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An Investigation of Methods for
Reducing Sampling Error in
Certain IRT Procedures

Marilyn S. Wingersky and Frederic M. Lord
Educational Testing Service

The sampling errors of maximum likelihood esti-
mates of item response theory parameters are studied
in the case when both people and item parameters are
estimated simultaneously. A check on the validity of
the standard error formulas is carried out. The effect
of varying sample size, test length, and the shape of
the ability distribution is investigated. Finally, the ef-

fect of anchor-test length on the standard error of item
parameters is studied numerically for the situation,
common in equating studies, when two groups of ex-
aminees each take a different test form together with
the same anchor test. The results encourage the use of

rectangular or bimodal ability distributions, and also
the use of very short anchor tests.

Until recently, the asymptotic sampling variances and covariances for maximum likelihood estimates
of item parameters in item response theory (IRT) have usually been computed by assuming abilities to
be known. Conversely, the asymptotic sampling variances and covariances for ability estimates have been
computed by assuming the item parameters to be known. In this paper, a suggested method for computing
the asymptotic sampling variance-covariance matrix of joint maximum likelihood estimates when all
parameters are unknown (Lord & Wingersky, in press) is used to try to answer various practical questions.
(For many purposes, an alternative approach has recently become available: the use of marginal maximum
likelihood estimation, exemplified by BILOG [Mislevy & Bock, 1981], which provides asymptotic
sampling variances for the estimates obtained. This approach was not available to the authors at the time
the investigation reported here was initiated. It is not discussed here.) Throughout this paper all sampling
variances, covariances, and standard errors are asymptotic.

Section 2 presents needed additional, though not conclusive, evidence that the Lord-Wingersky
method for computing the sampling variance-covariance matrix yields correct results. Section 3 inves-
tigates the effect of changing the number of items, the number of people, or the distribution of ability,
on the standard errors of both the item parameters and the abilities. Section 4 presents a technique for
displaying and understanding the standard errors and sampling covariances of estimates of item parameters.

Section 5 deals with the situation when there are two tests that contain a set of items in common

and these tests are administered to two separate groups of examinees. An important problem in item
banking or test equating is to put the parameter estimates for the two tests on a common scale. One way
to do this is to estimate all of the parameters for both tests in one calibration run. When this is done,
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how does the number and quality of the common items affect the standard errors of the parameter estimates
for the unique (noncommon) items?

1. Preliminaries

The three-parameter Birnbaum logistic model is used throughout. The probability of examinee a
answering item i correctly is

where a, is the discrimination of item i,

b, is the difficulty for the item,
c, is the lower asymptote of the item response function, and

6a is the ability for examinee a.

In a typical calibration run, poorly estimatable c, are ordinarily fixed at some common value. In this

paper, however, all c, are considered unknown and must be estimated. Treating all of the c, as unknown
results in the &dquo;worst case&dquo; standard errors.

In IRT, the origin and unit of measurement of the ability scale is arbitrary. Until this scale is specified,
all parameters except the c, are unidentifiable. The origin and unit of the ability scale must be specified
in terms of (as a function of) the true parameters. If the origin and unit of the ability scale were specified
in terms of the parameter estimates, then the true parameters would be undefined. Since the true parameters
are unknown but depend on the scale used, this means that the scale origin and the scale unit (each
defined as a function of the true parameters) must be estimated from the data. The estimated origin and
scale unit are obviously subject to sampling errors, which affect the accuracy of all parameter estimates.
It is therefore important to define the origin and unit each by a function of parameters that can be estimated
with good accuracy.

If the scale were fixed by setting a, = 1, bl = 0, for example, then the accuracy of all parameter
estimates would depend on how accurately a, and b, can be estimated from the data. If Item 1 happened
to be a nondiscriminating item, the pattern of observed responses would be independent of the value of
b,. Thus in this extreme case, the parameter scale could not be inferred from the data and all a, and b,
would be unidentifiable-no a, or b, could be estimated from the data.

The scale recommended in Lord and Wingersky (in press) and used here requires that the mean of
the difficulty parameters of certain selected items be 0 (the origin) and that the difference between two
such means for two sets of selected items be 1 (the scale unit). This scale will be referred to as the

&dquo;capital&dquo; scale: parameters on this scale are denoted by the capital letters A,, B&dquo; C,, 6a. The &dquo;small&dquo;

scale or the &dquo;LOGIST&dquo; scale, referred to by lower-case letters, is the scale used by the LOGIST program
(Wingersky, Barton, & Lord, 1982), the computer program used here for estimating the parameters of

Equation 1 by maximum likelihood. LOGIST sets a truncated mean of the estimated abilities to 0 and a
truncated standard deviation of the estimated abilities to 1. The following formulas convert the parameters
from the LOGIST scale to the capital scale:
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and

where 50 and b, are means of the b, for two selected subsets of items. The capital scale is a linear

transformation of the LOGIST scale. The c, are not affected by the scale.

2. Variance of p,, the Proportion Correct

If it could be proven that the maximum likelihood parameter estimates for the Birnbaum model are
consistent when all item and ability parameters are estimated simultaneously and when the number of
examinees and the number of items both become large simultaneously, then the sampling variance-
covariance matrix described in Lord and Wingersky (in press) would be the correct matrix to use. Since
consistency has not yet been proven mathematically, any results that confirm the appropriateness of this
variance-covariance matrix makes a researcher feel more comfortable about using it.

The sampling variance of p&dquo; the proportion of examinees in the sample who answer item i correctly,
can be computed directly from familiar standard formulas; it can also be computed with some effort from
the sampling variance-covariance matrix obtained by Lord and Wingersky (in press). These two methods
should give the same results if the Lord-Wingersky matrix is correct.

The usual likelihood equations for b, and for c&dquo; obtained by setting the derivative of the likelihood
function equal to zero, are (Lord, 1980, Eqs. 12.1 and 12.2)

where u,,, is the score (0 or 1) of examinee a on item i, N is the number of examinees, and a caret denotes
substitution of parameter estimates for true parameter values. Multiplying Equation 8 by c,, adding to
Equation 7, and transposing gives

Since

it follows that

From Equations 10 and 11, two separate formulas for the variance of p, can be derived.
For some group of examinees whose abilities are specified by the vector 0 = {6,,62, ..., 6N}, it follows

from Equation 10 that
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with

since cov(u,,,, u,Q,~6) = 0 when a # a’. Similarly,
By the formula for the covariance between two sums, it follows from Equation 11 for the same

group of examinees that

I ~ ^ ^

If the parameter estimates are consistent, the cov[P, (6a), fi~(#~))0] can be evaluated asymptotically by
applying the delta method (Kelley, 1947, pp. 524-526; Kendall & Stuart, 1969, Section 10.6) to Equation
1. For fixed 0 (for simplicity, the notation &dquo;10&dquo; is omitted from the following formula):

where

and

The standard errors forp, were calculated from Equation 12 and again (asymptotically) from Equations
14 and 16 for each of the 45 items in the test described in Section 3. The results from two different

approaches agree to at least three significant digits for each item. The cov(p,, p,10) obtained from Equations
15 and 16 were all of order 10-’ or less. This gives increased confidence in the Lord-Wingersky sampling
covariance matrix.

3. Effects of Changing Number of Items, Number of Examinees, or
the Frequency Distribution of Ability

To investigate the effect of changing the number of items, the number of examinees, or the distribution
of abilities on the sampling errors of parameter estimates, various sets of parameters were specified. The
simplest set of parameters represents the administration of a 45-item test to 1,500 examinees. The numerical
values used as the true 6a were a spaced sample of 1,500 6,, drawn from the ability estimates obtained
by LOGIST for a regular administration of the Test of English as a Foreign Language (TOEFL). A spaced
sample of 15 items were drawn from the 60 TOEFL items whose parameters were estimated in the same
run as the abilities. The estimated parameters for these 15 items were used as the true parameters. These
15 items were then replicated twice to obtain a total of 45 items, of which Items 16-30 and Items 31-
45 had the same item parameters as Items 1-15. Note that various parameters were specified, but no sets
of artificial data were generated for this study, since sampling variances and covariances depend only on
the true parameters, not on sample observations.

To investigate the effect of increasing the number of examinees, each of 1,500 9a was repeated four
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times to represent the 6Q of 6,000 examinees. To study the effect of increasing the number of items,
another 45 items were added exactly like the first 45 to create a 90-item test. For a different distribution
of abilities, a random sample of 1,500 9a was drawn from the rectangular distribution in the interval
[ - 3,3] .

Tables 1 through 4 give the standard errors of the parameter estimates that would be obtained from
actual data in the various situations investigated. Only the standard errors for the 15 unique items (Items
1-15) are given in the tables of the standard errors for the item parameters. The abilities are grouped
into 16 intervals between - 4 and 3. Two of the intervals had no examinees. N is the number of examinees
and n is the number of items. The values of both the small and capital parameters are given. The constants
to convert from the small scale to the capital scale are bo = .305 and k = .976.

Figure 1 contains plots corresponding to these tables. Gaps in the curve for the standard error of
B, are due to some points located out of the range of the plot. The standard error for C, is not plotted
against C,, since most of the C, are equal, but against B, - 2/A, instead. B, - 2/A, is an indicator of the
ability level at which the item response curve becomes asymptotic. The higher B, - 2/A&dquo; the better C,
should be estimated.

As expected, quadrupling the number of examinees halved the standard errors of the estimated item
parameters; doubling the number of items decreased the standard errors of the estimated abilities by a
factor of 21/~. Quadrupling the number of examinees reduced the largest standard error for 0~ sharply,
but had little effect on the smaller standard errors; doubling the number of items had only a moderate or
small effect on the standard errors of item parameter estimates. Note that these effects cannot be inves-

tigated at all using the usual standard error formulas, which do not deal with the situation when item
parameters and ability parameters are both estimated simultaneously.

The rectangular distribution of abilities definitely gave better estimates of the item parameters than
the bell-shaped distribution of abilities. For C, where B, - 2/A, is low, the rectangular distribution gave
standard errors nearly as low as the standard errors with quadruple the number of examinees.

Table 1

Standard Errors for
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Table 2

Standard Errors for

4. Displaying Standard Errors and Sampling Covariances

In looking at tables of standard errors, it is difficult to see how the standard errors for A&dquo; B&dquo; and
C, interrelate and how the standard errors relate to the magnitude of the parameters. A plot of the three-
dimensional asymptotic joint normal distribution of A, h, and C would be useful but difficult to read.

Table 3
Standard Errors for
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Table 4 .

Standard Errors for 0
a

However, projections of the contours of this distribution onto the 3 two-dimensional planes gives a
graphical representation not only of the magnitude of the standard errors but also of the sampling
correlations between the parameter estimates. The projected contours are two-dimensional ellipses. These
plots are a refinement of a suggestion by T. Warm (personal communication, 1981).

For convenience, the subscript i is dropped. To plot the projection of the three-dimensional contour
onto the (A,B )-plane, only var(A ), var(B ), and cov(A,B ) are needed. The exponent of the asymptotic
bivariate normal distribution of A and B is given by the right side of Equation 20. The quadratic in
brackets is asymptotically distributed as chi square with 2 degrees of freedom. The 95th percentile for a
Xz with 2 degrees of freedom is 5.99. Thus 95% of the time, the obtained (A,~) will lie within the ellipse
given by the equation

Similar equations apply for the projections onto the (A,C)- and (B,C)-planes. The ellipse plotted
from Equation 20 for a given N is identical to the 53% ellipse that would be plotted for a sample size
of N/4.

The following procedure was used to plot a representative set of ellipses. A hypothetical test of 60
items was created by selecting 60 items from an operational Scholastic Aptitude Test (SAT) mathematics
test and treating these item parameter estimates as the true parameters. A standard normal distribution of
1,000 abilities was generated. Fifteen new items were then generated with all combinations of the

parameters a = .5, 1.0, 1.5 ; b = -2, -1, 0, 1, 2; and c = .15. Using these new items, fifteen 61-item
tests were created, each containing the 60 original items and one of the new items. The sampling variance-
covariance matrix for each of the fifteen 61-item tests was obtained. These matrices differ only because
the 61st item differed for each matrix. Only the variances and covariances for the 61st item were used
in Equation 20 to compute the ellipses.
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Figure 1
Comparison of the Standard Errors for .4,, 6,, C&dquo; and 6a

for Different Numbers of Items, Different Numbers of Examinees,
and for a Different Distribution of Examinees

The plots were made for an N of 16,000 to avoid a confusing overlap of the ellipses. These ellipses
are also the 53% confidence ellipses for an N of 4,000. The left and bottom axes are labeled with the
small scale; the right and top axes are labeled with the capital scale. The standard errors used are for

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



355

parameter estimates on the capital scale. The transformation parameters to transform from the small to
the capital scale are bo = .001, k = 1.336. The center of the ellipse is marked by a 

&dquo; 

+ .&dquo;

Figure 2 shows the ellipses on the (A,B )-plane. The plot shows that the standard error of A increases
with A. The standard error of B increases as B approaches the extremes. The sampling correlation between
A and il is moderately or strongly positive for easy items and moderately or strongly negative for difficult
items.

Figure 3 shows the projections onto the (B,C)-plane. At each value of B there are three ellipses,
which are concentric because c = C = .15 for all items. The longest ellipse along the C axis is for

a = .5, the middle ellipse is for a = 1.0, and the shortest is for a = 1.5. The other triples of ellipses
are similarly ordered on a. The standard error of C is large for easy items and moderately small for
difficult items; the standard error of C decreases as a increases. As a decreases, the sam-

pling correlation between h and C becomes strongly positive except for difficult items where C is well
determined.

Figure 4 shows the projections onto the (A, C)-plane. There are five concentric ellipses for
each value of a. The ellipse with the longest c-axis is for b = - 2.0, the ellipse with the shortest c-

Figure 2
Projections onto the (A,B)-Plane of the 95% Ellipses for an N of 16,000
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Figure 3
Projections onto the (fi,11)-Plane of the 95% Ellipses for an N of 16,000

axis is for b = 2.0. Again C has large standard errors for easy items and for items with low as. For dif-
ficult items, the sampling correlation between A and C is positive and sometimes high; for easy items,
the correlation is negative.

5. Standard Errors for Two Tests with Common Items

Suppose that each of two tests measuring the same ability is administered to a different group of
examinees. Item response theory can then be used either to put the items for both tests into a common
item pool or to equate the two tests. For either purpose, it is necessary that all the estimated parameters
be on the same scale.

Unless equivalent groups of examinees are used, methods for doing this usually require a subset of
items that are common to both tests. The unique items are the items in each test that are not common to
the other test. The item parameters for each test can then be estimated, either separately in two calibration
runs or together in one calibration run. If the parameters are estimated in two separate runs, there are
two different parameter estimates for each common item. These should be the same except for sampling
error and the arbitrary origin and unit of measurement of the ability scale. Several methods exist for
determining the linear transformation necessary to transform the item parameter estimates for both tests
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Figure 4
Projections onto the (A,C)-Plane of the 95% Ellipses for an N of 16,000

to the same scale. These methods are not described here (see Stocking & Lord, 1983). However, if all
of the items for both tests are calibrated in one run, called a concurrent calibration, then the parameters
for both tests are automatically put on the same scale and no linear transformation is necessary. This
concurrent procedure is more efficient; it provides smaller standard errors and involves fewer assumptions
than other procedures. The concurrent procedure is the procedure studied here.

One question that arises when applying the common item method for putting the parameters for both
tests on a common scale is: How many common items are necessary? Vale, Maurelli, Gialluca, Weiss,
and Ree (1981) investigated this problem using simulated data with 5, 15, and 25 common items and
three different shapes of the common item section test information curve: peaked, normal, and rectangular.
They also investigated many other linking methods. For the common item method, Vale et al. (1981)
assumed that good estimates of the parameters for the common items were already known, and they
required that there be enough common and unique items to get good estimates of the abilities. They used
two estimates of the abilities-one obtained from the common items, the other from the unique items-
to determine the transformation to put the unique items onto the common scale. They found that 15 to
25 items were necessary and that the common item sections with a rectangular or normal information
function were better than those with a peaked information function.
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Another study to determine the number of common items necessary was done by McKinley and
Reckase (1981). They worked with real data from a multidimensional achievement test covering seven
different areas of achievement. McKinley and Reckase concluded that 5 items were not adequate, 25
items were better than 15, but 15 were adequate for linking with the concurrent method. Since their data
clearly violated the unidimensionality assumption of their model, there is little reason to consider their
study in detail here.

Given the sampling variance-covariance matrix for all parameter estimates in a single concurrent run
when all parameters are treated as unknown, what effect the number of common items has on the sampling
standard errors of the unique items in both tests can be investigated. Note that this problem cannot be
investigated at all with the limited sampling-error formulas that assume that item and ability parameters
are not estimated simultaneously.

Numerical Procedures

Suppose Test 1 has a section of unique items labeled V4, and Test 2 has a section of unique items
labeled Z5. Both tests have the same set of common items labeled CO. One group of examinees, Group
X, took Test 1, another group of examinees, Group Y, took Test 2. The information matrix ~~IpqII, which
must be inverted to get the variance-covariance matrix, has the following structure (Lord & Wingersky,
in press):

Each S submatrix (Sn for the V4 items; S22 for the common items; S33 for the Z5 items) contains
3 x 3 Fisher information matrices for a,, b&dquo; c, on the diagonal and zeros elsewhere. Each T submatrix
is a diagonal information matrix for examinees: T&dquo; for those that took Test 1; T22 for those that took
Test 2. Each F submatrix contains the vectors f,a, 3 x 1 Fisher information vectors for item i and examinee
a. Note that for Group Y, f,Q is 0 for the V4 items; for Group X, f,~ is 0 for Z5.

The matrix IIIpql1 is inverted by grouping the abilities for Group X into 16 groups and by grouping
the abilities for Group Y into another set of 16 groups. Then the formulas for inverting a partitioned
matrix using the method described in Lord and Wingersky (in press) are successively applied.

Data and Results

To study the effect of the number of common items on the standard errors of the parameter estimates
for the unique items, two 60-item SAT Mathematics tests with an additional 25-item common-item section
were selected. The 60 unique items in the first test are referred to as V4 and the 60 unique items in the
second test are referred to as Z5. Estimates of all of the parameters were obtained in one concurrent
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LOGIST run from real data. These estimates were treated as true parameter values in computing the
standard errors for all 145 items.

Note that this is real data, not artificial data. Substituting parameter estimates for true parameter
values is, of course, standard procedure in obtaining estimated standard errors, since true parameters are
never known for real data.

The length of the common item section was then doubled by simply replicating the parameters for
the 25 common items. Surprisingly, the standard errors for the 120 unique items in V4 and Z5 computed
with 50 common items agreed with the standard errors computed with only 25 common items to two
decimal places. If doubling the number of common items makes so little difference, what is the effect
of halving the number of common items? Or at the extreme, reducing the number of common items
to two?

To study the effect of two common items on the standard errors of the unique items, 2 &dquo;good&dquo;
items and 2 &dquo;poor&dquo; items were selected from the 25 common items. The item parameters and their
standard errors (SE) for the 2 good items were

The item parameters and their standard errors for the 2 poor common items were

These standard errors were computed for the situations in which all 25 common items are included in
the parameter estimation run.

The variance-covariance matrix was then obtained for the V4 and Z5 items when only the 2 good
common items were included in the estimation run; the variance-covariance matrix was also obtained
when only the 2 poor common items were used. The constants to transform from the small scale to the
capital scale are bo = -.261 and k = 1.914. Only V4 and Z5 items were used to compute bo and k so
that the same transformation would apply to all four variance-covariance matrices.

Table 5 gives the medians, and the bottom and top quartiles of the standard errors for li, and
C, for the V4 and Z5 unique items computed for four different situations: (1) using 50 common
items, (2) using 25 common items, (3) using 2 good common items, and (4) using 2 poor common items.
Using 2 good common items gave smaller standard errors for the unique items than using 2 poor common
items. The standard errors using the 2 good items were not much larger than the standard errors using
25 common items. Even reliance on just 2 poor common items gave surprisingly good results. Since the

purpose of the common items is to determine a common scale, it is not surprising that the number of
common items has a negligible effect on the standard error of C, since c is independent of the ability
scale.

Table 6 gives the standard errors for the abilities computed with the four different sets of common
items. Not surprisingly, if the number of common items is increased to 50, the standard error of the
abilities is reduced, although not uniformly as shown by the ratio column. The standard error for the
abilities at - 2 was lower when computed using the 2 poor common items, which were easy items, than
when computed using the 2 good common items.

Even though there is little difference between the standard errors when there are 2 common items
and when there are 25 common items, the parameter estimates for the V4 and Z5 items would not have
been adequately put on the same scale if all of the parameter estimates for V4 items err in one direction
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Table 5

Comparison of the Standard Errors of Estimated Item Parameters across
the Four Sets of Common Items

and all of the parameter estimates for Z5 items err in the opposite direction. Is this what will happen in
practice? To determine how well an anchor test of only two common items puts Tests V4 and Z5 on the
same scale, the parameters were reestimated twice: once in a LOGIST run with the items for Z5 and V4
and the 2 good common items, and the other in a LOGIST run with the items for Z5 and V4 and the 2

poor common items.

The estimated parameters for Z5 and V4 computed with the 25 common items are used as the criterion
for evaluating the calibrations with 2 common items. The 2 good common items do fairly well at putting
the parameters on this scale. The 2 poor items do not do so well. The left plot in Figure 5 compares the
bs for the 60 unique V4 items estimated with 2 good items with the bs estimated with 25 common items.
Similarly, the plot on the right compares the Ls for the unique Z5 items. If the parameters were on the
same metric, the Ls in both plots should fall on a 45° line. The difference from the 45° line is difficult
to distinguish. The two points for Z5 that are far away from the 45° line had the es fixed by LOGIST
at the common e value in one calibration but not in the other.

Figure 6 shows the plots for the as for V4 and Z5, respectively. Here, it definitely looks as if the
as are not on the same scale. The is for the V4 items have a slope greater than 45°.

Figure 7 compares the bs estimated with the 2 poor common items with the bs estimated with 25
common items. Here, the points for the V4 items are above the 45° line and points for the Z5 items are
below the line. The plots comparing the as in Figure 8 confirm that the 2 poor common items do not put

Table 6

Comparison of the Standard Errors of Estimated Abilities across

__ 

the Four Sets of Common Items
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Figure 5
Comparison of the bs Estimated with 2 Good Common Items and the

bs Estimated with 25 Common Items, Separately for V4 and Z5

the parameters for Z5 and V4 on the same metric. As suspected, with the 2 poor items, the parameters
for one set of the unique items err in one direction and for the other set, in the opposite direction.

The reason for putting Z5 and V4 on the same scale was to equate Z5 to V4 using true-score equating.
What effect does using only two common items to put the two forms on the same scale have on the true-
score equating between the two forms? Figure 9 shows three true-score equating lines: (1) the solid line
is the equating line when the parameters are estimated with 25 common items, (2) the dotted line is the

Figure 6
Comparison of the as Estimated with 2 Good Common Items and the

as Estimated with 25 Common Items, Separately for V4 and Z5
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Figure 7
Comparison of the bs Estimated with 2 Poor Common Items and the

bs Estimated with 25 Common Items, Separately for V4 and Z5

equating line when the parameters are estimated with the 2 good common items, and (3) the dashed line
is the line when the parameters are estimated with the 2 poor common items. For this equating, true
scores on form Z5 were first equated to true scores on V4. Then the true scores on V4 were converted
to scaled scores between 100 and 800 by a linear transformation. Using the equating line with the 25
items as a criterion, the equating using 2 poor common items is worse than the equating using 2 good
common items. The equating using the 2 good common items is close to the equating with 25 common
items; the maximum scaled score difference is eight points.

Figure 8
Comparison of the as estimated with 2 Poor Common Items and the
as Estimated with 25 Common Items, Separately for V4 and Z5
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Figure 9
Comparisons of the Three True-Score Equatings of Test Z5 to Test V4:

Using 25 Common Items, Using 2 Good Common Items, and Using 2 Poor Common Items

All of these results assume that the item parameters estimated using 25 common items are on the
same scale. This analysis should be repeated in a situation when a researcher knows that all of the

parameters used as a criterion are on a common scale. From the results so far, it appears that good linking
may be obtained with as few as five common items or less. However, these results only apply when the
item parameters for the two forms are put on a common scale by estimating all of the item parameters
in one calibration run. These results do not apply when the two tests are calibrated in two separate runs
and the parameters are put on a common scale using some linear transformation determined from the
common items.

The conclusion that good linking may be obtained with as few as five common items is more

optimistic than the conclusions reached by Vale et al. ( 1981 ) and by McKinley and Reckase ( 1981 ). The
differences between the results of Vale et al. and the present results may be because (1) their scaling was
based on estimated Os, and (2) they used three estimation runs instead of one concurrent run. The
differences from the results of McKinley and Reckase are probably because in their study (1) the responses
of some examinees to some items apparently often appeared twice in the same concurrent LOGIST run,
violating the assumption of local independence; and, more importantly, (2) they pooled the Iowa Tests
of Educational Development covering seven different achievement areas, and analyzed the resulting
multidimensional pool of items as if it were unidimensional.
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6. Summary

The asymptotic sampling variance-covariance matrix of maximum likelihood estimators when both
abilities and item parameters are unknown was used to study several problems in IRT, such as the extent
to which more items, more examinees, or a different distribution of abilities will provide better estimates
of parameters. It was found for the values of n and N studied that the standard error of 6 varies inversely
as nV2, but is only moderately affected by changes in N; the standard error of the estimated item parameters
varies inversely as Nh, but is only slightly affected by changes in n.

A rectangular distribution of abilities gives smaller standard errors for the item parameters than does
doubling the number of items. In fact, for low As, also for Cs for items with B - 2/A less than - 1, the
standard errors computed with a rectangular distribution of ability are nearly as low as the standard errors
computed with a bell-shaped distribution and quadruple the number of people.

With the variance-covariance matrix computed when all parameters are treated as unknown, a
researcher can study the effect of the number of common items on the standard errors of the unique items
when each of two tests containing common items is administered to a different group of examinees and
the parameters for both tests are calibrated in one LOGIST run. This problem cannot be dealt with at all
by previously available sampling error formulas, which assume that item and ability parameters are not
estimated simultaneously. The number of common items has little effect on the standard errors of the
parameters for the unique items. The standard errors indicate that as few as two items may be sufficient
providing the parameter estimates for these two items are well determined. However, when two tests
were actually calibrated in one LOGIST run using two common items that had parameter estimates with
low standard errors, the parameters are not quite on the same scale as the parameters estimated with 25
common items. The bs are very close to the same scale, but the as for one of the tests are on a slightly
different scale. Although two items are not quite enough, adequate linking may be possible with as few
as five items.
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