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Random variables, Xi, are sampled sequentially from a finite 

population until the sum, of the associated nonnegative random variables, 

Ci' is greater than or equal to a predetermined quota, Q. The objective of 

this paper is to show that the minimal sufficient statistic described by 

Pathak (1976,Ann.Statist.4:1012-1017) is also complete and to thereby 

obtain UMVUE's for population parameters. These estimates are similar to 

their fixed sample size counterparts except they have an adjustment for the 

sampling bias of the terminal observation. We also consider an adaptation 

of double sampling to sum-quota sampling in the bivariate case. 



!.INTRODUCTION 

Most statistical methodology in use today is designed for sampling 

schemes or experimental designs where the sample size or number of data 

points is regarded as a fixed preset parameter. This is in part for 

mathematical considerations but is also suggested by the intuition that 

sampling is restricted by a total cost of data collection and that the cost 

of sampling remains the same from unit to unit. However the cost of 

sampling may vary from unit to unit and the costs may be unknown before the 

sample is taken. If so, the objective of taking a sample of preset cost, Q, 

forces us to sample sequentially until achieving cost Q, and then stop. A 

cost may be monetary or general in character. Areas where sum-quota 

sampling may arise naturally include 1) the laboratory when sampling 

microscopic fields until a predetermined number of particles are observed, 

2) packaging where we sample units until achieving a prespecified mass, or 

3) nature where a big fish eats little fish until well satiated. 

Pathak (1976) described sum-qouta sampling but used the phrase fixed 

cost sequential sampling. We choose the term sum-quota as it applies more 

naturally to the cases where cost is not the determinant of our stopping 

rule. Pathak derived unbiased estimates of population parameters based on 

all but the final observation. The objective of this paper is to show 

that the minimal sufficient statistic described by Pathak is also complete. 

We then obtain UMVUE's for population parameters in the univariate case by 

the use of completeness. These estimates are similar to their fixed sample 

size counterparts with an adjustment for the sampling bias of the final 
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observation. We also consider an adaptation of double sampling to 

sum-quota sampling in the bivariate case where we derive unbiased estimates 

of population parameters. Here, though, the minimal sufficient statistic 

is no longer complete. 

2. MODEL AND THEORY FOR THE UNIVARIATE CASE 

Consider a finite population of size N. For the j'th population 

unit define Uj•(j,Cj,Xj) where j is the unit index and Cj (Cj>•O) is the 

cost of observing Xj. We assume j is not observable and denote the i'th 

unit sampled in a sequential fashion by (Ci,Xi). 

Define a Sum-quota(Q,n ) sampling scheme as a design where we begin by 
0 

n 
sampling n units randomly without replacement. If o!Ci>•Q we stop. If 

0 
n (v-1) 0 !Ci<Q we 

v sample sequentially until !Ci< Q<• !Ci and then stop. We 

then have a sample size, v, which is random. 

We call (C ,X ) the terminal observation and all other observations v v 

collectively the preterminal observations. Define X•((C1 ,x1), ••• ,(C ,X)) 
- v v 

as the ordered sample and X •((c1 ,x1 ), ••• ,(C 1 ,x 1)) as the ordered -v v- v-

sample of preterminal observations. 

The preterminal observations behave much as if they are taken as a 

random sample of a fixed sample size. However the sampling distribution of 

Cv is different from the sampling distribution of c1 and incurs a sampling 

bias according to "length" or "size". Roughly speaking we expect the 

probability of observing C •c to be approximately c P(c)/~(C) where P(c) is v 

the probability of observing c when taking a simple random sample of size 

N 
one from the Cj and ~(C)• !Cj (Cox,l969) This phenomenon is known as 
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length-biased sampling. If the X's and C's are correlated then there will 

exist a sampling bias in X as well. Thus our analysis will become simpler 
v 

if we consider the terminal and preterminal observations differently. A 

second reason for distinguishing between the terminal and preterminal 

observations is in practice we may stop sampling the moment we reach our 

cost Q thus failing to completely determine (C ,X). We thus consider the v v 

( C , X ) ) and T "" 
v v 

T is an ordered pair, the first element being the v 

set of preterminal observations and the second element being the terminal 

observation. T is simply the set of observations. Since the cost of 

observing c1 , ..• ,Cv-l is not dependent on the order of the observations, 

conditional on T all permutations of the preterminal observations are 
v 

equally as likely to be X , the ordered sample of preterminal observations -v 

(Pathak,l976). 

exchangeable. 

Hence conditional on T the preterminal observations are v 

We now consider the conditional distribution of X given T. 

First if v•n then all permutaions are equally as likely as X. Next 
0 

consider the case v>n0 • If (C',X') E T and if "!ci- C' < Q then possibly 

( C' , X' ) • ( C , X ) . Let il S be the number of such C' in T. Again since the v v 

cost of taking observations is not dependent on the order of the 

observations and since sampling is random for each observation, conditional 

on T all such ( C' ,X') are equally as likely to be (C ,X ) . (Each v v 

observation in our sequential sampling procedure is taken randomly. It is 

only conditional on v that the distributions of the (Ci,Xi)'s are no longer 

the same as the population from which we are sampling.) Thus conditional on 

T, X is distributed with mass 1/(v-1)!/IS for each point X such that X is 
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'\1 
a permutation of T with !Ci -cv < Q. Since the distribution of X 

conditional on T (or 

sufficient. 

T ) is dependent only on T (or T ) 
'\1 v ,T (and T ) are 

'\1 

We now consider conditions under which T is also complete. Let 

9•((c1 ,X1 ), .•• ,(CN'XN)) denote a parameterization of the finite population 

(of size N), where the j'th element represents the vector value of the j'th 

population unit. If we assume the set V of all possible values for the 

pair (Cj,Xj) is the same for all the population units, and does not depend 

on the values taken on by other units, then 9, the parameter space, 

N 
consists of all 9 a member of the cartesian product V • 

Theorem 1. If the parameter space is given by 9 above, 

T•{(c1 ,x1), ••• ,(Cn,Xn)} is complete for sum-quota sampling. 

Proof. Consider parameter spaces 9' and 8'', such that 9' is a subset 

of 9' ', with supports D(9') and D(9''). Assume that E[f(T))•O for every e 

e 9' implies f(T)•O a.e. 9'. It follows that E[f(T))•O for every 9 e 9'' 

implies f(T)•O a.e. 9'' if we can show f(T)•O a.e. 9'' on the set D(S'') 

-D(9'). N 
We show completeness of the measures induced on T by 8•V and 

sum-quota sampling with a sequence of such steps. 

Assume f is such that Ef(T)•O for every 9 £ 9 We begin by 

considering any realization t={(c 1 ,x1 ), ••• ,(cn,xn)} which has positive 

probability for some 9 of 9. We want to show that f(t)•O. Let 

c •max ( c ) and x the corresponding xi. Note that it is not 
max i•l, ••• ,n i max 

necessary that x •max (x ). 
max i•l, .•• ,v i First consider 

Then T•t with probability 1 where 
0 
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t •{(c x ) (c x )} Therefore f(T)=f(t ), a constant so o max' max , ••• , max' max • o 

f(t )•0. Observe that the number of elements of the set t is dependent on 
0 0 

c , Q, and n. Next consider ei•((ci,xi),(c ,x ), .•. ,(c ,x )) for 
max o max max max max 

each i, i ranging from 1 to n. ei introduces at most one additional point, 

ti•{(ci,xi),(c ,x ), •.• ,(c ,x )}, to the sample space. By the max max max max 

assumption that E[f(T)]=O, and since f(t 0 )•0 we have Ef(T) • f(ti)P(ti) + 

f(t )P(t )•0 
0 0 

and We next consider 

ei .•((ci,xi),(cj,xj),(c ,x ), •.• ,(c ,x ) for each i,j pair where i ,J max max max max 

and j range from 1 to n. Again we introduce only one new point to the 

sample space, call this ti .• By the assumption E[f(T)]•O we have 
,J 

Ef(T) • f(ti,j)P(ti,j) + OP(ti) + OP(tj) + OP(t0 ) • 0, implying f(ti,j)•O. 

Continuing in this way we expand our sample space one point at a time by 

N 
expanding 9 from 9 0 •[9 0 ] to 9t•Vi , where Vi•{(c 1 ,x1), .•. ,(cn,xn)}, and 

find that f(t)•O. Since twas arbitrary we conclude that f(T)•O a.e., 

completing the proof. 

Define 
v 

S ={(c,x): (c,x) t T and Ici- c < Q} if v>n0 , 

S •T if v•n , 
0 

and again let #S be the cardinality of S. Sis a random set and has the 

interpretation of being the set of all observations which could have been 

the terminal observation (C ,X ). v v 
2 2 

~. a , and a A may all be estimated 
~ 

unbiasedly with uniform minimum variance by their usual fixed sample size 

estimates involving sample moments derived from T, and an adjustment for 

the sampling bias of the terminal observation involving sample moments 

derived from Sand T. In particular we have the following theorem. 
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Theorem 2. For sum-quota(Q,n ) sampling with n >=2, 
0 0 

~=x - <x(vJ - X)/(v-1) 

N - v -
is UMVUE for v-• !Xi/N where X• !Xilv and X[v]•I,sXi/1/S where Is denotes 

sumation for all (Ci,Xi) E S. 

a2=s2 -( (MS(v]. v/(v-1))- s2)/(v-2) 

is UMVUE for a 2-N!(Xi-v-) 2 /(N-l) where 

- 2 
MS[ v J•!jXi-X) /liS 

a:-(1/(v-1) - 1/N)a2 
v-

is UMVUE for a:•var(~) where v. 

and 

Proof. x1 is unbiased for V.• Taking the conditional expectation of x1 

with respect to the complete sufficient statistic T we have 

v-1 - - A E[X1 1T] = E[E[X11Tv]IT} • E[ !Xi/(v-l)IT] = E[X-(Xv-X)/(v-1)IT]=~ 

The second equality is by the exchangeability of the preterminal 

observations conditional on T , and the third by the algebraic equivalence 
v 

of the terms within E[ IT]. The forth equality is found by considering 

the distribution of X conditional on T. v 

Similarly (X1-x2) 2/2 is unbiased for a2 and 

E[(X1-x2) 2 /2IT]•E[E((X1-x2) 2/21TviT} 

v-1 v-1 2 
=E[ I<xi- !Xi/(v-1)) /(v-2)1T] 

2 - 2 2 =E[S -((X -X) v/(v-1) - S )/(v-2)1T] v 
2 -a . 

Since ~·E[v- 1 !X./(v-1)IT], 
l. 

v-1 
var(~)· var(E[ !Xi/(v-1)IT]) 

v-1 v-1 • var( !Xi/(v-1)) - E[var( !Xi/(v-1)IT)] 
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v-1 v-1 2 2 var( IX1 tv-1)=E{( LXi/(v-1)) ] - p while 

2 2 E[X1/N- X1X2/N(N-1)]= p so that 

E[Xi/N- x1x2/N(N-1)1Tv] 

=<"-1IXi/(n-1)) 2 -(1/(v-1)-1/N)("-1!<Xi-Xv_1) 2• p 2. Hence 

E[Xi/N- x1x2/N(N-1)1Tv] 

v-1 2 2 - 2 2 •( !Xi/(n-1)) -(1/(v-1)-1/N)(S -((XV-X) v/(v-1)-S )/(v-2)) 

is unbiased for p 2 implying ( 1/ ( v-1) 1/N) a2 is unbiased for 

v-1 v-1 var( !Xi/(v-1)). Similarly var( !Xi/(v-1)1T) =var(Xv/(v-l)IT) 

·!~Xi-Xv) 2 /#S(v-1) 2 =S~/(v-1) 2 is unbiased for E[var(v-1!Xi/(v-1)IT)]. 

Therefore 

2 2 2 2 & p • (1/(v-1) - 1/N)a - Sv/(v-1) is an unbiased estimator of 

2 aA based on the complete sufficient statistic and hence UMVUE. 
p 

3. DISCUSSION OF THE UNIVARIATE CASE 

If we consider the estimates and = 

v-1 - 2 (1/(v-1)-1/N) !(Xi-Xv_1 ) /(v-2) we have the corresponding estimates 

based on T , the preterminal observations , rather than T, the full sample. v 

If v is stochastically large these estimates may involve relatively little 

loss of information. However if v is stochastically small the slightly 

more complicated UMVUE's may be markedly more efficient. 

If the Ci and Xi are uncorrelated or independent we may expect the 

behavior of p and a:, conditional on v, to be quite similar to their 
J.l 

fixed sample size counterparts. If Ci and Xi are dependent we may expect a 
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stronger dependence between ~ and a: than in the fixed sample size 
~ 

case. This should be considered if constructing approximate confidence 

intervals of the form ~ + Z aAO An approach to lessen this dependence 
- a ~ 

and improve coverage probabilities of approximate confidence intervals is 

to use an n larger than the nominal value of n •2 required. A similar 
0 0 

modification is suggested when using a sequential procedure to estimate the 

mean of a normal with a preset standard error (Govindarajulu,l975). 

We now wish to argue that for Q large ~ has indeed an approximate 

normal distribution. This is most easily considered if sampling is from 

an infinite population. Since sample size is random in sum-quota sampling 

it is not proper to consider asypmtotic relations as "v ~ ~". Instead 

asymptotic relations are considered as Q ~ ~. To denote the dependence of 

the random variable v on Q, write v(Q). From Billingsley (1968) (with a 

change in notation to be consistent with the present problem) is the 

following theorem concerning random selection of random sums. If 

U[Q/~] = [Q/~]!(Xi - ~)/ax(Q/~] 112 ~ W in distribution as Q ~ ~ 

and if v(Q)/[Q/~] ~ k, a constant in probability then, 

Vv(Q) c v(Q)!(Xi - ~)/axv(Q) 112 ~ W in distribution as Q ~ ~. 

([Q/~] denotes the greatest integer less than or equal to Q/~.) Also from 

Billingsley (v(Q) - [Q/~ ])/(Qa 2 /~ 3 ) 112 ~ N(0,1), as~· From these c c c 

two results we may derive the following theorem. 

Theorem 3. For sum-quota(Q,n ) sampling (n >=1) from an infinite 
0 0 

2 2 
population with EX=~ , var(x)=a < ~. EC=~ , and var(C)=a < ~. 

X X C c 

(v(Q)) 112 (~ - ~)Ia ~ N(O,l) in distribution as Q ~ ~. 
X 
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This suggests or supports the intuition of setting confidence 

intervals using normal approximations. 

4. BIVARIATE OR DOUBLE SAMPLING CASE 

We now consider a multivariate sequential sum-quota design analogous 

to double sampling in the fixed sample size setting. We sample X 's 
i 

until 

v-l~c <Q < .. v~ci and then stop sampling Xi's. We sample y IS until 
i c i 

n-l~Di <Qd <·n~Di and then stop sampling Yi's. If 
v 
~Ci<Qc and Tl~i<Qd we 

record the multivariate observation (Ci,Xi,Di,Yi). In sum-quota sampling 

we do not determine whether we will take a larger sample of the Xi's or the 

If we stop sampling the Xi's before the 

N 
additional information about ~x= !Xi/N. 

Y.'s theY. for v<i<n may 
~ ~ 

An unbiased estimate of ~ 
X 

incorporating this additional information is found by adopting the 

Hartley-Ross estimate to sum-quota sampling and is described in Theorem 4. 

- n~ Define Xn • L~i/n, that is the mean of the first n observations. For 

- -let HR•r 1Y 1 v- n- + (X 1-; 1Y 1 )(v-l)(n-2)/(v-2)(n-1) the HR v- v- v-
2 

Let iJ HR be an 

unbiased estimate of the variance of the HR estimate in the fixed sample 

size setting (Robson,1957). 

v-1 
Theorem 4. Define ~xaHR if v<•n, ~Xi/(v-1) if v>n. ~ is 

unbiased for }!x and 82-(1/(n-1) 1/N)a; +iJ~R is unbiased for 

var(~) where o 2=v-l~(Xi-X 1 ) 2 /(v-2) and namax(v,n). 
X X V-

Proof. To show ~ is unbiased for 
X 

}!x we first consider px•HR if v<•n, 

n-1 
~Xi/(n-1) if v>n. If v<=n we may 

n-1 
show that E[HR]• !Xi/(n-1) using 
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conditional expectations and an argument similar to that in the fixed 

sample size case. We then have 

Ev •E[E[v 1£Y1 , .•. ,Y 1J,Y 11 
X X ~- ~ 

•E[~-l!X./(~-1)] 
1 

Considering the expectation of p we have 
X 

Ep •E[p jv<=~]P[v<=~] 
X X 

+ E[p lv>~]P[v>~] 
X 

=E[v lv<·~]P[v<=~] 
X 

v-1 
+ E[ !Xi/(v-l)lv>~]P[v>~] 

Thus it will follow that ~ is unbiased once we show that 
X 

v-1 ~-1 E[ !Xi/(v-1) lv>n] = E[ Ix11(n-1)lv>n]. 

To this end consider the stopping rule which stops when n!Ci>=Qc and 

n!Di>•Qd. Sample both Xi and Yi until one stops. A sufficient statistic 

is Tm•([(C1,X1,Dl,Y1), •.. ,(Cm,Xm,Dm,Ym)],[(Cm+1'Xm+1'Dm +1'Ym+l),.-

.• ,(C ,X ,D ,Y )] for any m<=n. Since x1 is n n n n unbiased we have 

v-1 
~x·E[X1 1Tn_ 1 ]=E[ !Xi/(v-1)jv>~]P[v>~] 

~-1 + E[ Ixi/(n -l)lv<·~]P[v<=~] 

n-1 
~x=E[X1 1T~_ 1 ]•E[ !Xil(n-1)lv>n]P[v>n] ~-1 + E[ !Xi/(~-l)lv<=~]P[v<·~] 

v-1 n-1 implying E[ !Xilv>n] = E[ Ixi/(~-l)lv>~]. 

That 

To find an unbiased estimate of var(p ) observe that 
X 

var(p) •varE[p jv,~,Y1 , ... ,.Y 1] +Evar(p jv,~ ,Y1, ••• ,Y 1) 
X X n- X ~-

n-1 
•var( !Xi/(n-1)) + Evar[~xlv,~,Y1 , ... ,Y~-l]. 

2 n-1 E(l/(n-1) - 1/N)crx = var( !Xi/(n-1)) is found in Theorem 2. 

Conditional on Y1 , ... ,Y~-l the usual estimate of var(HR) is unbiased, hence 

unconditionally unbiased for E[var(p lv,~,Y1 , ... ,Y 1)]. 
X ~-
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5. GENERAL DISCUSSION AND POSSIBLE EXTENSIONS 

Sometimes, when sample size is random, estimates may be given assuming 

sample size is actually fixed by the sampler. However when conditioned on 

sample size in this manner, estimates no longer apply to parameters of 

interest but to new parameters involving the original parameters and the 

sample size. In sum-quota sampling, however, the estimates avoid this 

difficulty. When based on the preterminal observations the sum-qouta 

estimates are of the usual fixed sample size form and could be motivated 

assuming sample size to be fixed. However conditional on sample size the 

sum-quota estimates have a large bias while unconditionally they are found 

to possess certain optimal properties. It is this unconditional optimality 

which we desire as it considers a larger class of estimates containing the 

conditional estimates. 

In finding estimators for p, a2 and a: we have taken conditional 
p 

expectations of unbiased estimates given T and T • The basic property of 
v 

sum-quota sampling we have drawn on in the formation of our estimates is 

the conditional exchangeability of the preterminal observations given T . 
v 

Other stopping rules which assure this exchangeability include multivariate 

quotas. For example if we observe costs Ci and Di we may stop sampling 

v 
when either rci>•Qc or 

v 
!Di>•Qd or we may stop sampling only when both 

v v 
!Ci>=Qc and !Di>=Qd. If the Di's are degenerate at 1 we may employ a 

closed sequential procedure where we sample at most n 1 units. Thus, if we 

continue to sample the same variates throughout, then our set of observed 

vectors may be (depending on the stopping rule) complete sufficient and 

with slight modification the classical fixed sample size estimates are 
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UMVUE. Similarly in fixed-cost double sampling we may consider more general 

multivariate stopping rules which may arise in practice and still derive 

unbiased estimates of ~ and 
2 a .... 
~ 

Stopping rules which assure the conditional exchangeability of the 

preterminal observations may be utilized to construct unbiased estimates of 

2 a ..... 
~ 

parameters other than ~ and If g is any U-estimable function of the 

population and has kernel of degree n then any u-statistic of the 
0 

preterminal observations is unbiased and may be improved upon by 

conditioning on T. 

Directions for future work in sum-quota sampling include the testing 

problem for cross-classified data as well as estimation of variance 

components where unequal means imply unequal expected sample sizes. 
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