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Latent Semantic Analysis is a method of computing
high-dimensional semantic vectors, or context vectors,
for words from their co-occurrence statistics. An exper-
iment by Landauer & Dumais (1997) covers a vocabu-
lary of 60,000 words (unique letter strings delimited by
word-space characters) in 30,000 contexts (text samples
or \documents" of about 150 words each). The data are
�rst collected into a 60,000� 30,000 words-by-contexts
co-occurrence matrix, with each row representing a word
and each column representing a text sample so that each
entry gives the frequency of a given word in a given
text sample. The frequencies are normalized, and the
normalized matrix is transformed with Singular-Value
Decomposition (SVD) reducing its original 30,000 doc-
ument dimensions into a much smaller number of latent
dimensions, 300 proving to be optimal. Thus words are
represented by 300-dimensional semantic vectors.

The point in all of this is that the vectors capture
meaning. Landauer and Dumais demonstrate it with a
synonym test called TOEFL (for \Test Of English as a
Foreign Language"). For each test word, four alterna-
tives are given, and the \contestant" is asked to �nd the
one that's the most synonymous. Choosing at random
would yield 25% correct. However, when the seman-
tic vector for the test word is compared to the seman-
tic vectors for the four alternatives, it correlates most
highly with the correct alternative in 64% of the cases.
However, when the same test is based on the 30,000-
dimensional vectors before SVD, the result is not nearly
as good: only 36% correct. The authors conclude that
the reorganization of information by SVD somehow cor-
responds to human psychology.

We have studied high-dimensional random distributed
representations, as models of brainlike representation of
information (Kanerva, 1994; Kanerva & Sj�odin, 1999).
In this poster we report on the use of such a repre-
sentation to reduce the dimensionality of the original
words-by-contexts matrix. The method can be explained
by looking at the 60,000� 30,000 matrix of frequencies
above. Assume that each text sample is represented by a
30,000-bit vector with a single 1 marking the place of the
sample in a list of all samples, and call it the sample's
index vector (i.e., the nth bit of the index vector for the
nth text sample is 1|the representation is unitary or lo-
cal). Then the words-by-contexts matrix of frequencies
can be gotten by the following procedure: every time
that the word w occurs in the nth text sample, the nth
index vector is added to the row for the word w.

We use the same procedure for accumulating a words-
by-contexts matrix, except that the index vectors are
not unitary. A text-sample's index vector is \small"
by comparison|we have used 1,800-dimensional index

vectors|and it has several randomly placed �1s and
1s, with the rest 0s (e.g., four each of �1 and 1, or
eight non-0s in 1,800, instead of one non-0 in 30,000
as above). Thus, we would accumulate the same data
into a 60,000� 1,800 words-by-contexts matrix instead
of 60,000� 30,000.
Our method has been veri�ed with di�erent data, a

ten-million-word \TASA" corpus consisting of a 79,000-
word vocabulary (when words are truncated after the 8th
character) in 37,600 text samples. The data were accu-
mulated into a 79,000�1,800 words-by-contexts matrix,
which was normalized by thresholding into a matrix of
�1s, 0s, and 1s. The unnormalized 1,800-dimensional
context vectors gave 35{44% correct in the TOEFL test
and the normalized ones gave 48{51% correct, which cor-
respond to Landauer & Dumais' 36% for their normal-
ized 30,000-dimensional vectors before SVD, for a di�er-
ent corpus (see above). Our words-by-contexts matrix
can be transformed further, for example with SVD as in
LSA, except that the matrix is much smaller.
Mathematically, the 30,000- or 37,600-dimensional in-

dex vectors are orthogonal, whereas the 1,800-dimen-
sional ones are only nearly orthogonal. They seem to
work just as well, in addition to which they are more
\brainlike" and less a�ected by the number of text sam-
ples (1,800-dimensional index vectors can cover a wide-
ranging number of text samples). We have used such
vectors also to index words in narrow context windows,
getting 62{70% correct, and conclude that random in-
dexing deserves to be studied and understood more fully.
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