampford design. Thus the efficiency of
this implementation is not dependent of the parameters m;, which is the main
advantage of a non-rejective method.

4.5 The splitting method

The general splitting method was introduced by Deville & Tillé (1998) and is also
treated in Tillé (2006, Ch. 6). The idea is to start with the vector = = 7 (0) =
(71, T2, ..., mn) of inclusion probabilities and then split this vector into two or
more new vectors. Then one of the new vectors is chosen randomly in such a way
that the expected value of the new vector 7 (1) equals the previous vector 7 (0).
When a coordinate of 7 (t) becomes 0 or 1, it cannot be further changed. The
splitting is continued until all coordinates of the vector are 0 or 1. In each step
we have E(m(t+ 1)|m(t)) = =(¢), thus this method always respects the inclusion
probabilities.

Every 7ps design can be implemented by the splitting method. In general it can
be difficult to determine how the splits should be performed. Different special
cases have been introduced. One is the pivotal method, proposed by Deville &
Tillé (1998). For the pivotal method the inclusion probabilities are updated for
two units at a time, in such a way that the sampling outcome is determined
for at least one of the units. The pivotal method is presented and compared to
other designs in Paper IV, where it is found to have good properties. The pivotal
method has also appeared in other fields, see e.g. Dubhashi et al. (2007).

11



5 Real-time sampling and correlated Poisson
sampling

In real-time sampling the units of the population pass the sampler one by one
and the sampler must instantly decide for each unit whether or not it should be
sampled. When the sampler makes a decision for unit ¢, there is no information
available for the units i + 1, ..., N. Even the population size N may be unknown.
Thus unit ¢ may be the last unit that arrive. Different methods for real-time
sampling with equal and unequal inclusion probabilities were studied by Meister
(2004). Here it is assumed that the value of some auxiliary size-variable becomes
known for the sampler at sight of the units. Thus the desired inclusion probability
for unit ¢ becomes known at least when unit ¢ arrive. Real-time sampling is a
much more complicated situation since less information is available in advance.
There are two obvious ways of taking a 7ps sample in this situation. One is to use
Poisson sampling and accept a large variation in sample size and the other is to
use systematic sampling. Systematic sampling does not include much randomness
and the order of the units is sometimes randomized to overcome this problem. In
real-time sampling that is not possible.

In Paper IIT a new and general method for real-time sampling, called correlated
Poisson sampling, is investigated. Correlated Poisson sampling was introduced by
Bondesson & Thorburn (2008). It is a list-sequential method where the inclusion
probabilities are successively updated. At step 1 of the procedure, unit 1 is
included with probability 7T10) = m;. Then, at step ¢ when the value of I;_; has
been recorded, unit 7 is included with the updated probability

i—1

ri = -3 <Ij - w](.j‘”) wld, (11)

J=1

The w§i)s are weights that can be chosen in many different ways, cf. Paper III or
Bondesson & Thorburn (2008) for details.

In Paper III, it was found that if units that are close in the ordering have sim-
ilar values of the variable of interest, a lot of efficiency can be gained by using
correlated Poisson sampling instead of Poisson sampling. Another advantage of
correlated Poisson sampling is that the variation of the sample size can be re-
duced. Sometimes it is even possible to have a fixed sample size. In Paper IV, the
probability function for correlated Poisson sampling is derived. It is shown that,
since it is a list sequential procedure, the probability function can be written in
terms of the updated inclusion probabilities
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ﬁ( (i— 1) ( W§i1)>1_xi’ x e {0, 1}V, (12)

i=1

The updated inclusion probabilities are always known and given by (11) for a
generated sample x.

6 mps-sampling when the inclusion probabilities
do not sum to an integer

Most methods for mps sampling are used to select samples of a fixed size. Then
it is required that the inclusion probabilities sum to an integer. However it is
not always a good idea to rescale preliminary inclusion probabilities to sum to an
integer. Assume that Zfil m; = n + a, where n > 0 is integer and a € (0, 1).

One approach to get correct inclusion probabilities is to use a technique called
random rounding. With probabﬂity a the inclusion probabilities are rounded

upwards to w7 = Zi}lm, where ZZ 77 = n+ 1. Otherwise, with probability
1 — a the inclusion probabilities are rounded downwards to 7l = T, where

Zi]\il i = n. After this random rounding any mps-design for fixed sample size
may be used. Unfortunately this technique does not always work since some of
the 7¥s may be larger than 1.

In Papers V and VI we give different solutions to this problem that always work.
In Paper V it is shown that some designs (Sampford, conditional Poisson and
Pareto) can be extended to this situation. In Paper VI, we go further and show
that every design for fixed size wps sampling can be used to select a sample when
Ei]\il m; = n + a. The simple trick that is used here is to add a phantom unit
N + 1, so that Zf\p{l m = n + 1. Now any design for fixed size mps sampling
can be used to select a sample of size n + 1 from this extended population. If
the phantom unit is selected it is dismissed so that the sample size becomes n,
otherwise the sample size is n 4+ 1. Thus we have shown that it is always possible
to get correct inclusion probabilities with any fixed size mps-design even if the
inclusion probabilities do not sum to an integer.
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7 Comparing different designs

For a sampling design to be generally applicable it is necessary that it includes
much randomness. Otherwise the estimator can have a very large variance and a
very skew distribution. One measure of randomness is Shannon’s entropy, which
for a design with support () is defined as

= =) p(x)log(p(x)) = —E, [log(p(x))] (13)

XEQ

The adjusted CP-design has maximum entropy among all fixed size mps-designs,
as was shown by Héjek (1981). In Paper IV, eight different designs are compared
with respect to their entropy. In order to calculate the entropy, the probability
function must be known. A general method to derive the probability function
from a sampling algorithm is also presented in Paper IV.

Several designs have nearly maximum entropy. The top four designs are adjusted
CP, adjusted Pareto, a design called Brewer’s method, and Sampford. Also the
pivotal method has high entropy if the units, for which the inclusion probabilities
are updated, are chosen randomly in each step. Systematic sampling has the
lowest entropy if it is used without first randomizing the order of the units. If
the order of the units is first randomized, systematic sampling has higher entropy
but is not close to having maximum entropy.

In order to compare different designs it is also possible to look at some measure
for the distance between designs. One such measure is the Hellinger distance, dy,

which is defined as
2
d3 1(p1,p2) = Z (\/Pl \/p2(X)> )
XEQ
where @ = Q1 U Q2 and @y, Q2 are the supports of py(-) and p(+).

Lundqvist (2007) compared some designs for mps sampling by deriving expressions
for asymptotic distances between the designs. It was found that adjusted CP,
adjusted Pareto and the Sampford design are close. Here it suffices with a small
example to illustrate the distances between the designs.

Example 4. A population of size N = 10, known as the Sampford-Héjek popu-
lation, is used. Let n =5 and

= (0.2,0.25,0.35,0.4,0.5, 0.5, 0.55, 0.65, 0.7, 0.9).

For this population, the Hellinger distances have been calculated between eight
different designs and the result is presented in Table 1. The eight designs are ad-
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justed CP (ACP), adjusted Pareto (APareto), Brewer, Sampford, Pivotal, split-
ting into simple random sampling (SSRS), systematic 7ps and two variants of
correlated Poisson sampling, cf. Paper IV for a description of the different de-
signs.

Table 1: Hellinger distances between the different designs for the population in
example 4. The probability function of the Pivotal design has been estimated
with 107 samples.

ACP  APareto Brewer Sampf Corr(p) Pivotal SSRS Corr(m)
ACP 0

APareto | 0.0026 0

Brewer | 0.0030 0.0044 0

Sampf 0.0032  0.0006  0.0048 0

Corr(p) | 0.0137 0.0128  0.0143 0.0127 0

Pivotal | 0.0210  0.0230  0.0211 0.0235 0.0282 0

SSRS 0.2396  0.2419  0.2396 0.2424 0.2448  0.2240 0

Corr(m) | 0.5518  0.5505  0.5517 0.5501 0.5491  0.5577 0.6750 0
Syst 0.8534 0.8533  0.8533 0.8532 0.8517 0.8528 0.8667  0.8191

The result shows that the designs that yield high entropy also have probability
functions that are very close. The two closest designs are Sampford and adjusted
Pareto. U

8 Summary of the papers

In this section short summaries of the six papers are presented.

8.1 Paper I: Repeated Poisson sampling

In this paper a new design for fixed size unequal probability sampling is presented.
The new design, Repeated Poisson (RP) sampling, is based on Poisson sampling.
Units are successively added to or removed from the sample until the desired
sample size is achieved. The probability function of the RP-design is derived, not
in a closed form but as the limit distribution of a Markov chain.

It is shown, by examples and simulation, that the RP-design is very close to
the conditional Poisson (CP) design. The advantage of the RP-design over the
CP-design is that it is more efficient in selecting samples from large populations.
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Also, a variant of the RP-design can be used to efficiently select samples of fixed
size within strata in the case of several stratifications.

8.2 Paper II: Non-rejective implementations of the Samp-
ford sampling design

Sampford sampling, introduced by Sampford (1967), is a method for fixed size
unequal probability sampling. The Sampford design has nearly maximum entropy
and also the advantage of giving exactly the prescribed inclusion probabilities. A
major drawback of the Sampford design has been that the implementations has
been rejective and slow. In some situations the rejective implementations may
even fail to produce a sample due to the low acceptance rate.

In this paper different non-rejective implementations are presented. The main
advantage of these implementations is that the efficiency is not dependent on
the inclusion probabilities. Thus a sample can always be generated. One of
the non-rejective implementations is rather efficient and that method is a mod-
ification of a rejective list-sequential method introduced by Traat et al. (2004).
The other method is a list-sequential method where updated conditional inclu-
sion probabilities are calculated in each step. That method requires somewhat
more calculations. These new implementations make the Sampford design more
practical and usable.

8.3 Paper III: On a generalization of Poisson sampling

In this paper a new design for real time sampling is studied. The new design,
called correlated Poisson sampling, was introduced by Bondesson & Thorburn
(2008). In real time sampling the units pass the sampler successively one by
one. Each unit passes the sampler only once and at that time it must be decided
whether or not it should be included in the sample. There is no information
available for the units that have not yet passed. Even the population size may
be unknown in advance. Of course, the population size becomes known when all
units have passed the sampler.

Two traditional mps-sampling methods that can be used in this situation are Pois-
son sampling and systematic sampling. Poisson sampling has the disadvantage of
giving a random sample size with a large variation. The drawback of systematic
sampling is that the design has low entropy, i.e. a low level of randomization.

The new method, correlated Poisson sampling, is very general and certain weights
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can be chosen in many different ways. Some different strategies for choosing the
weights are compared. It is shown that in many cases it is possible to get more
efficient estimators than we get by using Poisson sampling. It is also possible to
reduce the variation of the sample size compared to Poisson sampling. In some
situations it is possible to have a fixed sample size. Also, this design generally
gives a much higher level of randomization than systematic sampling.

8.4 Paper IV: Entropy of unequal probability sampling
designs

Eight designs for unequal probability sampling are compared with respect to their
entropy. The entropy is a measure of randomness and a high entropy is usually
preferred. Both old and more recent designs are compared.

In order to calculate exactly the entropy of a design, the probability function
must be known. For some designs the probability function had not been presented
previously. An approach to derive the probability function from a sampling al-
gorithm is presented and also used to derive the probability function for some
of the designs. One of them is the correlated Poisson design presented in Paper
ITI. Also several general estimators of the entropy are presented and compared by
simulation. It is shown by two different examples that several designs are close
to having maximum entropy. Some designs yield low entropy and one should be
careful when choosing these designs.

8.5 Paper V: An extension of Sampford’s method for un-
equal probability sampling

The Sampford design is extended to the case where the inclusion probabilities do
not sum to an integer. A modified version of Sampford’s algorithm is presented.
The sampling outcome is left open for one randomly chosen unit that gets a new
inclusion probability. A generalized vector of inclusion indicators is introduced,
where one coordinate is allowed to be in the interval (0, 1), i.e. the outcome is
undecided for exactly one unit. The probability function is derived for this gener-
alized vector. It is proved that the prescribed inclusion probabilities are achieved
with the new algorithm. Moreover, the conditional Poisson and Pareto designs
are extended. Three different applications are presented. Variance estimation for
some different sampling situations is also treated in Appendices.
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8.6 Paper VI: Efficient sampling when the inclusion prob-
abilities do not sum to an integer

It is shown that every unequal probability sampling design for fixed sample size
can be extended to the case when the inclusion probabilities do not sum to an
integer. The cost for not re-scaling the inclusion probabilities is that we have
to accept a small variation in sample size. Let N be the population size and let
Ty, Mo, ..., TN, With le\il m; = n + a, where n > 0 is integer and a € (0, 1), be the
prescribed inclusion probabilities. By adding a phantom unit N +1 with inclusion
probability 1 — a, the inclusion probabilities will sum to n + 1 for the extended
population. Then any design for fixed size mps-sampling can be applied. If the
phantom unit is selected, it is dismissed and the sample size becomes n, otherwise
the sample size is n + 1. It is clear that the prescribed inclusion probabilities
are achieved with this procedure. By choosing the adjusted conditional Poisson
design it is possible to sample with maximum entropy in this situation. Different
strategies for estimation under these circumstances are also given.

9 Conclusions and open problems

In general we advocate the use of a high entropy design. Having high entropy is
particularly important if some assumptions do not hold. An example of such an
assumption is that we assume that the inclusion probabilities are approximately
proportional to the variable of interest. Other assumptions that sometimes are
made concern the ordering of the units in the population. When the entropy
is high, the probability mass is well distributed over a large number of samples.
When the entropy is low it is possible that most or all of the probability mass is
put on bad samples, where bad means that the HT-estimate is far from the true
total. Variance estimation also becomes easier with a high entropy design, since
then the variance of the HT-estimator can be well estimated without the use of
second-order inclusion probabilities, see e.g. Tillé (2006, pp. 137-142).

However, there are several high entropy nps designs that are very close to each
other. Since these designs will produce similar results, it does not matter much
which is used. All these designs have different advantages. The ACP-design
has maximum entropy, but it has a somewhat complicated implementation. The
Sampford design is slightly easier to implement since no adjustment of the pa-
rameters is needed. Pareto sampling has a very efficient implementation but
the parameters need to be adjusted, which can be rather difficult to do exactly.
Brewer’s method and the pivotal design are very simple to implement but does
not allow for exact calculation of second-order inclusion probabilities. Thus one
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may choose different designs depending on what property is important for the
specific situation.

For real-time sampling, the correlated Poisson design gave very promising results
for the simulated populations in Paper III. Here the assumption that units that
are close with respect to order also have similar values of the variable of interest
is an important factor for the improvement. The method should be further eval-
uated to see what happens when that assumption does not hold. It should also
be tested with some real applications.

An interesting problem for the future is when several auxiliary variables are avail-
able and several totals are to be estimated, which is a common situation in prac-
tice. How should the inclusion probabilities be chosen? Which design should be
used to draw the sample? Which estimators should be used? There are some
different approaches that can be used.

One possibility is to use essentially the additional auxiliary information after the
sample has been collected. Then it is possible to use a generalized regression
estimator (GREG) instead of the HT-estimator, see e.g. Sarndal (1996). The
main idea for this estimator is to fit a regression model to the observed y-values
by using the auxiliary information. The GREG-estimator uses both observed and
estimated y-values. If the regression relationship is strong, the GREG-estimator
will be nearly unbiased and will have a low variance. More than one auxiliary
variable may be used to determine what inclusion probabilities to use. Some
proposals of how to choose the inclusion probabilities in the multivariate case are
given and discussed by Holmberg (2003).

The additional information can also be more directly incorporated in the sample
selection procedure. Deville & Tillé (2004) introduced the cube method that can
be used to select balanced samples with given inclusion probabilities. Then the
HT-estimator reproduces the known totals for the auxiliary variables, at least
approximately. By only allowing balanced samples to be selected, the support
and thus the entropy may be heavily reduced. Usually this procedure give much
better estimates but reducing the support can have a negative effect also. Thus,
the cube method may be a good alternative but its entropy needs to be evaluated.
The effect on the estimator also needs to be evaluated for different situations.

Selecting mps-samples with general balancing conditions and maximum entropy
is an unsolved problem. Lundqvist (2009) treats this problem for some specific
balancing conditions. CP-sampling in this situation corresponds to only accept-
ing samples that fulfil the balancing conditions. This implementation becomes
inefficient if the restricted support is small. It is also a very difficult problem
to adjust the parameters in order to get correct inclusion probabilities with the
restrictions caused by the balancing conditions.
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Restricted Pareto sampling, cf. Bondesson (2010), is another possibility. Pareto
sampling (with adjustment) has been shown to be very close to adjusted CP-
sampling when the restriction is fixed sample size. The restricted Pareto design
can handle several restrictions on the sample and has high entropy even in such
cases. As for CP-sampling, it is a difficult problem to determine what parameters
to use in order to get correct inclusion probabilities.

It would be interesting to compare and evaluate these very different approaches
to use additional auxiliary information.
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