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NUMERICAL
RECIPES

Recursive Stratified Sampling For
Multidimensional Monte Carlo Integration
William H. Press and Glennys R. Farrar

I n this column, we return to the topic of multidimen­
sional Monte Carlo integration. Given a function
I (x) and a d-dimensional region of volume V, the

problem at its simplest is to find a good statistical
estimator, denoted <I), of the mean value off, denoted
<I), in terms of some number N of randomly sampled
function valuesJ: ==.I(Xi)' with XiE V. (Once we have done
this, the integral of lover V is, of course, <I) V.)

The simplest Monte Carlo estimator is the mean of
the N randomly sampled function values,

(1)

The variance of this estimator, Var ( <f> ), in the simplest
case an indicator of the square of the error of the Monte
Carlo integration, is asymptotically related to the variance
of the function, Var(/)==.(j2) - (/)2, by the familiar
relation

Yare <I» = Var(/)IN. (2)

In other words, the expected error decreases with
increased sample size as N - 1/2.

There are a number of techniques that improve on the
error implied by Eq. (2). One such is "importance
sampling," where the function f is divided by some
known, positive function g, and the volume V is sampled
not uniformly but rather with probability density propor­
tional to g. To the extent that f /s can be made
approximately constant, then Var ( fig) [which replaces
Var(f) in Bq. (2)] is correspondingly decreased. It can
be shown, in fact, that the optimalchoice for g is go: Ifl,
valid even iff takes on both signs. Importance sampling is
discussed in the Numerical Recipes books1-3 and standard
references.t-"

A technique that improves on Eq. (2) in quite a
different way is the use of "quasirandom numbers," as was
discussed previously in this column." With quasirandom
numbers, one can improve the exponent of N in Eq. (2).
Importance sampling and quasirandom numbers are not
mutually exclusive-both techniques can be applied
simultaneously. In this column we discuss a third
technique, which we call recursive stratified sampling
(RSS), that can be'used in addition to either or both of the
techniques already discussed.

The idea of "stratified sampling," on which RSS is
based, is a standard one in the literature" and easily

William H. Press is professor of astronomy and physics at Harvard
University. Glennys R. Farrarisprofessor ofphysicsat Rutgers University.

180 COMPUTERS IN PHYSICS, MAl'API 1880

illustrated: Suppose we divide the volume V into two
equal, disjoint subvolumes, denoted a and b, and sample
N 12points in each subvolume. Then another estimator for
<I), different from Eq. (1) and denoted <I)', is

<I)'==.!«f>a + <I)b), (3)

in other words, the mean of the sample averages in the two
half-regions. The variance of estimator (3) is given by

Var«I)/) =![Var«I)a) + Var«I)b)]

=l-(Vara(f) + Varb (f»)
4 NI2 NI2

I= 2N [Vara(f) + Varb(f)]. (4)

Here, Vara (I) denotes the variance of I in subregion a,
that is, <f2)a - <f)~, and correspondingly for b.

From the definitions already given, it is not difficult
to prove the relation

Var(f) =HVara(f) + Varb(f)]

+!( <f)a - </)b )2. (5)

(In physics, this formula for combining second moments
is the "parallel axis theorem.") Comparing Eqs. (2), (4),
and (5), one sees that the stratified (into two subvol­
urnes) sampling gives a variance that is never larger than
the simple Monte Carlo case-and smaller whenever the
means of the stratified samples, <f) a and <f) b» are
different.

We have not yet exploited the possibility of sampling
the two subvolumes with different numbers of points, say,
N; in subregion a and N; ==.N - N; in subregion b. Let us
do so now. Then the variance of the estimator is

Var«I)') =l-(Vara(/) + Varb(/»), (6)
4 N, N-Na

which is minimized (one can easily verify) when

NalN = ual(ua + ub). (7)

Here, we have adopted the shorthand notation a;
==.~Vara (I), and correspondingly for b. If N; satisfies
Eq. (7), then Eq. (6) reduces to

Yare (1)/) = (ua + a; )2/4N. (8)

Equation (8) reduces to Eq. (2) ifVar(f) =Vara(f)
= Varb ( I), in which case stratifying the sample makes

no difference.
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A standard way to generalize the above result is to
consider the volume V divided into more than two
subvolumes. One can readily obtain the result that the
optimal allocation of sample points among the regions is
to have the number of points in each region) proportional
to (Jj' that is, the square root of the variance of the
function / in that subregion. In spaces of high dimension­
ality (say, d ~ 4) this is not in practice very useful,
however. Dividing a volume into K segments along each
dimension implies K d subvolumes, typically much too
large a number when one contemplates estimating all the
corresponding (Jj's. Instead, we will describe an adaptive
(more precisely, recursive) scheme that subdivides the
volume V in a more manageable fashion, only where that
subdivision is most needed. There are other ways of
avoiding the K d "explosion," however; this is a good
point, therefore, to digress briefly on the subject of another
adaptive Monte Carlo method.

The VEGAS algorithm7.X is widely used for multidi­
mensional integrals that occur in elementary particle
physics. VEGAS is based on importance sampling, not
stratified sampling. Its basic technique is to construct,
adaptively, a multidimensional weight function g (see
above) that is separable,

g(x,y,z, ... ) =gx(x)gy(y)gz(z).... (9)

Such a function avoids the K d explosion in two ways: (i)
It can be stored in the computer as d separate one­
dimensional functions, each defined by K tabulated
values, say-so that K X d replaces K d; (ii) It can be
sampled as a probability density by consecutively sam­
pling the d one-dimensional functions to obtain coordinate
vector components (x, y,z, ... ).

The optimal separable weight function can be shown
to be7

gz(X)a:.(fdyf dZ'" j2(X,y,Z, ... ) )1/2 (10)
s, (y)gz (z)···

(and correspondingly for y,z, ... ). Notice that this reduces
to ga:.I/1 in one dimension. Equation (10) immediately
suggests VEGAS' adaptive strategy: Given a set of g
functions (initially all constant, say), one samples the
functionf, accumulating not only the overall estimator of
the integral, but also the Kd estimators (K subdivisions of
the independent variable in each of d dimensions) of the
right-hand side of Eq. (10). These then determine
improved g functions for the next iteration.

When the integrand / is concentrated in one, or at
most a few, regions in d space, then the weight function g's
quickly become large at coordinate values that are the
projections of these regions onto the coordinate axes. The
accuracy of the Monte Carlo integration is then enor­
mously enhanced over what simple Monte Carlo would
give.

The weakness of VEGAS is the obvious one: To the
extent that the projection of the function/onto individual
coordinate directions is uniform, VEGAS gives no
concentration of sample points in those dimensions. The
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worst case for VEGAS, e.g., is an integrand that is
concentrated close to a body diagonal line, e.g., one from
(0,0,0, ... ) to (I, 1,1,... ). Since this geometry is completely
nonseparable, VEGAS can give no advantage at all. More
generally, VEGAS will do badly when the integrand is
concentrated along one-dimensional (or higher) curved
trajectories (or hypersurfaces), unless these happen to be
oriented close to the coordinate directions.

With RSS, we pursue a different approach, starting
with Eqs. (3) and (6). Suppose that we have a quota of N
evaluations of the function/and want to evaluate (])' in
the rectangular parallelepiped region R = (x, 'Xb ). ( We
denote such a region by the two coordinate vectors of its
diagonally opposite corners. ) First, we allocate a fraction
p of N toward exploring the variance of/in R: We sample
pN function values uniformly in R and accumulate the
sums that will give the d different pairs of variances
corresponding to the d different coordinate directions
along which R can be bisected. In other words, in pN sam­
ples, we estimate Var ( /) in each of the regions resulting
from a possible bisection of R,

R ai == [xa, X b -! Ci'(Xb - x, )c i ] ,

i= I,2, ...d. (11)

Here, e, is the unit vector in the ith coordinate direction.
Second, we inspect the variances to find the most

favorable dimension i to bisect. By Eq. (8), we could, for
example, choose that i for which the sum of the square
roots of the variance estimators in regions R ai and Rbi is
minimized. (Actually, as we will explain, we do some­
thing slightly different.)

Third, we allocate the remaining (1 - p)N function
evaluations between the regions R a i and Rbi' If we used
Eq. (8) to choose i, we should do this allocation according
to Eq. (7).

We now have two parallelepipeds each with its own
allocation of function evaluations for estimating the mean
of fOur RSS algorithm now shows itself to be recursive:
To evaluate the mean in each region, we go back to the
sentence beginning "First, ..." in the paragraph above Eq.
( 11). (Ofcourse, when the allocation of points to a region
falls below some number, we resort to simple Monte Carlo
rather than continue with the recursion.)

Finally, we combine the means, and also estimate
variances of the two subvolumes, using Eq. (3) and the
first line of Eq. (4).

This completes the RSS algorithm in its simplest
form. Before we describe some additional tricks under the
general rubric of "implementation details," we need to
return briefly to Eqs. (6)-( 8) and derive the equations
that we actually use instead of these. The right-hand side
of Eq. (6) applies the familiar scaling law of Eq. (2)
twice, once to a and again to b. This would be correct if the
estimates (]) a and (]) b were each made by simple
Monte Carlo, with uniformly random sample points.



SUBRDUTIRE miaer(func. region. ndim.npt a.dith1ave 1var)
INTEGER ndim.nptalMlPT .MRBS.MUD1IST1CK.ISTF
REAL func.region(2*ndim) .dith.ave.var. TIlT .BIG.PP.lC
PAlWlETEI\ (HIPT-15 ,HBBS-40HlPT ,HUD-10,TIn-1. 0-30 ,BIG=1.030,

ISTACK-1000, ISTF-9 ,PFAC-O.1)
C USES func, ranpt

Monte Carlo samples a user-suppliedndim·dimensionar function func in II rectangular volume
specified by region, .. 2xndim vector consisting of ndim. "lower-left" coordinates of the
region followed by ndim "upper-right" coordinates. The function is sampled a total of npts
times, at locations determined by the method of recursivestratified sampling. The mean value
of the function in the region is returned as ave; an estimate of the statistical variance of ave
(square of standard deviation) is returned as var. The input parameter dith should normally
be set to zero, but can be set to (e.g.) 0.1 if func's active region falls on the boundary of a
power-of.twosubdivisionof region.

Parameters: PPAe is the fraction of remaining function evaluations used at each .atage to
explorethe varianceof fune. At least OPT function evaluations are performed in any terminal
sub-region; a sub-region is further bisected only if at least MIlBS function evaluations are
available. MAID is the largest value of ndim. BSTF is the size of the "stack frame", and
NSTACK is the total size of the stack.

INTEGER iran.j .jb.jstaek.n.naddr,np.npre,nptl,nptr ,nptt
REAL avel. frael,fval,rgl. rgm.rgr, s, sigl, siglb. sigr. sigrb. sum,

Bumb.summ, sUlllll12.varl.fmaxl(IUID) •fmaxr(IUXD) ,fminl(IUID),
fminr(HJ.ID) ,pt(HJ.ID) ,rmid(HJ.ID) ,otac:k(ISTACK) ,otf(ISTF)

EQUIVALEICE (otf(1) ,avol) , (ott(2),vorl), (ott (3) ,jb),
(ott (4) ,nptr), (otf(S) ,naddr), (otf(6) ,rgl) , (ott(T) ,rgm) ,
(ott(6) ,rgr) , (otf(9) ,frael)

SAVE iran
DATA iran 101
jstaek-O
npt,t=npt.
continue
it (nptt .It .MIlBS) then Too fewpoilltsto bisect;do strailht MonteCarlo.

np-abo(nptt)
summ-O.
summ2=0.
dc u n-l,np

call rapt (pt , region, ndim)
fval=fune(pt)
.umm-.umDl+fval
summ2=summ2+fval**2

enddou
ave-summ/np
vor9llu(TIBY, (01lllllll2-a1lllllll"2/np)/np"2)

el.e Do the preliminary (uniform) samp1inl.
npro=ma:.t(int(npttoPFAC) ,HlPT)
do 12 j-t.ndim Initialize the left and ,ilht boundsforeach dimension.

iran9llod(iran02661+36979,175000)
o-oign(dith,float (iran-87500»
rmid(j)-(O. 6+0)oregion(j )+(0. 5-0) oregion(j+ndim)
fminl(j)=BIG
fminr(j)=BIG
fmaxl(j)--BIG
fmaxr (j) --BIG

enddon
dOlt D.-l,npre loop overthe points in the ample.

call ranpt (pt. region, ndim)
fval-fnne(pt)
do u j -1. ndim Find the left and rilht boundsfOf eachdimellsion.

it(P'(j) .lo.rmid(j».hen
fminl(j)=min(fminl(j) ,tval)
fmaxl(j)=ma:.t(fmaxl(j) ,tval)

.1••
fminr(j)=min(fminr(j) ,fval)
fmaxr(j)=ma:.t(fmaxr(j) ,tval)

Box 1.

endif
enddo u

enddou
smb-BIG Choose which dimension jb to bisect.
jb-O
oiglb-1.
oigrb-1.
dOli j-l,ndim.

it (fmaxl(j) .gt .fminl(j) .and.fmaxr(j).gt .fminr(j) )thon
oigl=ma:.t(TIBT, (fmaxl(j)-fminl(j))"0.6666)
oigr=ma:.t(TIIT, (fmaxr(j) -fminr(j) )000. 6666)
sum-.igl+sigr Equation 14, see text.

if (Ium.le.aum.b) then
lumb-sum.
jb-j
oiglb-oigl
oigrb-oigr

ondit
endif

enddou
if (jb.oq.O) jb-1+(ndimoiran)/175000 NNPT maybe too .mall.
rgl-region(jb) Apportaonthe remaininlpointsbetween left and rilht.
rp-rmid(jb)
rgr-rogion(jb+ndim)
frael-aba «rgm-rgl) I (rgr-rgl»
nptl-HlPT+(nptt-npro-2oHIPT)

*fracl••iglb/ (fracl*.iglb+ (1. -frael)*.igrb) Equation 13.
nptr-nptt-npre-nptl
rogion(jb+ndim)=rgm 50t "&ionto left.

naddr-l Push the stack.

do II j-l,ISTP
otaek(j otaek+j)-otf (j)

enddol'
jataek=j.taek+RSTP
nptt-nptl
goto 1 Dispatch recursive call: will return back hereeventually.

10 continue
avel-ave Saveleft estimateson stack variable.
varl-var
region(jb)-rgm Set lesion to right.
region (jb+ndim) -rgr
naddr-2 Pushthe stack.
dOlT j-i.NSTP

otaek (j ataek+j)=otf (j)
enddc e
j stackaj .tack+NSTP
nptt=nptr
goto 1 Dispatch recursive call; will return beck hereeventually.

20 continue
region(jb)=rgl Restore region to original value(50 that we don't need to
ave=fracl*avel+(l. -fracl)*ave include it on the stack).
var-frael••2*varl+(1. -frael)*.2*var Combine leftand right regions by Equa-

endif tion 4 (lst line).

if (jstack.ne.O) then Popthe .tack.
jstaek=j staek-NSTP
do .. j=1.ISTF

otf(j )=otaek(jotaek+j)
enddou
goto (10 120) Inaddr
pause 'Never get here.'

endif
return
END

However, the two estimates of the mean are in fact made
recursively. Thus there is no reason to expect Eq. (2) to
hold. Rather, we might substitute for Eq. (6) the relation,

( - ) ' 1 (vara(j) varb(j»)Var( j ) = - + , (12)
4 N a

u (N-Na)U

where a is an unknown constant >1 (the case of equality
corresponding to simple Monte Carlo). In that case, a
short calculation shows that Var « 7> /) is minimized
when

Var
a

( j ) II (1 + U)
(13)

and that its minimum value is
Var( (]) /) ex [Vara (j) 11(1 + c ) + Varb (j) 1/(1 + c ) ] I + U.

(14)

Equations (12)-(14) reduce to Eqs. (6)-(8) when a = 1.
We have done numerical experiments to find a self­
consistent value for a. We find that a::::: 2. That is, when
Eq. (13) with a = 2 is used recursively to allocate sample
opportunities, the observed variance of the RSS algorithm
goes approximately as N -2, while any other value of a in
Eq. (13) appears to give a poorer fall-off. The sensitivity
to a is, however, not very great; we do not know if a = 2 is
an analytically justifiable result, or only a useful heuristic.
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Box 2.

SUBROUTINE rapt (pt ,region .n)
INTEGER n
REAL pt(n) .region(2*n) ,ranS
USES ran5

Returns a uniformly random point pt in an n-dimenslcnal rectangular region. Used by
miser; calls ran6 for uniformdeviates.

INTEGER idum.j
SAVE idum
DATA idum 1-71
do » j=l.n

pt (j) -region(j)+(region(j -a) -region(j» *ron5 (idum)
enddc u
return
END

Turn now to the routine, miser, which implements
our RSS method. A bit of FORTRAN wizardry is its
implementation of the required recursion. This is done by
dimensioning an array stack, and a shorter "stack frame"
stf; the latter has components that are equivalenced to
variables that need to be preserved during the recursion,
including a flag indicating where program control should
return. A recursive call then consists of copying the stack
frame onto the stack, incrementing the stack pointer
jstack, and transferring control. A recursive return
analogously pops the stack and transfers control to the
saved location. Stack growth in miser is only linear (that
is, logarithmic), since at each bifurcation one of the
subvolumes can be processed immediately.

The principal difference between miser's implemen­
tation and the algorithm as described thus far lies in how
the variances on the right-hand side of Eq. (13) are
estimated. We find empirically that it is somewhat more
robust to use the square of the difference of maximum and
minimum sampled function values, instead of the genuine
second moment of the samples. This estimator is, of
course, increasingly biased with increasing sample size;
however, Eq. (13) uses it only to compare two subvol­
urnes (a and b) having approximately equal numbers of
samples. The "max minus min" estimator proves its worth
when the preliminary sampling yields only a single point,
or small number of points, in active regions of the
integrand. In many realistic cases, these are indicators of
nearby regions of even greater importance, and it is useful
to let them attract the greater sampling weight that "max
minus min" provides.

A second modification embodied in the code is the in­
troduction of a "dithering parameter," dith, whose
nonzero value causes subvolumes to be divided not exactly
down the middle, but rather into fractions 0.5 ± dith, with
the sign of the ± randomly chosen by a built-in (toy) ran­
dom number routine. Normally dith can be set to zero.
However, there is a large advantage in taking dith to be
nonzero if some special symmetry of the integrand puts
the active region exactly at the midpoint of the region, or
at the center of some power-of-two submultiple of the
region. One wants to avoid the extreme case of the active
region being evenly divided into 2d abutting corners of a
d-dimensional space. A typical nonzero value of dith, on
those rare occasions when it is useful, might be 0.1. Of
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Box 3.

FUNCTION ran5(idum)
INTEGER idum.IJ.,IM,IQ.IR.NTAB
REAL ran6.AM.AT!B
PAllAllETER (IA=i6807 .IM=2i47483647 ,AM=i./IM, IQ=i27773, IR=2836,

NTAB=32,ATAB=NTAB-1)
Park and Miller's "Minimal Standard" random number generator (Camm. ACM, 31, 1192,
1988) with Bays-Durham shuffle. Call with idum negative to initialize. Be sure to preserve
idum between calls.

INTEGER j.k
REAL v(NTAIl) ,y
SAVE v,y
DATA v INTAB*O'/. y 10.51
if (idum.le.O) then

idum.=max( -idum.1)
don j=NT.A.B.l,-t

k=idum/IQ
idum-IAo (idum-k*IQ) - IR*k
if (idum.lt. 0) idum=idum+IM
v(j)=AM*idum

enddc »

y=v(1)
endif
continue

k=idum/IQ
idum=IA* (idum-k*IQ) - IR*k
if (idum.lt.O) idum=idum+IH
j=1+int(ATAB*y)
y=v(j)
ran5=y
v(j)-AM*idum

if (ran5.eq.O .. or.ran5.eq.1.)goto 1
return
END

course, when the dithering parameter is nonzero, we must
take the differing sizes of the subvolumes into account; the
code does this through the variable fracl.

One final feature in the code deserves mention. Our
RSS algorithm uses a single set of sample points to
evaluate Eq. (13) in all d directions. At bottom levels of
the recursion, the number of sample points can be quite
small. Although rare, it can happen that in one direction
all the samples are in one half of the volume; in that case,
that direction is ignored as a candidate for bifurcation.
Even more rare is the possibility that all of the samples are
in one half of the volume in all directions. In this case, a
random direction is chosen. If this happens too often in
your application, then you should increase MNPT (see
commented statement in code).

The miser routine calls a short subroutine ranpt to
get a random point within a specified d-dimensional
region. Box 2 gives code for ranpt that makes consecutive
calls to a uniform random number generator and does the
obvious scaling. (For portability, Box 3 lists a good
standard random number generator.) Actually, we use a
different version of ranpt, one that makes consecutive d­
dimensional calls to the quasirandom routine SOBSEO,
as listed in a previous column." We find that miser with
SOBSEO can be considerably more accurate than miser
with uniform random deviates. Since the use of RSS and
the use of quasirandom numbers are completely separable,
however, we have not made the code given here dependent
on SOBSEO. A similar remark might be made regarding
importance sampling, which could in principle be com­
bined with RSS. (One could in principle combine VEGAS
and miser, although the programming would be intri­
cate.)



We have compared miser to VEGAS on several test
integrands, all selected to have strongly localized active
regions, but with different geometries. Since we expect
differences to be most evident in higher-dimensional
problems, we did four-dimensional integrals on the
following functions in the unit cube O<x j < 1:

• A narrow Gaussian, with peak inside the domain of
integration. This is separable in the sense of Eq.
(9) .

• II~rX-IX-2-X-3-X-4'This is also separable, with a singular­
ity at one corner of the integration region.

• 1I(x, + X 2 + x 3 + X 4 - 2 + ie), with €-O.OOI.
This is nonseparable, with a near-singularity on a
hyperplane that intersects the center of the integra­
tion region.

As expected, miser clearly dominated VEGAS for
the third (nonseparable) case; with 105 function evalua­
tions, its errors were 50 times smaller than those of
VEGAS. Equally important, the variance reported by
misercoincided nicely with the actual variance of miser's
results, determined in 100 different runs, whereas the
observed variance ofVEGAS was generally a factor of 10­
150 larger than the square of its reported standard
deviation.

VEGAS and miser performed about equally well on
the Gaussian; but miser accurately reflected, or slightly
overestimated, its variance, while the square of VEGAS's
standard deviation was consistently a factor of 10-100
smaller than the true variance of its results.

VEGAS was more accurate than miseron the square­
root singularity, by a factor of 2-5. Again, miser's
reported variance was in acceptable agreement with the
distribution of its actual results whereas VEGAS underre­
ported its variance (although in this case only by a factor
of 2-4).

Of course, the space of "all possible integrands" is
much too large for us to sample in any meaningful way.
Nevertheless, we think that miser should be robust in a
variety of circumstances. We welcome user reports.

We conclude with a puzzle that indicates the
possibility of additional improvements in the RSS algo­
rithm: The astute reader will have noticed that we make
no use of the function values acquired in the preliminary,
variance-exploring, sampling of a subvolume, except for
deciding how to allocate remaining samples. Since
allocated samples are in turn used to probe the variance at
the next level of recursion, a consequence is that, in
aggregate, relatively few function evaluations are directly
used in evaluating the desired mean. That seems odd! It
would seem reasonable to use the variance-exploring
function values to form a preliminary estimate of a
subvolume's mean value, and then to combine statistically
that estimate with the (more accurate) estimate returned
by the recursion. We have spent considerable effort trying
to do this; in all variants tried we find, empirically, that in­
clusion of the extra function values results in poorer, not
better, performance. The problem is not with the estimate
of the mean, but with the estimate of the weight that it

should have when it is combined. Quite subtle statistical
biases seem to be present. We commend this problem to
interested readers.

In our next column: Hypergeometric functions by
direct path integration. •
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