
2.3 Simple Random Sampling

• Simple random sampling without replacement (srswor) of size n is the probability
sampling design for which a fixed number of n units are selected from a population of N
units without replacement such that every possible sample of n units has equal probability
of being selected. A resulting sample is called a simple random sample or srs.

• Note: I will use SRS to denote a simple random sample and SR as an abbreviation of
‘simple random’.

• Some necessary combinatorial notation:

– (n factorial) n! = n × (n − 1) × (n − 2) × · · · × 2 × 1. This is the number of
unique arrangements or orderings (or permutations) of n distinct items. For example:
6! = 6× 5× 4× 3× 2× 1 = 720.

– (N choose n)

(
N

n

)
=

N(N − 1) · · · (N − n+ 1)

n!
=

N !

n!(N − n)!
. This is the

number of combinations of n items selected from N distinct items (and the order of

selection doesn’t matter). For example,

(
6

2

)
=

6!

2!4!
=

(6)(5)(4!)

2!4!
=

(6)(5)

(2)(1)
= 15.

• There are
(
N
n

)
possible SRSs of size n selected from a population of size N .

• For any SRS of size n from a population of size N , we have P (S) = 1/
(
N
n

)
.

• Unless otherwise specified, we will assume sampling is without replacement.

2.3.1 Estimation of yU and t

• A natural estimator for the population mean yU is the sample mean y. Because y is an
estimate of an individual unit’s y-value, multiplication by the population size N will give
us an estimate t̂ of the population total t. That is:

ŷU = y =
1

n

n∑
i=1

yi t̂ =
N

n

n∑
i=1

yi = (10)

• ŷU and t̂ are design unbiased. That is, the average values of y and Ny taken over all
possible SRSs equal yU and t, respectively.

Demonstration of Unbiasedness: Suppose we have a population consisting of five y-values:

Unit i 1 2 3 4 5
yi 0 2 3 4 7

which has the following parameters:

N = t = yU = S2 = S ≈

Suppose a SRS of size n = 2 is selected. Then P (S) = 1/
(
5
2

)
= 1/10 for each of the 10 possible

SRSs.
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All Possible Samples and Statistics from Example Population

Sample Units y-values
∑
yi ŷU = y t̂ = Ny Ŝ2 = s2 Ŝ = s

S1 1,2 0,2 2 1 5 2 1.4142
S2 1,3 0,3 3 1.5 7.5 4.5 2.1213
S3 1,4 0,4 4 2 10 8 2.8284
S4 1,5 0,7 7 3.5 17.5 24.5 4.9497
S5 2,3 2,3 5 2.5 12.5 .5 0.7071
S6 2,4 2,4 6 3 15 2 1.4142
S7 2,5 2,7 9 4.5 22.5 12.5 3.5355
S8 3,4 3,4 7 3.5 17.5 .5 0.7071
S9 3,5 3,7 10 5 25 8 2.8284
S10 4,5 4,7 11 5.5 27.5 4.5 2.1213

Column Sum 32 160 67 22.6274
Expected value 32

10
= 3.2 160

10
= 16 67

10
= 6.7 22.6274

10
= 2.26274

= E(estimator) = yU = t = S2 6= S

The averages for estimators ŷU = y, t̂ = Ny, and Ŝ2 = s2 equal the parameters that they
are estimating. This implies that y, Ny, and s2 are unbiased estimators of yU , t, and S2.

Notation: E(ŷU) = yU , E(t̂) = t, E(Ŝ2) = S2 or E(y) = yU , E(Ny) = t, E(s2) = S2.

The average for estimator Ŝ = s does not equal the parameter S. This implies that s is a
biased estimator of S. Notation: E(Ŝ) 6= S or E(s) 6= S.

• The next problem is to study the variances of ŷU = y and t̂ = Ny.

• Warning: In an introductory statistics course, you were told that the variance of the sample
mean V (Y ) = S2/n (= σ2/n) and its standard deviation is S/

√
n (= σ/

√
n). This is

appropriate if a sample was to be taken from an infinite or extremely large population.

• However, we are dealing with finite populations that often are not considered extremely

large. In such cases, we have to adjust our variance formulas by
N − n
N

which is known

as the finite population correction (f.p.c.).

• Texts may rewrite the f.p.c.
N − n
N

as either 1 − n

N
or 1 − f where f = n/N is the

fraction of the population that was sampled. By definition :

V (ŷU) = V (y) = V (t̂) = N2V (y) = N(N − n)
S2

n
(11)

• Because S2 is unknown, we use s2 to get unbiased estimators of the variances in (11)::

V̂ (ŷU) = V̂ (y) = V̂ (t̂) = N2V̂ (y) = N(N − n)
s2

n
(12)

• Taking a square root of a variance in (11) yields the standard deviation of the estimator.

• Taking a square root of an estimated variance in (12) yields the standard error of the
estimate.
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• Thus, V (y) =

(
N − n
N

)
S2

n
=

3

5

6.7

2
= and

V (t̂) = N2V (y) = N(N − n)
S2

n
= (5)(3)

6.7

2
= .

• Like ŷU and t̂, the variances V̂ (ŷU) and V̂ (t̂) are design unbiased. That is the average

of V̂ (ŷU) and V̂ (t̂) taken over all possible SRSs equal V (ŷU) = 2.01 and V (t̂) = 50.25,
respectively.

• For the estimated variances we have V̂ (ŷU) =

(
N − n
N

)
s2

n
=

3

5

s2

2
= and

V̂ (t̂) = N(N − n)
s2

n
= (5)(3)

s2

2
= where s2 is a particular sample variance.

Example: We will use our population from the previous example:

Unit, i 1 2 3 4 5
yi 0 2 3 4 7

which have the following parameters

N = 5 t = 16 yU = 3.2 S2 = 6.7 S ≈ 2.588

Estimated Variances of ŷU and t̂ for All Samples

Sample Units y-values s2 V̂ (ŷU) = .3s2 V̂ (t̂) = 7.5s2

S1 1,2 0,2 2 0.6 15
S2 1,3 0,3 4.5 1.35 33.75
S3 1,4 0,4 8 2.4 60
S4 1,5 0,7 24.5 7.35 183.75
S5 2,3 2,3 .5 0.15 3.75
S6 2,4 2,4 2 0.6 15
S7 2,5 2,7 12.5 3.75 93.75
S8 3,4 3,4 .5 0.15 3.75
S9 3,5 3,7 8 2.4 60
S10 4,5 4,7 4.5 1.35 33.75

Column Sum

• From the table we have E(V̂ (ŷU)) = 20.1/10 = 2.01 = V (ŷU) and E(V̂ (t̂)) = 502.5/10 =
50.25 = V (t̂). Thus, we see that both variance estimators are unbiased.

• If N is large relative to n, then the finite population correction (f.p.c.) will be close to
(but less than) 1. Omitting the finite population correction from the variance formulas
(i.e., replacing (N − n)/N with 1) will slightly overestimate the true variance. That is,
there is a small positive bias. I personally would not recommend omitting the f.p.c..

• If N is not large relative to n, then omitting the f.p.c. from the variance formulas can
seriously overestimate the true variance. That is, there can be a large positive bias.

• As n → N ,
N − n
N

→ 0. That is, as the sample size approaches the population size, the

f.p.c. approaches 0. Thus, in (11) and (12) the variances → 0 as n→ N .
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2.3.2 SRS With Replacement

• Consider a sampling procedure in which a sampling unit is randomly selected from the
population, its y-value recorded, and is then returned to the population. This process of
randomly selecting units with replacement after each stage is repeated n times. Thus, a
sampling unit may be sampled multiple times. A sample of n units selected by such a
procedure is called a simple random sample with replacement.

• The estimators for SRS with replacement are: ŷU = y V̂ (ŷU) = V̂ (ŷ) =
s2

n

• Suppose we have two estimators θ̂1 and θ̂2 of some parameter θ.

θ̂1 is less efficient than θ̂2 for estimating θ if V (θ̂1) > V (θ̂2).

θ̂1 is more efficient than θ̂2 for estimating θ if V (θ̂1) < V (θ̂2).

• For most situations, the estimator for a SRS with replacement is less efficient than the
estimator for a SRS without replacement.

• There will be circumstances (such as sampling proportional to size) where we will consider
sampling with replacement. Unless otherwise stated, we assume that sampling is done
without replacement.

2.4 Two-Sided Confidence Intervals for yU and t

• In an introductory statistics course, you were given confidence interval formulas

y ± z∗
s√
n

and y ± t∗
s√
n

(13)

These formulas are applicable if a sample was to be taken from an infinitely or extremely
large population. But when we are dealing with finite populations, we adjust our variance
formulas by the finite population correction .

• In the finite population version of the Central Limit Theorem, we assume the estimators
ŷU = y and t̂ = Ny have sampling distributions that are approximately normal. That is,

ŷU ∼̇ N

(
yU ,

N − n
N

S2

n

)
and t̂ ∼̇ N

(
t , N(N − n)

S2

n

)
• For large samples, approximate 100(1− α)% confidence intervals for yU (µ) and t (τ) are

For yU : For t : (14)

y ± z∗

√(
N − n
N

)
s2

n
Ny ± z∗

√
N(N − n)

s2

n

y ± z∗s

√(
N − n
N

)
/n Ny ± z∗s

√
N(N − n)/n (15)

where z∗ is the upper α/2 critical value from the standard normal distribution. Or, in
standard error (s.e.) notation,

ŷU ± t̂ ±

For 90%, 95%, and 99%, z∗ = 1.645, 1.96, and 2.576, respectively.
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• For smaller samples, approximate 100(1− α)% confidence intervals for yU and t are

For yU : For t : (16)

y ± t∗

√(
N − n
N

)
s2

n
Ny ± t∗

√
N(N − n)

s2

n

y ± t∗s

√(
N − n
N

)
/n Ny ± t∗s

√
N(N − n)/n (17)

where t∗ is the upper α/2 critical value from the t(n− 1) distribution.

• The quantity being added and subtracted from ŷU = y or t̂ = Ny in the confidence
interval is known as the margin of error.

Example: Use the small population data again. For n = 2, t∗ ≈ 6.314 for a nominal 90%
confidence level.

All Possible Samples and Confidence Intervals from Example Population

Sample y-values
∑

yi ŷU = y t̂ = Ny Ŝ2 = s2 Ŝ = s V̂ (ŷU ) V̂ (t̂) 90% ci for t
1 0,2 2 1 5 2 1.4142 0.6 15 (-19.45, 29.45)
2 0,3 3 1.5 7.5 4.5 2.1213 1.35 33.75 (-29.18, 44.18)
3 0,4 4 2 10 8 2.8284 2.4 60 (-38.91, 58.91)
4 0,7 7 3.5 17.5 24.5 4.9497 7.35 183.75 (-68.09, 103.09)
5 2,3 5 2.5 12.5 .5 0.7071 0.15 3.75 (0.27, 24.73)
6 2,4 6 3 15 2 1.4142 0.6 15 (-9.45, 39.45)
7 2,7 9 4.5 22.5 12.5 3.5355 3.75 93.75 (-38.63, 83.63)
8 3,4 7 3.5 17.5 .5 0.7071 0.15 3.75 (5.27, 29.73)
9 3,7 10 5 25 8 2.8284 2.4 60 (-23.91, 73.91)
10 4,7 11 5.5 27.5 4.5 2.1213 1.35 33.75 (-9.18, 64.18)

2.4.1 One-Sided Confidence Intervals for yU and t

• Occasionally, a researcher may want a one-sided confidence interval. There are two types
of one-sided confidence intervals: upper and lower.

• Approximate upper and lower 100(1− α)% confidence intervals for yU and t are:

For yU : For t :(
y − t∗s

√(
N − n
N

)
/n , ∞

) (
Ny − t∗s

√
N(N − n)/n , ∞

)
upper

(
−∞ , y + t∗s

√(
N − n
N

)
/n

) (
−∞ , Ny + t∗s

√
N(N − n)/n

)
lower

where t∗ is the upper α critical value from the t(n− 1) distribution.

• If the y-values cannot be negative, replace −∞ with 0 in the lower confidence interval
formulas. If the y-values cannot be positive, replace ∞ with 0 in the upper confidence
interval formulas.
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• Later, we will discuss another method of generating a confidence interval called boot-
strapping. This will be useful when the sample size may be small and the central limit
theorem cannot be applied.

SRS Example with Strong Spatial Correlation

• To illustrate the application of simple random sampling to population mean per unit µ
estimation, consider the abundance data in Figure 1. The abundance counts are artificial
but show a strong diagonal spatial correlation.

• The region has been gridded into a 20×20 grid of 10×10 m quadrats. The total abundance
t = 13354 and the mean per unit is yU = 33.385. The population variance S2 = 75.601.

• This data will be used to compare estimation properties of various sampling designs when
data are spatially correlated.

Figure 1

Data Exhibiting Strong Spatial Correlation

18 20 15 20 20 15 19 18 24 23 20 26 29 28 28 31 31 34 28 32

13 20 16 20 15 23 19 26 21 21 24 30 23 26 25 33 31 28 32 38

16 18 20 24 25 26 22 23 26 26 22 27 25 25 34 28 37 36 38 31

17 17 16 22 21 23 22 27 27 24 28 32 29 33 27 37 37 38 35 33

15 19 23 17 21 23 21 23 24 25 31 26 32 34 32 33 31 31 36 37

21 24 20 21 28 26 30 22 31 25 29 29 27 30 29 37 35 32 38 43

23 17 24 25 24 27 31 29 31 34 27 36 29 29 34 39 37 37 40 36

18 24 21 25 27 22 32 32 31 26 28 34 34 37 35 34 38 38 37 40

22 26 28 26 24 29 33 26 27 27 34 31 39 32 36 38 37 40 44 43

23 27 28 29 26 32 25 31 35 34 32 33 37 32 42 40 40 37 42 44

23 21 31 23 30 27 31 30 32 35 30 40 32 37 37 36 40 44 44 40

26 29 31 26 30 31 34 36 30 38 36 32 38 38 37 42 42 41 40 49

28 24 28 27 26 31 32 29 32 33 38 34 39 38 40 37 41 43 42 43

32 25 31 32 29 29 35 38 38 32 36 35 39 42 39 40 44 42 41 45

27 29 35 28 35 35 31 40 35 37 38 44 40 40 47 39 49 48 51 49

30 29 32 32 33 30 36 38 42 36 35 38 44 47 45 49 41 43 44 51

28 35 35 34 34 33 41 33 34 35 39 44 44 48 44 50 49 48 53 54

29 33 32 36 39 33 33 34 35 42 46 47 48 47 46 45 44 52 54 55

28 37 38 37 33 33 34 37 45 40 39 42 42 46 47 48 52 47 46 53

38 39 39 37 34 38 39 45 39 42 45 41 44 51 46 50 52 51 51 53
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29

SRS taken from Figure 1 (n = 10, t = 13354, yU = 33.385, y = 34.1, s2 = 18.32)

18 20 15 20 20 15 19 18 24 23 20 26 29 28 28 31 31 34 28 32
13 20 16 20 15 23 19 26 21 21 24 30 23 26 25 (33) 31 28 32 38
16 18 20 24 25 26 22 23 26 26 22 27 25 25 34 28 37 36 38 31
17 17 16 22 21 23 22 27 27 24 28 32 29 (33) 27 37 37 38 35 33
15 19 23 17 21 23 21 23 24 25 31 26 32 34 32 33 31 31 36 37
21 24 20 21 28 26 (30) 22 31 25 29 29 27 30 29 37 35 32 38 43
23 17 24 25 24 27 31 29 31 34 27 36 29 29 34 39 37 37 40 36
18 24 21 25 27 22 32 32 31 26 28 34 34 37 35 (34) 38 38 37 40
22 26 28 26 24 29 33 26 27 27 34 31 (39) 32 36 38 37 40 44 43
23 27 28 29 26 32 25 31 35 34 32 33 37 32 42 40 40 37 42 44
23 21 31 23 30 27 31 30 32 35 30 40 32 37 37 36 40 44 44 40
26 29 31 26 30 31 34 36 30 38 36 32 38 38 37 42 42 41 40 49
28 24 28 (27) 26 31 32 29 32 33 38 34 39 38 40 37 41 43 42 43
32 25 31 (32) 29 29 35 38 38 32 (36) 35 39 42 39 40 44 42 41 45
27 29 35 28 35 35 31 40 35 37 38 44 40 40 47 39 49 48 51 49
30 29 32 32 33 30 36 38 42 36 35 38 44 47 45 49 41 43 44 51
28 (35) 35 34 34 33 41 33 34 35 39 44 44 48 44 50 49 48 53 54
29 33 32 36 39 33 33 34 35 42 46 47 48 47 46 45 44 52 54 55
28 37 38 37 33 33 34 37 45 40 39 42 (42) 46 47 48 52 47 46 53
38 39 39 37 34 38 39 45 39 42 45 41 44 51 46 50 52 51 51 53
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SRS Example using Rathbun and Cressie (1994) Data

• To illustrate the application of simple random sampling to population total t estimation, consider
the abundance data in Figure 2. The abundance counts correspond to the census data studied
by Rathbun and Cressie (1994).

• This 200 × 200 m study region is located in an old-growth forest in Thomas County, Georgia.
This data represents the number of longleaf pine trees located in each quadrat. The coordinates
of the 584 tree locations are given in Cressie (1991).

• I have gridded the region into a 20 × 20 grid of 10 × 10 m quadrats. The total abundance
t = 584 and the mean abundance per quadrat yU = 584/400 = 1.435. The population variance
S2 = 3.853.

• There is only a weak spatial correlation of tree counts within the study region.

• The pineleaf census data will be used to compare estimation properties of various sampling
designs.

• Note the two relatively large boldfaced values (14 and 16).

Figure 2

Longleaf Pine Data (Rathbun and Cressie 1994)

1 1 1 1 1 2 1 0 0 0 4 5 0 1 0 1 2 1 0 1

3 2 1 0 1 0 0 0 1 2 2 2 0 2 2 2 0 2 0 1

7 4 1 1 1 1 0 0 0 2 2 0 4 3 2 4 2 1 2 2

0 1 2 0 0 0 0 0 4 6 5 1 5 0 0 0 2 1 2 0

1 1 0 2 3 2 0 0 2 1 3 1 4 1 1 1 2 2 1 1

2 0 0 0 4 3 3 0 1 16 5 0 1 3 8 0 0 1 3 3

0 0 1 14 3 3 1 2 0 8 0 2 0 3 9 0 4 2 1 0

0 0 5 1 8 7 6 6 6 1 0 4 0 0 1 2 2 0 1 2

0 0 2 2 3 2 2 3 1 1 1 3 0 0 2 2 0 3 4 0

0 0 0 0 1 0 3 1 1 1 2 0 2 0 2 0 2 1 1 0

1 8 7 7 8 0 5 0 1 0 1 2 0 0 2 4 2 2 2 4

0 9 1 0 0 1 1 1 0 0 0 1 2 4 0 2 1 3 3 1

0 0 0 1 0 2 4 3 1 2 2 0 0 1 1 2 2 0 2 4

0 1 0 0 1 2 0 2 3 5 2 0 0 2 1 1 2 0 1 3

1 0 0 1 1 0 0 0 2 2 2 1 1 1 0 0 2 0 0 0

0 2 0 2 2 0 1 1 0 2 0 0 1 0 0 1 1 1 5 3

0 0 0 3 2 1 0 0 0 0 0 2 1 0 1 1 1 3 1 2

1 0 0 1 0 3 0 1 0 0 2 1 2 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 0 1 0 3 0 2 0 1 1 0

2 0 0 0 0 0 0 0 1 2 0 1 3 0 0 1 0 1 2 4

REFERENCES (for Figure 2 data)

Cressie, Noel (1991) Statistics for Spatial Data. Wiley, New York.

Rathbun, S.L. and Cressie, N. (1994) A space-time survival point process for a longleaf pine forest in
southern Georgia. Journal of the American Statistical Association, 89, 1164-1174.
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29
SRS taken from Figure 2 (n = 20, t = 584, yU = 1.435, y = 1.55, s2 = 10.9974)

1 1 1 1 1 2 1 0 0 0 4 5 0 1 0 1 2 1 0 1
3 2 1 0 1 0 0 0 1 2 2 2 0 2 2 2 0 2 0 1
7 4 1 1 1 1 0 0 0 2 2 0 4 3 2 4 2 1 2 2
0 1 2 0 0 (0) 0 0 4 6 5 1 5 0 0 0 2 1 2 0
1 (1) 0 2 3 2 (0) 0 2 1 3 1 4 1 1 1 2 2 1 1
2 0 0 0 4 3 3 0 1 16 5 0 1 (3) 8 0 0 1 3 3
0 (0) 1 (14) 3 (3) 1 2 0 8 (0) 2 0 3 9 0 4 2 1 0
0 0 5 (1) 8 7 (6) 6 6 1 0 4 0 0 1 2 2 0 1 2
0 0 2 2 3 2 2 3 1 1 1 3 0 0 2 2 0 3 4 (0)
0 0 0 0 1 0 3 1 1 1 2 0 2 0 2 (0) 2 1 1 0
1 8 7 7 8 0 5 0 1 (0) 1 2 0 (0) 2 4 2 2 2 4
0 9 1 0 (0) 1 1 1 0 0 0 1 2 4 0 2 1 3 3 1
0 0 0 1 0 2 4 3 1 2 2 0 0 1 1 2 2 0 2 4
0 1 0 0 1 2 0 2 3 5 2 0 0 2 1 1 2 0 1 3
1 0 0 1 1 0 0 0 2 2 2 (1) 1 1 0 0 (2) 0 0 0
0 2 0 2 2 0 1 1 0 2 0 0 1 0 0 1 1 1 5 3
0 0 0 3 2 1 0 0 0 0 0 2 1 0 1 1 1 3 1 2
1 (0) 0 1 0 3 (0) 1 0 0 2 1 2 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0 1 0 3 0 2 0 1 1 0
2 0 0 0 0 0 0 0 1 2 0 1 3 (0) 0 1 0 1 2 4
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2.4.2 Using the R Survey Package for a SRS

R Code and Output for Figure 1 SRS Analysis

"count" "fpc" <- This is the contents of the data file fig1.txt
33 400 <- The first column are the recorded responses
33 400 <- The second column is the population size N
30 400
34 400
39 400
27 400
32 400
36 400
35 400
42 400

R Code

source("c:/courses/st446/rcode/confintt.r")

# t-based confidence intervals for SRS in Figure 1

library(survey)
srsdat <- read.table("c:/courses/st446/rcode/fig1.txt", header=T)
srsdat

srs_design <- svydesign(id=~1, fpc=~fpc, data=srsdat)
srs_design

esttotal <- svytotal(~count,srs_design)
print(esttotal,digits=15)
confint.t(esttotal,degf(srs_design),level=.95)
confint.t(esttotal,degf(srs_design),level=.95,tails=’lower’)
confint.t(esttotal,degf(srs_design),level=.95,tails=’upper’)

estmean <- svymean(~count,srs_design)
print(estmean,digits=15)
confint.t(estmean,degf(srs_design),level=.95)
confint.t(estmean,degf(srs_design),level=.95,tails=’lower’)
confint.t(estmean,degf(srs_design),level=.95,tails=’upper’)

R output for t-based confidence interval for SRS

> srsdat
count fpc

1 33 400
2 33 400
3 30 400
4 34 400
5 39 400
6 27 400
7 32 400
8 36 400
9 35 400
10 42 400
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Independent Sampling design

total SE
count 13640 534.63

-------------------------------------------------------------------
mean( count ) = 13640.00000
SE( count ) = 534.62760
Two-Tailed CI for count where alpha = 0.05 with 9 df

2.5 % 97.5 %
12430.58835 14849.41165

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 13640.00000
SE( count ) = 534.62760
One-Tailed (Lower) CI for count where alpha = 0.05 with 9 df

5 % upper
12659.96724 infinity

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 13640.00000
SE( count ) = 534.62760
One-Tailed (upper) CI for count where alpha = 0.05 with 9 df

lower 95 %
-infinity 14620.03276

-------------------------------------------------------------------

mean SE
count 34.1 1.3366

-------------------------------------------------------------------
mean( count ) = 34.10000
SE( count ) = 1.33657
Two-Tailed CI for count where alpha = 0.05 with 9 df

2.5 % 97.5 %
31.07647 37.12353

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 34.10000
SE( count ) = 1.33657
One-Tailed (Lower) CI for count where alpha = 0.05 with 9 df

5 % upper
31.64992 infinity

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 34.10000
SE( count ) = 1.33657
One-Tailed (upper) CI for count where alpha = 0.05 with 9 df

lower 95 %
-infinity 36.55008

-------------------------------------------------------------------
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R Code and Output for Figure 2 SRS Analysis

source("c:/courses/st446/rcode/confintt.r")

# t-based confidence intervals for SRS in Figure 2

library(survey)
srsdat <- read.table("c:/courses/st446/rcode/fig2.txt", header=T)
srsdat

srs_design <- svydesign(id=~1, fpc=~fpc, data=srsdat)
srs_design

esttotal <- svytotal(~count,srs_design)
print(esttotal,digits=15)
confint.t(esttotal,degf(srs_design),level=.95)
confint.t(esttotal,degf(srs_design),level=.95,tails=’lower’)
confint.t(esttotal,degf(srs_design),level=.95,tails=’upper’)

estmean <- svymean(~count,srs_design)
print(estmean,digits=15)
confint.t(estmean,degf(srs_design),level=.95)
confint.t(estmean,degf(srs_design),level=.95,tails=’lower’)
confint.t(estmean,degf(srs_design),level=.95,tails=’upper’)

R output for t-based confidence interval for SRS

The data file:
count fpc "count" "fpc"

1 1 400 1 400
2 0 400 0 400
3 0 400 0 400
4 14 400 14 400
5 1 400 1 400
6 0 400 0 400
7 0 400 0 400
8 3 400 3 400
9 0 400 0 400
10 6 400 6 400
11 0 400 0 400
12 0 400 0 400
13 0 400 0 400
14 1 400 1 400
15 3 400 3 400
16 0 400 0 400
17 0 400 0 400
18 0 400 0 400
19 2 400 2 400
20 0 400 0 400

total SE
count 620 289.1
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-------------------------------------------------------------------
mean( count ) = 620.00000
SE( count ) = 289.10206
Two-Tailed CI for count where alpha = 0.05 with 19 df

2.5 % 97.5 %
14.90244 1225.09756

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 620.00000
SE( count ) = 289.10206
One-Tailed (Lower) CI for count where alpha = 0.05 with 19 df

5 % upper
120.10415 infinity

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 620.00000
SE( count ) = 289.10206
One-Tailed (upper) CI for count where alpha = 0.05 with 19 df

lower 95 %
-infinity 1119.89585

-------------------------------------------------------------------

mean SE
count 1.55 0.7228

-------------------------------------------------------------------
mean( count ) = 1.55000
SE( count ) = 0.72276

Two-Tailed CI for count where alpha = 0.05 with 19 df
2.5 % 97.5 %

0.03726 3.06274
-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 1.55000
SE( count ) = 0.72276
One-Tailed (Lower) CI for count where alpha = 0.05 with 19 df

5 % upper
0.30026 infinity

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( count ) = 1.55000
SE( count ) = 0.72276
One-Tailed (upper) CI for count where alpha = 0.05 with 19 df

lower 95 %
-infinity 2.79974

-------------------------------------------------------------------
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2.4.3 Using SAS PROC Surveymeans for a SRS

DM ’LOG;CLEAR;OUT;CLEAR’; *** I recommend putting these two lines of code;

OPTIONS NODATE NONUMBER; *** at the beginning of every SAS program ;

data SRS_Fig1;

wgt= 400/10; * wgt = N/n ;

input count @@;

datalines;

33 33 30 34 39 27 32 36 35 42

;

proc surveymeans data=SRS_Fig1 total=400 mean clm sum clsum;

var count;

weight wgt;

title1 ’Simple Random Sample -- Example 1’;

title2 ’Estimating the population mean and total from the data in Figure 1’;

run;

===========================================================================

Simple Random Sample -- Example 1

Estimating the population mean and total from the data in Figure 1

The SURVEYMEANS Procedure

Data Summary

Number of Observations 10

Sum of Weights 400

Statistics

Std Error

Variable Mean of Mean 95% CL for Mean

--------------------------------------------------------------

count 34.100000 1.336569 31.0764709 37.1235291

--------------------------------------------------------------

Variable Sum Std Dev 95% CL for Sum

---------------------------------------------------------------

count 13640 534.627596 12430.5884 14849.4116

---------------------------------------------------------------
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DM ’LOG;CLEAR;OUT;CLEAR’;

OPTIONS NODATE NONUMBER LS=80 PS=400;

data SRS_Fig2;

wgt= 400/20; * wgt = N/n ;

input trees @@;

datalines;

1 0 0 14 1 0 0 3 0 6 0 0 0 1 3 0 0 0 2 0

;

proc surveymeans data=SRS_Fig2 total=400 mean clm sum clsum;

var trees;

weight wgt;

title1 ’Simple Random Sample -- Example 2’;

title2 ’Estimating the population mean and total from the data in Figure 2’;

run;

============================================================================

Simple Random Sample -- Example 2

Estimating the population mean and total from the data in Figure 2

The SURVEYMEANS Procedure

Data Summary

Number of Observations 20

Sum of Weights 400

Statistics

Std Error

Variable Mean of Mean 95% CL for Mean

--------------------------------------------------------------

trees 1.550000 0.722755 0.03725610 3.06274390

--------------------------------------------------------------

Variable Sum Std Dev 95% CL for Sum

---------------------------------------------------------------

trees 620.000000 289.102058 14.9024382 1225.09756

---------------------------------------------------------------
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2.5 Attribute Proportion Estimation

• Suppose we are interested in an attribute (characteristic) associated with the sampling
units. The population proportion p is the proportion of population units having that
attribute.

• Statistically, the goal is to estimate proportion p.

• Examples: the proportion of females (or males) in an animal population, the proportion of
consumers who own motorcycles, the proportion of married couples with at least 1 child. . .

• Statistically, we use an indicator function that assigns a yi value to unit i as follows:

yi =

{
1 if unit i possesses the attribute
0 otherwise

Then t =
N∑
i=1

yi and yU =
1

N

N∑
i=1

yi = p. The population proportion p can be

expressed as a population mean yU . Therefore, we will, under certain conditions, be able
to apply the SRS methods for estimating yU .

• By taking a SRS of size n, we can estimate p with the sample proportion p̂ of units that

possess that attribute: p̂ =

∑n
i=1 yi
n

= y. The sample proportion p̂ is unbiased for p.

• For a finite population of 0 and 1 values, the population variance

S2 =
1

N − 1

N∑
i=1

(yi − p)2 =

• Therefore, the variance of p̂ is

V (p̂) =

(
N − n
N

)
S2

n
=

(
N − n
N

)(
N

N − 1

)
p(1− p)

n
=

(18)

• Because S2 is unknown, we estimate it with s2 =
n

n− 1
p̂(1 − p̂). Substitution provides

the unbiased estimator of V (p̂):

V̂ (p̂) =

(
N − n
N

)
s2

n
= (19)

• The square root of V (p̂) in (18) is the standard deviation of the estimator p̂.

• The square root of V̂ (p̂) in (19) is the standard error of p̂.

• The effects of omitting the finite population correction (f.p.c.) from the formulas for large
and small samples apply here as they did earlier.
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Figure 3: The Presence/Absence of Longleaf Pine

Rathbun/Cressie data (t = 249 N = 400 p = .6225)
1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1

1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1

1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0

1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1

0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0

0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1

0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0

0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0

1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1

0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1

0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1

0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1

1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1

0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1

1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1

A simple random sample of size n = 25

1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 (1) 0 1
(1) 1 1 0 1 0 0 0 1 (1) 1 (1) 0 1 1 1 0 1 0 1
1 1 1 1 1 1 0 0 0 1 1 0 1 (1) 1 1 1 (1) 1 1
0 (1) 1 0 0 0 0 (0) 1 1 1 1 1 0 0 (0) 1 1 1 0
1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 (1)
1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1
0 0 1 1 (1) 1 1 1 0 1 0 1 0 1 1 (0) 1 1 1 0
0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1
0 0 1 1 1 1 1 1 1 1 1 1 0 0 (1) 1 0 1 1 0
0 0 0 0 1 0 1 1 (1) 1 1 0 1 0 1 0 1 1 1 0
1 1 1 1 1 0 1 0 1 0 1 1 0 0 (1) 1 1 1 1 1
0 1 1 0 0 1 1 1 0 0 0 (1) 1 1 0 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 0 (0) 1 1 (1) (1) 0 1 1
0 1 0 0 1 1 0 (1) 1 1 1 0 0 1 1 1 1 0 1 1
1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

(0) 1 0 (1) 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1
0 0 0 1 1 1 0 0 0 0 0 1 1 0 (1) 1 1 1 1 1
1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0
0 0 (0) 0 0 0 (0) 1 1 1 0 1 0 1 0 1 0 1 1 0
1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1
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2.5.1 Confidence Intervals for p

• Let the random variable Y = the number of units in a SRS of size n that possess the
attribute of interest. We know (in theory) that the sampling distribution of Y follows a
hypergeometric distribution.

• Hypergeometric distribution for a SRS: The probability that a SRS of size n will have
exactly j sampling units possessing the attribute is

Pr(Y = j) =

(
t
j

)(
N−t
n−j

)(
N
n

)
= the probability that a SRS will consist of j ones and n − j zeroes selected from the
population containing t ones (1’s) and N − t zeroes (0’s).

• Although confidence interval calculations can be based on probability tables of hyper-
geometric distributions, we will use a more common approach that will apply to many
sampling situations.

• Remember there are t ones and N − t zeros in the population. However, t is unknown.
If we can assume that n is small relative to both t and N − t, we can use the binomial
approximation to the hypergeometric distribution. That is, Y ∼̇ BIN(n, p).

• Although the problem no longer depends on t, it still depends on the unknown proportion
parameter p.

• What is commonly done is to apply the normal approximation to the binomial distribution:

p̂ ∼̇ N (p, V (p̂)) .

• Thus, if the sample size n is large enough, we use V̂ (p̂) to estimate V (p̂). An approximate
100(1− α)% confidence interval for p is:

p̂± z∗
√
V̂ (p̂) OR p̂± z∗

√(
N − n
N

)
p̂(1− p̂)
n− 1

(20)

where z∗ is the upper α/2 critical value from the standard normal distribution. Sample
sizes are typically large enough to use z∗ instead of t∗.

• The normal approximation will be reasonable given

1. n is not too large relative to t or N − t. This will be a problem if p is close to 0 or
1.

2. The smaller of np̂ and n(1 − p̂) is not too small. In most texts, it is suggested that
both np̂ and n(1− p̂) should be ≥ 5, while some texts use ≥ 10.
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R Code and Output for Figure 3 Example

source("c:/courses/st446/rcode/confintt.r")

# t-based confidence intervals for SRS in Figure 3

library(survey)
srsdat <- read.table("c:/courses/st446/rcode/fig3.txt", header=T)
srsdat

srs_design <- svydesign(id=~1, fpc=~fpc, data=srsdat)

estmean <- svymean(~presence,srs_design)
print(estmean,digits=15)
confint.t(estmean,degf(srs_design),level=.90)
confint.t(estmean,degf(srs_design),level=.90,tails=’lower’)
confint.t(estmean,degf(srs_design),level=.90,tails=’upper’)

R output for t-based confidence interval for SRS

> srsdat
presence fpc

1 1 400
2 1 400
3 1 400
: : :
23 0 400
24 0 400
25 0 400

mean SE
presence 0.72 0.0887

-------------------------------------------------------------------
mean( presence ) = 0.72000
SE( presence ) = 0.08874
Two-Tailed CI for presence where alpha = 0.1 with 24 df

5 % 95 %
0.56817 0.87183

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( presence ) = 0.72000
SE( presence ) = 0.08874
One-Tailed (Lower) CI for presence where alpha = 0.1 with 24 df

10 % upper
0.60305 infinity

-------------------------------------------------------------------

-------------------------------------------------------------------
mean( presence ) = 0.72000
SE( presence ) = 0.08874
One-Tailed (upper) CI for presence where alpha = 0.1 with 24 df

lower 90 %
-infinity 0.83695

-------------------------------------------------------------------
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SAS Code and Output for Figure 3 Example

DM ’LOG;CLEAR;OUT;CLEAR’;

OPTIONS NODATE NONUMBER LS=72 PS=54;

DATA SRS_Fig3;

INPUT ind @@;

DATALINES;

1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0

;

DATA SRS_Fig3; set SRS_Fig3;

IF ind = 0 then pa = ’absent ’;

IF ind = 1 then pa = ’present’;

PROC SURVEYMEANS DATA=SRS_Fig3 TOTAL = 400 ALPHA = .10;

VAR pa;

TITLE ’Simple Random Sample -- Figure 3’;

TITLE2 ’Estimating population proportion p’;

RUN;

==================================================================

Simple Random Sample -- Figure 3

Estimating population proportion p

The SURVEYMEANS Procedure

Data Summary

Number of Observations 25

Class Level Information

Class

Variable Levels Values

pa 2 absent present

Statistics

Std Error

Variable Level N Mean of Mean 90% CL for Mean

-------------------------------------------------------------------------

pa absent 7 0.280000 0.088741 0.12817428 0.43182572

present 18 0.720000 0.088741 0.56817428 0.87182572

-------------------------------------------------------------------------
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2.6 Sample Size Determination with Simple Random Sampling

• It is well known that an increase in sample size n will lead to a more precise estimator
of yU or t. It is also obvious that an increase in the sample size n will make the sample
more expensive to collect. There will, however, be a limited amount of resources available
(allocated, budgeted) for data collection.

• When designing a sampling plan, the researcher wants to achieve a desired degree of
reliability at the lowest possible cost while satisfying the resource limitations for data
collection. That is, the goal is to get the most information given resources and constraints.

• To do this, the researcher tries to achieve a balance to avoid the following mistakes:

– Oversampling: The sampling plan may provide more precision than is needed. Over-
sampling will lead to increased sampling effort, time, and cost.

– Undersampling: The sampling plan may yield insufficient precision resulting in pro-
ducing overly-wide confidence intervals. Undersampling will lead to wasted time and
money.

• To determine a sample size n when estimating a parameter θ, we do the following:

– Estimate the sample size n required so that the probability of the difference be-
tween the estimator θ̂ and the parameter being estimated θ exceeds some maximum
allowable difference d = |θ̂ − θ| is at most α. Or, equivalently, find n such that

Pr(|θ̂ − θ| > d) < α.

• This is equivalent to finding n large enough so that the margin of error

2.6.1 When Estimating yU

• Situation: Estimate the SRS size required so the probability that the difference between
the estimator ŷU = y and the population mean yU does not exceed a maximum allowable
difference d is at most α.

• Mathematically, find n such that Pr(|ŷU − yU | > d) < α for a specified maximum
allowable difference d.

• Assuming y is approximately normally distributed, this is equivalent to finding n so that

the margin of error zα/2

√(
N − n
N

)
S2

n
≤ d. Solving this inequality for n yields

n =
1

d2

z2S2 + 1
N

= (21)

where n0 = and z is the critical α/2 value from a N(0, 1) distribution.

• Rounding-up the value of n in (21) yields the desired sample size. If this value is < 30, I
recommend adding 2 or 3 to this value to account for the use of the large sample z∗ in the
previous formulas instead of a smaller sample t∗.
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– For example, consider the spatially correlated population in Figure 1. How large a
sample would be required so that ŷU = y is within 1 of yU with probability at least
.95 (α = .05)? (Assume S2 ≈ 18.3)

• If the population size N is very large, then 1/N ≈ 0. In this case, n ≈ n0. This is the
formula given in introductory statistics books.

• There remains one major problem. This sample size formula assumes that you know the
population variance S2. Therefore, to estimate the sample size n, we need a prior estimate
of S2. Barnett (1997, pages 33-34) describes 4 ways to do this:

1. A Pilot Study: A small sample size pilot study can be conducted prior to the primary
study to provide an estimate of S2.

2. Previous Studies: Other similar studies may have been conducted elsewhere and
appear in the professional journals. Measures of variability from earlier studies may
provide an estimate of S2.

3. Double Sampling: A preliminary SRS of size n1 is taken and the sample variance s21
is used to estimate S2. Using s21 in (21) will approximate an adequate sample size n.
Then, a further SRS of size n − n1 is taken from the remaining unsampled N − n1

sampling units. This is an example of double sampling.

4. Exploiting the structure of the population: Sometimes we may have some knowledge
of the structure of the population which can provide information about S2.

– A common case is when you have count data and it is reasonable to assume the
distribution of counts follows a Poisson distribution. Because the mean and the
variance of a Poisson distribution are the same, all we need is a prior estimate of
the population mean.

– A second case occurs with estimation of a proportion p for a binomial distribution.
If we have a prior estimate of p, we also have a prior estimate of the variance
which is a function of p.

2.6.2 When Estimating t

• Situation: Estimate the SRS size required so the probability that the difference between
the estimator t̂ = Ny and the population total t does not exceed a maximum allowable
difference d is at most α.

• Mathematically, find n such that Pr(|t̂− t| > d) < α for a specified maximum allowable
difference d.

• Assuming Ny is approximately normally distributed, this is equivalent to finding n so that

the margin of error zα/2

√
N(N − n)

S2

n
≤ d. Solving this inequality for n yields

n =
1

d2

N2z2S2 + 1
N

= (22)

where n0 = and z is the critical α/2 value from a N(0, 1) distribution.

43



• Rounding-up the value of n in (22) yields the desired sample size. If this value is < 30, I
recommend adding 2 or 3 to this value.

– For example, consider the longleaf pine population in Figure 2. How large a sample
would be required so that t̂ is within 15 of t with probability at least .95 (α = .05)?
(Assume S2 ≈ 4)

• If the population size N is very large, then 1/N ≈ 0. In this case, n ≈ n0.

2.6.3 When Estimating p

• Situation: Estimate the SRS size required so the probability that the difference between
the sample proportion p̂ and the population proportion p does not exceed a maximum
allowable difference d is at most α.

– For example, consider the longleaf pine presence/absence population in Figure 3.
How large a sample would be required so that p̂ is within .05 of p with probability at
least .95?

• Mathematically, find n such that Pr(|p̂ − p| > d) ≤ α for a specified maximum
allowable difference d.

• Assuming p̂ is approximately normally distributed, this is equivalent to finding n so that

the margin of error zα/2

√(
N − n
N − 1

)
p(1− p)

n
≤ d.

• Solving this inequality for n yields

n =
Np(1− p

(N − 1)d
2

z2
+ p(1− p)

= ≈ 1
1
n0

+ 1
N

(23)

where n0 = and z is the critical α/2 value from a N(0, 1) distribution.

• Rounding-up the value of n in (23) yields the desired sample size.

• Because N is typically large when estimating p, it is common to ignore the f.p.c. If you,
the estimated sample size is n ≈ n0.

• Unfortunately, the sample size formulas assume you know the population proportion p,
the quantity you are trying to estimate. Thus, to estimate an adequate sample size, we
need a prior estimate of p. In addition to the four methods of Barnett (pp 33-34), there
is also the following conservative approach.

• Note that the standard deviation of p̂ = s.d.(p̂) =
√(

N−n
N−1

) p(1−p)
n

is largest when p = 1/2.

Thus, it is conservative to use p = 1/2 in (23) if there is no prior reasonable estimate.

• Example: Consider the longleaf pine presence/absence population in Figure 3. How large
a sample would be required so that p̂ is within .05 of p with probability at least .95?

(i) Assume we use p ≈ .72 based on the earlier SRS with n = 25.

(ii) Assume we have no prior estimate of p and use the conservative estimate of p = .5.
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