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Abstract

“Systematic sampling, either by itself or in combination with some other method, may
be the most widely used method of sampling” (Levy (2008) p.83). This fact is due to
the simplicity and the operational convenience of this technique. However, this tech-
nique has two main statistical problems. First, if the sampling interval, k = N/n, is not
an integer, the actual sample size will not be fixed and the sample mean, ȳ, will not
be unbiased estimator for Ȳ , the population mean. Second, regardless of the sampling
interval, the sampling variance of the estimator ȳ cannot be consistently estimated on
the basis of a single systematic sample. In this study, we introduce a new generalized
systematic sampling design that can handle these two issues simultaneously. The pro-
posed design is a generalization of the remainder linear systematic sampling design of
Chang and Huang (2000), which handles only the problem of non-integer sampling in-
tervals. Unbiased estimators for both Ȳ and the sampling variance are derived under the
proposed design. The performance of the proposed design is evaluated in comparison to
five sampling procedures under different supperpopulation models. Specifically, simple
random sampling, remainder linear systematic sampling, circular systematic sampling,
new partially systematic sampling and mixed random systematic sampling. It is found
that our proposed design performs well compared to the other designs in most cases.
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Introduction

Sampling design in which only the first unit is randomly selected, the rest being auto-
matically selected according to a predetermined pattern is known as systematic sampling.
Systematic sampling is one of the most prevalent sampling techniques. Its popularity is
mainly due to its practicability. Compared to simple random sampling, it is easier to
draw a sample especially when the drawing is done in the field. In addition, system-
atic sampling can provide more precise estimators than simple random sampling when
explicit or implicit stratification is present in the sampling frame (Cochran 1977). This
is due to the fact that systematic sampling stratifies the population into n strata each of
size k units and selects one unit from each stratum. So, systematic sampling is expected
to be about as precise as the corresponding stratified random sampling with one unit
per stratum. It is also efficient in sampling some natural population like forest areas for
estimating the volume of timber (Zinger 1964). Thus, many research centers use the
systematic sampling design in their surveys. For example, the Food and Agriculture Or-
ganization (FAO) of the United Nations utilizes systematic sampling in conducting its
Global Forest Resources Assessment Survey (GFRAS 2010).

In its simplest form, called linear systematic sampling (LSS), the systematic design can
be described as follows. In order to choose a systematic sample of size n from a popu-
lation of size N, the population is first divided into n groups each of size k units, where
k = N/n is called the sampling interval. A random start r is chosen from the first k-
units group. All units corresponding to r in the remaining groups are then chosen in the
sample. The obtained sample will hence comprise the units with indices;

{r,r+ k,r+2k, . . . ,r+(n−1)k}.

For instance, if N = 40 and n = 10, then using k = N/n = 4 a random start r is first
chosen from the first 4 units in the population. Let r = 3, the second observation in the
sample will be the unit with index r+ k = 7, the third will be the unit with index 11 and
so on. The sampled units in this example will be those units with indices corresponding
to;

{3,7,11,15,19,23,27,31,35,39}.



The systematic design is an equal probability of selection method. However, when the
population size N is not a multiple of the sample size n, the sample size will not be fixed
and the sample mean becomes a biased estimator of the population mean (Kish 1965). In
addition, the properties of the estimators from systematic samples depend on the order
of the units in the frame, and can be less efficient under some arrangements. For in-
stance, the existence of a linear or parabolic trend could produce less precise estimators.
Also, if the population consists of a periodic trend like a sine curve, and the sampling
interval, k, is equal to the period of the curve or an integral multiple of the period, the
efficiency of a systematic sample of size n will be very close to that of only one obser-
vation taken randomly from the population. If k is an odd multiple of the half-period,
the systematic sample mean will coincide with the true population mean (Cochran 1977).

Linear systematic sampling is first introduced by Madow and Madow (1944). It can
be viewed as a cluster sampling where only one cluster is chosen randomly from k clus-
ters each of size n units. Therefore, a single systematic sample alone cannot be used to
estimate the standard error of the sample mean and other sample statistics (Chaudhuri
and Stenger 2005). One common practice in applied surveys is to regard LSS as a sim-
ple random sample. However, such practice typically provides highly biased estimators
of the sampling variance (Wolter 1984). If one is reasonably aware of the underlying
model of the sampled finite population or, alternatively, the assumed infinite superpopu-
lation, more appropriate estimators for the systematic sampling variance can be derived.
Wolter (1984) reviewed and compared eight biased estimators for the sampling variance.
Specific guidelines were then introduced based on the comparison of the mean square
errors of the eight estimators under various models. Two specific estimators have been
signaled as good general-purpose estimators when little is known about the population.
These two estimators, denoted by v2 and v3, take the following forms:

v2 =
(1− f )

2n(n−1)

n

∑
j=2

(y j− y j−1)
2 (1.1)

v3 =
(1− f )

n2

n/2

∑
j=2

(y2 j− y2 j−1)
2 (1.2)

Both estimators treat the systematic sample as a special case of the stratified sample,
where each stratum has 2k units and two units are chosen from each stratum using
simple random sampling without replacement (SRSWOR). While v3 is based on non-
overlapping differences (i.e. assumes non-overlapping strata), the estimator v2 is based
on overlapping differences and aims at increasing the degrees of freedom (Wolter 1984).

Several modifications to the LSS are introduced to tackle its main two statistical is-
sues, namely, the unfixed sample size in case of non-integer sampling intervals and the
difficulty of estimating the sampling variance. These modifications are reviewed below.
There is still further room for modifying the LSS to deal with these two shortcomings.
The proposed study introduces such approach. In this study, the focus will be on re-
mainder linear systematic sampling (RLSS) of Chang and Huang (2000) where the idea
of multiple random starts will be incorporated into this design in an attempt to get an
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unbiased estimator for the variance of the sample mean corresponding to this design.
Hence, the new developed design will be called remainder linear systematic sampling
with multiple random starts (RLSSM).

Briefly, this study aims to achieve the following three main objectives:

I. Obtaining an unbiased estimator for the population mean under the proposed de-
sign.

II. Estimating the variance of the sample mean unbiasedly under the proposed design.

III. Investigating the performance of the proposed design relative to some other system-
atic sampling designs, namely, simple random sampling (SRS), circular systematic
sampling (CSS), RLSS, new partially systematic sampling (NPSS) and mixed ran-
dom systematic sampling (MRSS) through a comparative study. The comparisons
will be carried out numerically in cases where the performance cannot be mathe-
matically studied. Since the relative efficiencies depend on the population structure,
the performance comparisons will be done under different superpopulation models.

The remaining chapters of the current work are organized as follows: Chapter 2 will be
devoted to reviewing background and literature. The proposed design, the estimators
and their statistical properties (unbiasedness) are presented in Chapter 3. Chapter 4
includes performance comparisons of the proposed design with some other sampling
designs under different superpopulation models. Conclusions and suggestions for future
research are presented in Chapter 5.

3



2

Literature Review

This chapter introduces the systematic sampling design relative to the other common
designs, namely, stratified sampling and SRS (Section 2.1). It also discusses some of the
available approaches for dealing with the statistical problems of the systematic sampling
design (Sections 2.2 - 2.5).

2.1 Systematic Sampling Efficiency Relative to Stratified Sampling
and Simple Random Sampling

Cochran (1977) compared the performance of the systematic sampling design with both
of stratified and simple random sampling through rewriting the variance of the systematic
sample mean in different ways as follows;

Var(ȳsys) = (
N−1

N
)S2− k(n−1)

N
S2

wsy (2.1)

Var(ȳsys) =
S2

n
(
N−1

N
)[1+(n−1)ρw] (2.2)

Var(ȳsys) =
S2

wst
n

(
N−n

N
)[1+(n−1)ρwst ] (2.3)

Var(ȳsrs) = (
N−n

N
)
S2

n
(2.4)

and

Var(ȳst) = (
N−n

N
)
S2

wst
n

(2.5)

where, S2
wsy is the variance within the systematic samples, ρw is the correlation coefficient

between pairs of units that are in the same systematic sample, S2
wst is the variance among

units that lie in the same stratum, ρwst is the correlation between the deviations from
the stratum means of pairs of items that are in the same systematic sample and Var(ȳst)
is the variance of the sample mean of stratified random sample with one unit per stratum.



By comparing formulas (2.1) and (2.4), the systematic sample mean will be more effi-
cient than the SRS mean if S2

wsy > S2 i.e. the units within the same systematic sample are
heterogeneous. Formula (2.2) shows that the existence of positive correlation between
units in the same systematic sample (ρw > 0) inflates the sampling variance. Hence, sys-
tematic sample is less efficient than SRS if there is a positive correlation between units
in the same systematic sample. Formula (2.3) relates the variance of systematic sample
mean with that of stratified random sample, given in (2.5), through ρwst . If ρwst = 0, sys-
tematic sampling has the same efficiency of stratified sampling with one unit per stratum.
If ρwst < 0, systematic sampling is more efficient than stratified sampling with one unit
per stratum. Otherwise, stratified sampling is more efficient than systematic sampling.

The previous investigation shows that systematic sampling is sometimes more efficient
than both of SRS and stratified sampling and sometimes it is less. In addition, the practi-
cability of systematic sampling makes it more preferable design in many situations even
with its other statistical shortcomings.

In the next three sections, different approaches, presented in the literature, for handling
the statistical limitations of the systematic sampling design are introduced.

2.2 Procedures for Dealing with Variable Systematic Sample Size

When the population size is not a multiple of the sample size (i.e. N 6= nk) the LSS
results in a variable sample size and the sample mean becomes biased as an estimator
for the population mean. To overcome this drawback, many modifications on the LSS
were proposed.

2.2.1 Circular Systematic Sampling

Lahiri (1951) suggested a sampling design where the units of the population are con-
sidered to be arranged around a circle. In such case, instead of dividing the population
into n groups and selecting a random number from the first group, as in LSS, a random
number r is selected between 1 to N. Every kth unit is then chosen in a cyclic manner to
be in the sample, where k = [N/n], the integer part of N/n, is the sampling interval. This
design is based on the convention that for any i = 1,2, . . . ,N, the unit with index i+N
stands for the unit with index i, and hence this design is known as circular systematic
sampling (CSS). The units in the sample are those with indices;{

r+jk if 1≤ r+ jk ≤ N
r+jk-N if r+ jk > N ; j = 0,1, . . . ,(n−1)

Under this design an unbiased estimator for the population mean can be obtained as
follows:

ȳCSS =
1
n ∑

n−1
j=0 yr+ jk
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Sudakar (1978) pointed out that to achieve the required sample size n in CSS, k should
be chosen as the largest integer smaller than or equal to N/n.

Sengupta and Chattopadhyay (1987) mentioned that a necessary and sufficient condition
to make the CSS of size n, drawn from a population of N units with sampling inter-
val k, contain all distinct units is that N/(N,k)≥ n or equivalently, [N,k]/k≤ n, where
(N,k)and [N,k]denote, respectively, the greatest common divisor (g.c.d) and least com-
mon multiple (l.c.m) of N and k.

Like the usual LSS, the CSS design does not provide an unbiased estimator for the
sampling variance of the sample mean.

2.2.2 Remainder Linear Systematic Sampling

Chang and Huang (2000) proposed another sampling procedure that can be used when
N = nk+ r;0 < r < n. This procedure is based on the fact that the population size can be
written as N = (n− r)k+ r(k+1), which means that the population can be divided into
two strata, the first consists of the front (n− r)k units, and the second stratum contains
the remaining r(k+1) units. A linear systematic sample of size (n− r) units is selected
from the first stratum with k as the sampling interval, and another linear systematic
sample of size r units is selected from the second stratum with (k+ 1) as the sampling
interval. Combining the two samples together, we get a sample of size n as desired. This
design is called remainder linear systematic sampling (RLSS). It is reduced to LSS if
the remainder is zero, r = 0. Under the RLSS, an unbiased estimator for the population
mean can be obtained as follows:

ȳRLSS =
1
N [(n− r)kȳ1 + r(k+1)ȳ2]

where, ȳ1 and ȳ2 are the sample means of the first and second stratum, respectively.
However, under this design there is no unbiased estimator for the sampling variance.

2.3 Procedures for Estimating Systematic Sampling Variance

As it is mentioned above, a single systematic sample cannot be used solely to estimate
the variance of the sample mean, or any other sample statistic of interest, unbiasedly.
This issue can be tackled using one of several approaches presented in literature. The
following is a review of such approaches.

2.3.1 Model Based Estimators

This approach is based on assigning a model that best characterizes the nature of the
values of the variable of interest when they are arranged in certain order. For example,
several model-based estimators are given in Cochran (1977, p.223). Each of these esti-
mators is approximately unbiased under a specific underlying model but can be highly

6



biased under the other models. Therefore, the researcher should be careful while choos-
ing the estimator to be used. The golden rule would be to avoid using LSS if the under-
lying model of the sampled population is unknown (Wolter (2007)).

Montanari and Bartolucci (1998) proposed a model-based estimator of the variance of
the systematic sample mean that is based on a sum of two components. The first com-
ponent takes into account the trend in the frame of the sampled finite population while
the second takes into account the stochastic nature of a general superpopulation model.
Given that yi j is the value of the study variable Y of the jth unit in the ith systematic sam-
ple, they assumed that yi j is a realization of the random variable Y under the following
superpopulation model:

yi j = µi j + εi j

EM(yi j) = µi j, VM(yi j) = σ2
i j, CovM(yi j,yi′ j′) = 0 ∀i 6= i′ or j 6= j′

They showed that EM[Var(ȳsys)] can be divided into two parts where the first part is due
to the systematic component and the other is due to the random component of the as-
sumed model. Based on this idea, they introduced their model based estimator. Their
estimator was shown to outperform both the overlapping difference estimator v2 (equa-
tion 1.1) and the simple random sample estimator under several superpopulation models.

Wolter (2007, sec. 8.2.2) proposed a general methodology for constructing a model
based estimator for Var(ȳ). In this methodology, the model dependence is explicitly
recognized. The proposed general estimator of the variance is defined as a conditional
expectation of Var(ȳ) given the data yi from the observed sample;

vi = E[Var(ȳ)|yi]

where, E denotes the expectation over the assumed specific model.

In this context, Wolter (2007) notes that the practicing statistician must make a pro-
fessional judgment about the form of the model, as it is never known exactly, and then
derive vi under the selected form. Hence, the variance estimator will be subject to errors
of estimation as well as to errors of model specification. Therefore, the applicability of
the model based approach is viewed, in practice, as being hampered by lack of robust-
ness.

This lack of robustness can be partly handled by the use of a nonparametric model speci-
fication. This class of models, compared to parametric models, makes much less restric-
tive assumptions on the shape of the relationship between variables which significantly
reduces the risk of model misspecification.

Opsomer et al. (2012) proposed a new estimator of the model based expectation of
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the design variance under a nonparametric model for the population. They derived their
estimator under the following superpopulation model:

Yj = m(x j)+ v(x j)
1/2e j;1≤ j ≤ N (2.6)

where m(.) and v(.) are continuous and bounded functions, x is a univariate auxiliary
variable and the errors e j are independent random variables with mean 0 and variance 1.
The design variance of ȳ is then written as follows:

Vard(ȳ) = 1
k ∑

k
r=1(ȳr− Ȳ )2 = 1

kn2Y T DY

where, Y = (Y1, . . . ,YN)
T and D = ET HE with E = 1T

n ⊗ Ik, H = Ik− 1
k 1k1T

k , ⊗ denoting
the Kronecker product1 and 1k a vector of ones of length k. The model anticipated
variance of ȳ under the assumed model, in (2.6), is then defined as follows:

E[Vard(ȳ)] = 1
kn2 mT Dm+ 1

kn2 tr(DΣ)

where, m = [m(x1), . . . ,m(xN)]
T and Σ = diag[var(x1), . . . ,var(xN)]. This anticipated

variance is then estimated using the local polynomial regression.

2.3.2 Modifying the Linear Systematic Sampling Design

Instead of depending on a model based estimator to estimate the systematic sampling
variance, many authors suggested to modify the design itself in a way that enables the
derivation of unbiased estimators for the sampling variance. Some of these modifica-
tions are reviewed below.

a. Mixed Random Systematic Sampling Designs

In this approach, a systematic sample is first chosen from the population and then supple-
mented with an additional simple random sample without replacement or with another
systematic sample from the remainder of the population. The two samples are then used
to provide an unbiased estimator for the variance of the estimator of the population mean.
This approach, with some variations, is adopted by many authors.

Zinger (1980) introduced the partially systematic sampling (PSS) design in an attempt to
provide an unbiased estimator for the sampling variance. This design can be described
as follows:

To select a sample of size n from a population of size N = mk, where m < n, a linear
systematic sample of size m units is first chosen. A simple random sample (SRS) of size

1 Kronecker product ⊗ : Let A ∈ R(mn)andB ∈ R(pq). Then the Kronecker product of A and B is defined

as the matrix; A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ R(mp×nq) (Hadi 1996).
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(n−m) units is then selected from the remaining (N−m) units. The final sample will
be the union of the two samples. To estimate the population mean Ȳ , a weighted sample
mean can be used as follows; ȳw = α ȳsys +β ȳsrs, with α,β ≥ 0 and α +β = 1. This
procedure appears to provide an unbiased estimator for the sampling variance through
the sample sum of squares.

Singh and Singh (1977) proposed the new systematic sampling (NSS) design where
choosing a sample of size n involves two steps. First, a sample of u consecutive units is
selected by choosing a random number t between 1 and N. A circular systematic sample
of size (n−u) units is then selected using sampling interval k = N/n. The sampled units
are those with indices;

{t + i; i = 0,1,2, . . . ,u−1} & {t +u−1+ jk; j = 1,2, . . . ,n−u}.

A sufficient condition to guarantee that the sampled units will be distinct is u+(n−u)k≤
N. They also mentioned that another sufficient condition which should be added to make
all the pairs of units have non-zero inclusion probabilities, and hence the sampling vari-
ance can be estimated unbiasedly, is u≥ k and u+(n−u)k ≥ 1

2N +1.

Leu and Tsui (1996) modified the NSS of Singh and Singh (1977) by suggesting new
partially systematic sampling (NPSS) design. The new design modifies the NSS by
choosing a random sample of size a from the indices;

{t, t +1, . . . , t +u−1}

where, u = N− (n− a)k and a = 2 if N = nk; otherwise, k = [N/(n− 1)] and 2 ≤ a ≤
[N/2] + 1. A systematic sample of size (n− a) is then chosen, in a circular manner,
which includes the units with indices;

{t +u−1+ jk; j = 1,2, . . . ,(n−a)}.

Combining the two samples together, a sample of size n can be formed from which an
unbiased estimator for the sampling variance can be obtained provided that a ≥ 2 and
u≥ k, through utilizing the second order inclusion probabilities.

Huang (2004) proposed a mixed random systematic sampling (MRSS) design from
which both the population mean and the sampling variance can be estimated unbiasedly.
Considering the population as if arranged in a circular manner, the proposed design in-
volves two steps. In the first step an index t is selected randomly between 1 and N.
Then the population is divided into two subpopulations; the first consists of (n− r)k
units with indices {t, t + 1, . . . , t +(n− r)k− 1} and the second subpopulation contains
r(k+1) units with the remaining indices. In the second step, a simple random sample of
size (n− r) is drawn from the first subpopulation and a sample of r units, with indices
{t +(n− r)k− 1+ j(k+ 1); j = 1,2, . . . ,r} is selected systematically from the second
one. The final sample is then the union of the two samples. If N = nk, MRSS will
be equivalent to SRS. Under the proposed procedure, the inclusion probabilities were
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derived and the Horvitz-Thompson (HT) estimator was used to estimate the population
mean.2 Also, an unbiased estimator for the variance of the HT estimator was presented
by utilizing the second order inclusion probabilities.

It is noteworthy that the last three methods, namely, NSS, NPSS and MRSS can also
be used when the population size is not a multiple of the sample size (N 6= nk) as their
introducers, Singh and Singh (1977), Leu and Tsui (1996) and Huang (2004), respec-
tively, mentioned.

b. Multi-Start Systematic Sampling

Gautschi(1957) proposed LSS with multiple random starts aiming at providing an un-
biased estimator for the systematic sampling variance. According to this approach, in
order to select a systematic sample of size n, one chooses t independent systematic sub-
samples. For N = nk and n/t is integer, we first choose t random numbers from the front
tk units (the first group), say {r1, . . . ,rt}. Then for each chosen random start, a system-
atic sample is selected by choosing the corresponding tkth units. Finally, the sample will
contain units with the following indices;

{r1,r1 + tk, . . . ,r1 +(n
t −1)tk, . . . ,rt ,rt + tk, . . . ,rt +(n

t −1)tk}.

This design is called a multi-start systematic sampling (MSSS). An unbiased estimator
for the sampling variance can be obtained as;

ˆVar(ȳ) = 1− f
t(t−1) ∑

t
i=1(ȳi− ȳ)2 = k−1

t(t−1)k ∑
t
i=1(ȳi− ȳ)2,

where, f = n/N, ȳ = 1
t ∑

t
i=1 ȳi and ȳi is the subsample mean.

The approach of multiple random starts (MRS) has been incorporated into different sys-
tematic sampling methods in order to derive unbiased estimators for the variance of the
proposed new estimators of the population mean (see, sec. 2.4.2).

2.3.3 Markov Systematic Sampling

Sampath and Uthayakumaran (1998) introduced a new sampling scheme with Markovian
behavior which yields positive inclusion probabilities for all pairs of units. This sam-
pling scheme overcomes the difficulties in Markov sampling proposed by Chandra et al.
(1991). Markov systematic sampling procedure assumes that the sample size is even and
the population size is a multiple of the sample size (i.e. k = N/n is an integer). The pop-
ulation is divided into n/2 groups in a systematic manner, say S1, . . . ,Sm where m = n/2
and the ith group (Si) includes those units with indices {2(i− 1)k+ j; j = 1,2, . . . ,2k}.
For each group Si, define a transition probability matrix (TPM) Ai of a Markov chain
with state space {2(i−1)k+ j; j = 1,2, . . . ,2k}. To guarantee that all the sampled units

2 The general form for the Horvitz-Thompson estimator for the population mean is given by ȳ =
1
N ∑i∈s

yi
πi

, where πi is the inclusion probability of the ith unit in the sample (Horvitz and Thompson 1952).
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will be distinct, the diagonal elements in each Ai should be zero, i = 1,2, . . . ,m. Select-
ing a sample of size n using this procedure involves two steps. First, a random number
r is drawn from 1 to 2k. A systematic sample of size m = n/2 is then selected using 2k
as the sampling interval. The units with indices {r,r+2k, . . . ,r+2(m−1)k} will be the
selected units. A single unit is then drawn from each group independently using the el-
ements of Ai as conditional probabilities. They assumed that the non-diagonal elements
of the TPM Ai (ars) are selected so that for each r;

ars ∝ τ |r−s|,s = 1,2, . . . ,2k,

where τ is a predetermined positive number which can be chosen either to be the same
for all TPMs or to be different τ for the different TPMs. If the same τ is used, we will
have a common TPM, say A. The sampling variance can be estimated with the help
of the Horvitz-Thompson estimator since all the pairs of units have non-zero inclusion
probability.

Kao et al. (2011) proposed the remainder Markov systematic sampling design that ex-
tends the RLSS and Markov systematic sampling in an attempt to solve the two main
statistical problems of the LSS simultaneously. According to their design, selecting a
sample of size n involves the following two steps.

1. Divide the population into two strata; the first stratum contains the front (n− r)k
units and the second stratum contains the remaining r(k+1) units.

2. Apply the Markov systematic sampling method to each stratum.

2.4 Methods Appropriate for Populations that Exhibit Certain
Trend

In literature there are several ways to improve the performance of systematic sampling in
the presence of a linear or parabolic trend in the population. One way is to use a weighted
mean instead of the unweighted one (usual sample mean ȳ). On the other hand, one may
change the method of sample selection so that the sample mean is not affected by the
presence of certain trend. Such two approaches are discussed below in details.

2.4.1 Systematic Sampling with End Corrections

Yates (1948) suggested using a weighted mean in which all internal units of the sample
have weight unity (before multiplying by n−1) but the first and last units have different
weights. If the random number selected between 1 and k is r, the weights of the first and
last unit are

1± n(2r−k−1)
2(n−1)k .

Using the + sign for the first unit, the − sign for the last, the weighted mean is

11



ȳw = ȳ+ 2r−k−1
2(n−1)k(yr− yr+(n−1)k)

It can be easily verified that if the population consists solely of a linear trend and N = nk,
the suggested weighted mean coincides with the true population mean.

Bellhouse and Rao (1975) applied the Yates end corrections to the CSS of Lahiri (1951)
to improve its performance in the presence of linear trend. Two cases arise while esti-
mating the population mean as follows:

Case 1. The random start taken between 1 and N is small enough, r+(n−1)k ≤ N.
The weights for the first and last unit selected in the sample are

1± n[2r+(n−1)k−(N+1)]
2(n−1)k .

As before, the + sign is used for the first unit, the − sign for the last.

Case 2. The random start taken between 1 and N is large enough, r+(n−1)k > N.
Let n2 be the number of sampled units obtained after passing the Nth unit in the popula-
tion. Then the weights are defined as

1± [2nr+n(n−1)k−n(N+1)−2n2N]
2(N−k) .

The + sign is still used for the first unit, the − sign for the last.

2.4.2 Modifying the Method of Sample Selection

Sethi (1965) proposed the balanced systematic sampling (BSS) scheme. With N = nk
and n is even, the population is first divided into n/2 strata each of size 2k. Two units
equidistant from the end of each stratum are selected in the sample. If the selected
random start is 1≤ r ≤ 2k, the sampled units will have the following indices:

[r+2 jk, 2( j+1)k− r+1] ; j = 0,1, . . . , n
2 −1

With n odd, the sample will be

[r+2 jk, 2( j+1)k− r+1, r+(n−1)k] ; j = 0,1, . . . , (n−1)
2 −1

Singh et al. (1968) proposed the modified systematic sampling design (MSS) that can be
used for populations exhibiting linear trend. To choose a sample of even size n using this
design, we first select a random number r from 1 to k. Then, each pair of units equidistant
from the ends of the population is drawn systematically. The sample corresponding to
the random start 1≤ r ≤ k, will contain the units with indices;

[r+ jk, N− r− jk+1] ; j = 0,1, . . . , n
2 −1.
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With n odd, the sample will be

[r+ jk, N− r− jk+1, r+ 1
2(n−1)k] ; j = 0,1, . . . , (n−1)

2 −1.

Madow (1953) introduced a centered systematic sampling scheme in which the random
start r is taken as k

2 or k+2
2 for even k′s and k+1

2 for odd k′s. This means that we select
the cluster in the center of the possible k clusters.

Sampath and Ammani (2010) applied the MRS approach to the BSS due to Sethi (1965)
and the MSS of Singh et al. (1968) to provide an unbiased estimator for the sampling
variance under these designs. The new designs are described in the following:

I. Balanced Systematic Sampling with Multiple Random Starts (BSSM)

To select a sample of size n using BSSM design with t random starts, one can proceed as
follows. First, the population is divided into n/2t groups each of 2tk units. Then t ran-
dom numbers are selected from 1 to tk. Corresponding to every random number chosen,
pairs of units equidistant from the group ends are selected in the sample. Clearly, each
random number contributes n/t units to the sample. Therefore, the sample will contain
n units. Under this design, the sample mean was proved to be an unbiased estimator for
the population mean. It was also proved to coincide with the population mean in the
presence of linear trend.

II. Modified Systematic Sampling with Multiple Random Starts (MSSM)

When the sample is desired to be selected using MSSM design, then instead of choosing
one random start, t random starts are chosen between 1 and tk. Corresponding to every
random start selected, pairs of units equidistant from the population ends are selected
in the sample in a systematic manner. The sample corresponding to the random start
ri ; i = 1,2, . . . , t, will consist of the n/t units with indices;

[ri + jtk, N− ri− jtk+1] ; j = 0,1, . . . , n
2t −1.

The population mean is estimated unbiasedly under this design using the sample mean.

2.5 Comparing Different Varieties of Systematic Sampling

In this section comparisons of different versions of systematic sampling are introduced
in the sake of highlighting their relative performance.

2.5.1 Comparing Procedures Handling Variable Sample Size Problem

Chang and Huang (2000) assessed the performance of the RLSS relative to SRS, CSS
and NPSS under various types of populations and they mentioned the following conclu-
sions:
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a. For populations in random order, the RLSS is more efficient than SRS if and only if
the sample proportion of the second stratum is larger than the second stratum variance
proportion.

b. For populations exhibiting linear trend, Yi = i; i = 1,2, . . . ,N, the RLSS outperforms
SRS if N is not a multiple of the sample size.

c. The RLSS is more efficient than SRS and NPSS for the three types of autocorre-
lated populations, namely, populations with linear, exponential and hyperbolic correl-
ogram. Also, the RLSS outperforms the CSS for populations with linear correlogram
and they are equally efficient for the other types.

2.5.2 Comparing Procedures Providing Unbiased Estimators of the Sampling
Variance

Zinger (1980) compared the PSS design with the multi-start systematic sampling. The
PSS design is proved to outperform the MSSS if ρw > 0 and t = 2 or 3, or if ρw < 0
and t ≥ 4, where t is the number of random starts and ρw is the correlation coefficient
between pairs of units that are in the same systematic sample.

Leu and Tsui (1996) compared the NPSS with some other sampling procedures under
different types of superpopulation. They concluded that:

a. For populations in random order, the NPSS, LSS and SRS are equally efficient.

b. For the auto-correlated populations - linear, exponential and hyperbolic correlogram-
NPSS is more efficient than SRS. But NPSS is less efficient than CSS and LSS pro-
cedures. In most of the cases, the NPSS outperforms the systematic sampling with
multiple random starts.

c. For populations with periodic variation, NPSS is more efficient than LSS. In these
populations, the efficiency of the LSS depends on the sampling interval k as men-
tioned above.

Huang (2004) investigated the performance of the MRSS relative to SRS, CSS and NPSS
under different types of population. Huang concluded that:

a. The four designs are equally efficient for populations in random order.

b. For populations with linear trend, Yi = α +β (i), the MRSS is consistently more effi-
cient than SRS, and more efficient than CSS and NPSS in some cases.

c. For the auto-correlated populations, the results are similar to those of the populations
with linear trend.

Gautschi (1957) compared the MSSS with the LSS under different types of populations
and concluded that the MSSS is more efficient in most cases. Hence, the researcher is
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better off choosing MSSS as it provides an unbiased estimator for the sampling variance.

Sampath and Ammani (2010) assessed the performance of both BSSM and MSSM rel-
ative to each other and relative to the MSSS under the model that is suitable for popula-
tions with linear trend. The model is as follows;

Yi = α +β (i)+ ei

where, E(ei) = 0,V (ei) = σ2(i)g and Cov(ei,e j) = 0 ∀i 6= j.

They concluded that:

a. The proposed designs were proved to provide estimators for the population mean
that coincide with this mean in the presence of linear trend i.e. they estimate the
population mean without any error.

b. For all choices of g and n, BSSM and MSSM are equally efficient as long as we use
two random starts.

c. For all choices of g and n, BSSM and MSSM are more efficient than MSSS.

Sampath and Uthayakumaran (1998) compared Markov systematic sampling with SRS,
LSS, stratified random sampling and systematic sampling with two random starts for
the populations exhibiting exponential trend. For the deterministic exponential model
(Yi = β i; i = 1,2, . . . ,N), Markov systematic sampling has been found to outperform
the other procedures. Also, the estimator under Markov systematic sampling is more
efficient than the estimators under LSS and systematic sampling with two random starts
for populations exhibiting approximate exponential trend (Yi = β i+ei; i= 1,2, . . . ,N and
E(ei) = 0,E(ei

2) = σ2,E(eie j) = 0 ∀i 6= j) when τ > 1.2,β > 1 and σ2 < 75.

2.5.3 Comparing Systematic Sampling Schemes for Eliminating Trend Effect

Bellhouse and Rao (1975) assessed the performance of both centered systematic sam-
pling, BSS and MSS relative to LSS with Yates corrections and LSS under superpopu-
lation models representing linear and parabolic trends and periodic and autocorrelated
variations. In the presence of a linear or parabolic trend, all the three methods, Yates
corrections, BSS and MSS, outperform the ordinary LSS.

After reviewing the systematic sampling approach and its derivative designs proposed
to handle one or more of the mentioned statistical issues involved in this design, we shall
introduce our proposed design in the following chapter. In this chapter, Chapter 3, the
proposed design and estimators for the population mean and the sampling variance under
this design will be introduced.
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3

The Proposed Design and Estimation

The proposed design is a systematic sampling scheme which is a multiple random starts
analogue of RLSS. Unbiased estimators for both the population mean and the sampling
variance are derived under the proposed design. The following presents this design and
the derivations of the estimators in details.

3.1 Remainder Linear Systematic Sampling with Multiple
Random Starts (RLSSM)

According to the RLSS design, the population can be divided into two strata; the front
(n− r)k units as a stratum and the remaining r(k+1) units as another stratum, as men-
tioned in Section 2.2.2. Based on this idea, our proposed RLSSM design proceeds as
follows:

a. For the first stratum:
Select 1 < t1 < (n− r) different random numbers from the front t1k units such that (n−r)

t1
is integer;

1≤C1,C2, . . . ,Ct1 ≤ t1k.

Then for each random number chosen select a systematic sample by adding t1k as the
sampling interval. The sampled units will be;

S′ = {yCi+(l′−1)t1k ; i = 1,2, . . . , t1 , l′ = 1,2, . . . , (n−r)
t1
}

b. For the second stratum:
Select 1 < t2 < r different random numbers from [(n− r)k+1] to [(n− r)k+ t2(k+1)]
such that r

t2
is integer;

1≤C1,C2, . . . ,Ct2 ≤ t2(k+1)

Then for each random number chosen select a systematic sample by adding t2(k+1) as
the sampling interval. The sample will be;



S′′ = {y(n−r)k+Ci+(l′′−1)t2(k+1) ; i = 1,2, . . . , t2 , l′′ = 1,2, . . . , r
t2
}

The desired sample will be the union of S′and S′′and of size n = (n− r)+ r.

It is worth noting that the proposed design can be considered as a generalized systematic
sampling design. This note is due to the fact that four other designs can be obtained
as special cases of the proposed one. Moreover, two special cases of other designs can
be obtained as special cases of RLSSM design. Table (1) shows the relations between
RLSSM design and the other designs.

Table 1. RLSSM design and its special cases.
N r t1∗ t2 Sampling Design

nk+ r 0 < r < n 1 < t1 < (n− r) 1 < t2 < r RLSSM
nk+ r 0 < r < n t1 = 1 t2 = 1 RLSS
nk+ r 0 < r < n t1 = (n− r) t2 = r STRS (2 strata)
nk+ r 0 < r < n t1 = (n− r) t2 = 1 MRSS (t = 1)

nk r = 0 1 < t1 < n — MSSS
nk r = 0 t1 = 1 — LSS
nk r = 0 t1 = n — SRS

* t1 and t2 are selected such that (n−r)
t1

and r
t2

are integers, respectively.

From Table (1), RLSS design is just a RLSSM when t1 = t2 = 1 i.e. only one random
start is taken from each subpopulation. Also, for r = 0 our proposed design can produce
one of three different designs depending on t1, the number of random starts. If 1< t1 < n,
our design will be reduced to MSSS. On the other hand, if t1 is one of its two extremes,
t1 = 1 or t1 = n, the produced design will be either LSS or SRS, respectively.

Additionally, a special case of MRSS design of Huang (2004) where the random start
t = 1 can be obtained from RLSSM when t1 = (n− r) and t2 = 1. In the former case, if
t2 = r instead of 1, the proposed design wil be equivalent to a stratified random sample
of size n with only two strata.

3.2 Estimators and their Unbiasedness

Based on the two samples, one can estimate the population mean Ȳ as follows:

Step 1. Estimate the first subpopulation mean Ȳ1 based on the sample S′ using the sample
mean in the form,

ȳ1 =
1

(n−r) ∑
t1
i=1 ∑

(n−r)/t1
l′=1 yci+(l′−1)t1k

ȳ1 =
1

(n−r) ∑
t1
i=1

(n−r)
t1

ȳi

where

ȳi =
t1

(n−r) ∑
(n−r)/t1
l′=1 yci+(l′−1)t1k

17



Thus,

ȳ1 =
1
t1

t1

∑
i=1

ȳi (3.1)

Step 2. Estimate the second subpopulation mean Ȳ2 based on the sample S′′ using the
sample mean in the form,

ȳ2 =
1
r ∑

t2
i=1 ∑

r/t2
l′′=1 y(n−r)k+ci+(l′′−1)t2(k+1)

ȳ2 =
1
r ∑

t2
i=1

r
t2

ȳi

where

ȳi =
t2
r ∑

r/t2
l′′=1 y(n−r)k+ci+(l′′−1)t2(k+1)

Thus,

ȳ2 =
1
t2

t2

∑
i=1

ȳi (3.2)

Step 3. The estimator of the population mean can be taken as a weighted mean of the
two means stated above in (3.1) and (3.2):

ȳRLSSM =
(n− r)kȳ1 + r(k+1)ȳ2

N
(3.3)

Lemma 1: Under this design (RLSSM) the first and second order inclusion probabilities
for units in the first subpopulation [1 to (n− r)k] are defined as follows:

πi =
1
k ∀ i = 1,2, . . . ,(n− r)k

πi j =
1
k ∀ i, j ∈ Sh, i 6= j, h = 1,2, . . . , t1

πi j =
t1−1

k(t1k−1) ∀ i ∈ Sh, j ∈ Sl, h 6= l, h, l = 1,2, . . . , t1

Proof: Let us look at the t1-start systematic sample chosen from the first subpopulation
from another side following Sampath (2012). To choose a sample of size (n− r) from
that population, it is first divided into t1k groups of (n− r)/t1 units each, as in Table (2),
and t1 of these groups will be randomly selected to get the desired sample.

Table 2. Partitioning the first subpopulation under MSSS.
Units

S1 1 t1k+1 2t1k+1 . . . [(n− r)/t1−1]t1k+1
S2 2 t1k+2 2t1k+2 . . . [(n− r)/t1−1]t1k+2
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

Groups Si i t1k+ i 2t1k+ i . . . [(n− r)/t1−1]t1k+ i
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
St1k t1k 2t1k 3t1k . . . (n− r)k
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The probability of including the unit with label i in the sample (πi) is exactly the proba-
bility of including the group containing this unit in the sample. Therefore, the first order
inclusion probabilities can be defined as follows:

πi =
t1
t1k =

1
k ∀ i = 1,2, . . . ,(n− r)k

Following the same view, it should be noticed that the second order inclusion proba-
bilities for pairs of units which belong to the same group are equal to the probability of
selecting this group in the sample which is equal to the first order inclusion probabilities.

On the other hand, if the pair of units belongs to two different groups, then including
this pair in the sample can be only realized by selecting the two groups in the sample.
Hence, the second order inclusion probability in this case will be:

πi j =
t1
t1k ∗

t1−1
t1k−1 = t1−1

k(t1k−1) ∀ i ∈ Sh, j ∈ Sl, h 6= l, h, l = 1,2, . . . , t1

The proof is complete.

Lemma 2: Under this design (RLSSM) the first and second order inclusion probabilities
for units in the second subpopulation [(n− r)k+1 to N] are defined as follows:

πi =
1

k+1 ∀ i = (n− r)k+1, . . . ,N

πi j =
1

k+1 ∀ i, j ∈ Sg, i 6= j, g = 1,2, . . . , t2

πi j =
t2−1

(k+1)[t2(k+1)−1] ∀ i ∈ Sg, j ∈ Sp, g 6= p, g, p = 1,2, . . . , t2

Proof: To choose a sample of size r from the second subpopulation, this population is
first divided into t2(k+ 1) groups of (r/t2) units each, as in Table (3), and t2 of these
groups will be randomly selected to get the desired sample.

Table 3. Partitioning the second subpopulation under MSSS.
Units

S1 1 t2(k+1)+1 2t2(k+1)+1 . . . [r/t2−1]t2(k+1)+1
S2 2 t2(k+1)+2 2t2(k+1)+2 . . . [r/t2−1]t2(k+1)+2
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

Groups Si i t2(k+1)+ i 2t2(k+1)+ i . . . [r/t2−1]t2(k+1)+ i
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

St2(k+1) t2(k+1) 2t2(k+1) 3t2(k+1) . . . r(k+1)

The rest of the proof follows the same procedure used in the proof of Lemma 1.

Theorem 1: The sample mean of the RLSSM design, ȳRLSSM, is an unbiased estimator
for the population mean Ȳ .
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Proof : Since, ȳ1 and ȳ2 are unbiased estimators for the subpopulation means, Ȳ1 and Ȳ2,
respectively, (Gautschi (1957)), then

E(ȳRLSSM) = (n−r)kȲ1+r(k+1)Ȳ2
N

=
∑
(n−r)k
j=1 Y j+∑

N
j=(n−r)k+1 Y j

N

= 1
N ∑

N
j=1Yj = Ȳ .

This proves the theorem.

Remark 1: It can be easily shown that the proposed estimator (ȳRLSSM) is in fact a
Horvitz-Thomson (1952) estimator in the form ˆ̄YHT = 1

N ∑ui∈S
yi
πi

as follows:

ȳRLSSM = 1
N [(n− r)k. 1

n−r ∑
t1
i=1 ∑

n−r
t1

l′=1 yci+(l′−1)t1k

+r(k+1).1
r ∑

t2
i=1 ∑

r
t2
l′′=1 y(n−r)k+ci+(l′′−1)t2(k+1)]

= 1
N [∑

t1
i=1 ∑

n−r
t1

l′=1
yci+(l′−1)t1k

1/k +∑
t2
i=1 ∑

r
t2
l′′=1

y(n−r)k+ci+(l′′−1)t2(k+1)
1/(k+1) ]

= 1
N [∑Ui∈S′

yi
πi
+∑U j∈S′′

y j
π j
].

Therefore, an unbiased estimator for the sampling variance can be derived based on
Yates - Grundy (1953) estimator which has the following form;

ˆVar(ȳn) =
1

N2 ∑
n
i=1 ∑

n
j>i

(πiπ j−πi j)
πi j

( yi
πi
− y j

π j
)2

However, the terms (πiπ j−πi j) are sometimes negative under the proposed design and
so ˆVar(ȳn) may be sometimes negative. Thus the sampling variance of this design and
another unbiased estimator that is always positive are given by the following two theo-
rems.

Theorem 2: Under the RLSSM design, the variance of the sample mean has the form:

Var(ȳRLSSM) =
1

N2{
(n− r)2k(k−1)

t1(t1k−1)

t1k

∑
i=1

(Ȳ1i− Ȳ1)
2 +

r2k(k+1)
t2[t2(k+1)−1]

t2(k+1)

∑
i=1

(Ȳ2i− Ȳ2)
2}

(3.4)

Proof: Since, the random starts are chosen independently, ȳ1 and ȳ2 are independent.
Thus Var(ȳRLSSM) can be written as follows;
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Var(ȳRLSSM) = 1
N2 [(n− r)2k2.Var(ȳ1)+ r2(k+1)2.Var(ȳ2)]

=
1

N2{(n− r)2k2(1− 1
k
)
s1

2

t1
+ r2(k+1)2(1− 1

k+1
)
s2

2

t2
} (3.5)

where, S1
2 = 1

t1k−1 ∑
t1k
i=1(Ȳ1i− Ȳ1)

2 is the variance between clusters’ means in the first

stratum and S2
2 = 1

t2(k+1)−1 ∑
t2(k+1)
i=1 (Ȳ2i− Ȳ2)

2 is the variance between clusters’ means
in the second stratum.

Substituting these quantities in (3.5), the theorem follows.

Theorem 3: The sampling variance of the RLSSM design can be estimated unbiasedly
as follows:

ˆVar(ȳRLSSM) =
1

N2{
(n− r)2k(k−1)

t1(t1−1)

t1

∑
j=1

(ȳ1 j− ȳ1)
2 +

r2k(k+1)
t2(t2−1)

t2

∑
j=1

(ȳ2 j− ȳ2)
2} (3.6)

where, ȳ1 j ; j = 1, . . . , t1 is the mean of the jth sample from the first subpopulation and
ȳ2 j ; j = 1, . . . , t2 is the mean of the jth sample from the second subpopulation.

Proof: Since it can be proved that ˆS1
2 = 1

t1−1 ∑
t1
j=1(ȳ1 j− ȳ1)

2 and ˆS2
2 = 1

t2−1 ∑
t2
j=1(ȳ2 j−

ȳ2)
2 are unbiased estimators for S1

2 and S2
2 respectively, as follows;

E( ˆS1
2) = 1

t1−1E[∑t1
j=1(ȳ1 j− ȳ1)

2]

= 1
t1−1E ∑

t1
j=1[(ȳ1 j− Ȳ1)

2 +(ȳ1− Ȳ1)
2−2(ȳ1 j− Ȳ1)(ȳ1− Ȳ1)]

= 1
t1−1E[∑t1

j=1(ȳ1 j− Ȳ1)
2− t1(ȳ1− Ȳ1)

2]

= 1
t1−1 [t1(

1
t1k)∑

t1k
i=1(Ȳ1i− Ȳ1)

2− t1(k−1
t1k )(

1
t1k−1)∑

t1k
i=1(Ȳ1i− Ȳ1)

2]

= 1
t1−1 [

1
k ∑

t1k
i=1(Ȳ1i− Ȳ1)

2(1− k−1
t1k−1)] =

1
t1k−1 ∑

t1k
i=1(Ȳ1i− Ȳ1)

2 = S1
2

Using similar procedure, ˆS2
2 is an unbiased estimator for S2

2. This completes the theo-
rem.

3.3 A Numerical Illustration for RLSSM Procedure

Consider the population of size 40 units given in Cochran (1977, p.211, Table 8.3) which
is an artificial population that exhibits a fairly steady rising trend. If the population mean
is needed to be estimated on the basis of a sample of size 12 units, using RLSSM one
can proceed as follows:
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Table 4. Units of an artificial fairly steady rising population.
0 1 1 2 5 4 7 7 8 6
6 8 9 10 13 12 15 16 16 17

18 19 20 20 24 23 25 29 29 27
26 30 31 31 33 32 35 37 38 38

N = 40, Ȳ = 18.175, n = 12, N
n = 3.33, k = 3

N = (12∗3)+4 = (n∗ k)+ r ;r = 4
N = (n− r)k+ r(k+1) = (8∗3)+(4∗4) = 40

From the first subpopulation, 1,2, . . . ,(n− r)k = 24, select a multi-start systematic sam-
ple of size 8 units using t1 = 2 random starts. Let the first random start chosen from
1,2, . . . , t1k = 6, be C1 = 4 then,

S1
′ = {y4,y10,y16,y22}.

If C2 = 2,

S2
′ = {y2,y8,y14,y20}

and the sample from the first subpopulation will be:

S′ = {y2,y4,y8,y10,y14,y16,y20,y22}= {1,2,7,6,10,12,17,19}.

Thus,

ȳ1 =
9.75+8.75

2 = 9.25.

From the second subpopulation, (n− r)k+1 = 25, . . . ,N = 40, select a multi-start sys-
tematic sample of size 4 units using t2 = 2 random starts. Let the first random start
chosen from 25,26, . . . ,(n− r)k+ t2(k+1) = 32, be C1 = 29 then,

S1
′′ = {y29,y37}.

If C2 = 26,

S2
′′ = {y26,y34}

and the sample from the second subpopulation will be:

S′′ = {y26,y29,y34,y37}= {23,29,31,35}.

ȳ2 =
32+27

2 = 29.5

ȳRLSSM = 17.35

ˆVar(ȳRLSSM) = 0.81

If these 12 units are selected randomly, SRS;

ȳSRS =
192
12 = 16

ˆVar(ȳSRS) = 7.254

So, for this type of populations, RLSSM is highly more efficient than SRS.
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4

Performance Comparisons

Efficiencies of systematic sampling designs depend on the characters of the sampled
populations. Thus, efficiencies of these sampling procedures are compared for various
types of populations. Instead of considering a single finite population, y1, . . . ,yN , it will
be assumed, following Cochran (1946), that the yi

′s are drawn from an infinite super-
population having some specified properties. Hence, the performance comparisons will
be carried out on the basis of comparing the expected variances, where the expectation
is taken over the assumed superpopulation model, rather than the variances directly.

More specifically, the comparisons will be done under three types of superpopulations,
namely, populations in random order, populations with linear trend and autocorrelated
populations. Under each of these populations, the performance of the proposed design,
RLSSM, will be assessed relative to five other sampling designs, namely, SRS, CSS,
RLSS, NPSS and MRSS. Both of CSS and RLSS can handle the problem of non-integer
sampling intervals (k) but they do not provide an unbiased estimator for the sampling
variance. On the other hand, each of NPSS and MRSS can tackle the two main problems
of the linear systematic sampling (LSS) simultaneously.

4.1 Populations in Random Order

Under this model, according to Cochran (1977), the variates yi(1,2, . . . ,N) are assumed
to be uncorrelated having the same expectations while the variances may change with i,

E(yi) = µ, E(yi−µ)2 = σi
2, i = 1,2, . . . ,N, E(yi−µ)(y j−µ) = 0 ∀i 6= j. (4.1)

Under model (4.1), the expected variance of SRS is given in Cochran (1977) by,

σ
2

SRS = (
1
n
− 1

N
)σ2 ;σ

2 =
1
N

N

∑
i=1

σi
2 (4.2)

It is worth noting that formula (4.2) holds for any sampling design with fixed sample size
n and identical first order inclusion probability for all units. Thus the expected variances
of CSS and NPSS and MRSS are proved by Leu and Tsui (1996) and Huang (2004),
respectively, to be equal to (4.2).



Theorem 4: Under the model for randomly ordered populations, given by (4.1), the
expected variance of RLSSM is

σ
2

RLSSM =
1

N2{(k−1)
(n−r)k

∑
i=1

σi
2 + k

N

∑
i=(n−r)k+1

σi
2} (4.3)

Proof: Based on the fact in (4.4), given by Gautschi (1957), which relates the sampling
variance of MSSS with that of LSS, the variance of our proposed RLSSM design can be
derived as follows.

Var(ȳMSSS) = (
k−1
tk−1

)
1
tk

tk

∑
i=1

(ȳi− Ȳ )2 = (
k−1
tk−1

)Var(n/t)(ȳLSS) (4.4)

where, Var(n/t)(ȳLSS) is the sampling variance of a LSS of size (n/t).

Taking the expectation of (3.4) with respect to model (4.1) gives

σ2
RLSSM = 1

N2{
(n−r)2k2(k−1)

(t1k−1) [ (t1k−1)
t1k ∑

(n−r)k
i=1

t1σi
2

(n−r)2k ]+
r2k(k+1)2

t2(k+1)−1 [
t2(k+1)−1

t2(k+1) ∑
N
i=(n−r)k+1

t2σi
2

r2(k+1) ]}

= 1
N2{(k−1)∑

(n−r)k
i=1 σi

2 + k ∑
N
i=(n−r)k+1 σi

2}

Note that in this case σ2
RLSSM = σ2

RLSS (see, Chang and Huang (2000)). Hence, our
proposed design has the same efficiency as the RLSS design under populations in ran-
dom order.

Putting r = 0 in (4.4), σ2
RLSSM will be reduced to that of LSS (σ2

LSS), given in Cochran
(1977), with sample of size n and k = N/n.

σ
2

LSS = (
k−1

k
)
σ2

n
(4.5)

Since each of CSS, NPSS and MRSS has the same expected variance as that of SRS
given by (4.2), our proposed design will be compared to SRS and the result will be the
same for the other three designs.

σ2
SRS−σ2

RLSSM = (1
n −

1
N )σ

2− 1
N2{(k−1)∑

(n−r)k
i=1 σi

2 + k ∑
N
i=(n−r)k+1 σi

2}

= N−n
nN2 ∑

N
i=1 σi

2− 1
N2{(k−1)∑

(n−r)k
i=1 σi

2 + k ∑
N
i=(n−r)k+1 σi

2}

= (nk+r−n)
nN2 ∑

N
i=1 σi

2− n(k−1)
nN2 ∑

(n−r)k
i=1 σi

2− nk
nN2 ∑

N
i=(n−r)k+1 σi

2

= 1
nN2{n(k−1)∑

N
i=(n−r)k+1 σi

2−nk ∑
N
i=(n−r)k+1 σi

2 + r ∑
N
i=1 σi

2}

= 1
nN2{r ∑

N
i=1 σi

2−n∑
N
i=(n−r)k+1 σi

2}

The RLSSM will be more efficient than SRS if
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σ2
SRS−σ2

RLSSM > 0,

or

r ∑
N
i=1 σi

2−n∑
N
i=(n−r)k+1 σi

2 > 0,

or

r
n >

∑
N
i=(n−r)k+1 σi

2

∑
N
i=1 σi2

.

This means that the proportion of the sample from the second subpopulation should be
greater than the proportion of the second subpopulation variance. So under the given
model in (4.1), RLSSM is recommended over each of SRS, CSS, NPSS and MRSS
designs if the previous condition holds, cf. Chang and Huang (2000).

4.2 Populations with Linear Trend

If the population consists solely of a linear trend, the variates y′is are assumed to be equal
to the corresponding labels as follows:

yi = i, i = 1,2, . . . ,N (4.6)

Ȳ = N+1
2 and S2 = N(N+1)

12

This type of populations, given by the model in (4.6), is found in Cochran (1977). For
these populations, Cochran (1977) showed that

Var(ȳSRS) =
(N−n)(N +1)

12n
. (4.7)

Chang and Huang (2000) gave the sampling variance of RLSS in the form:

Var(ȳRLSS) =
k

12N2 [(n− r)2k(k2−1)+ r2(k+1)2(k+2)] (4.8)

Theorem 5, below, generalizes (4.8) into our RLSSM general design.

Theorem 5: Under the model given in (4.6), the sampling Variance of RLSSM is given
by:

Var(ȳRLSSM) =
k

12N2{(n− r)2k(k−1)(t1k+1)+ r2(k+1)2[t2(k+1)+1]} (4.9)

Proof: The sampling variance of LSS is showed by Cochran (1977) to be

Var(ȳLSS) =
(k2−1)

12
(4.10)

Combining (4.4) and (4.10) together we have the following:
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Var(ȳMSSS) = ( k−1
tk−1)(

t2k2−1
12 ) = (k−1)(tk+1)

12

Applying this result for each of the two sub-samples in RLSSM design, the sampling
variance of the proposed design can be obtained as follows.

Var(ȳRLSSM) = 1
N2{(n− r)2k2( k−1

t1k−1)(
t2
1 k2−1

12 )+ r2(k+1)2( k
t2(k+1)−1)(

t2
2 (k+1)2−1

12 }

= 1
12N2{(n− r)2k2(k−1)(t1k+1)+ r2(k+1)2k[t2(k+1)+1]}

= k
12N2{(n− r)2k(k−1)(t1k+1)+ r2(k+1)2[t2(k+1)+1]}

It’s worth noting that when t1 = t2 = 1, equation (4.9) will be reduced to (4.8), the vari-
ance of the RLSS. Also, if r = 0, (4.9) will be reduced to the variance of the MSSS. In
the simplest case, the variance of LSS will be obtained when setting t1 = t2 = 1 and r = 0.

Comparing the sampling variances given by (4.7) and (4.9) indicates the superiority of
RLSSM over SRS in terms of efficiency. The equality occurs when r = 0, t1 = 1 and
n = 1 where the two variances will be reduced to (k2−1)/12.

The sampling variances of CSS, NPSS and MRSS cannot be obtained in a simple form
due to the circular nature of these designs. Hence, the comparison with these designs
will be carried out numerically.

Table (5) shows the values of sampling variances for SRS, RLSS, CSS, NPSS, MRSS
and RLSSM obtained from an emperical study for some chosen values of N and n with
the help of the statistical package R.

Table 5. Variances of the sample mean corresponding to six sampling procedures, namely, SRS, RLSS,
CSS, NPSS, MRSS and RLSSM.

N n u,a t1, t2 σ2
SRS σ2

RLSS σ2
CSS σ2

NPSS σ2
MRSS σ2

RLSSM
20 8 12, 4 2, 2 2.6250 0.2800 1.7500 1.8542 1.5625 0.4867
36 8 6, 2 2, 2 10.7917 0.8642 2.9167 3.5104 5.8542 1.5761
36 8 16, 4 2, 2 10.7917 0.8642 2.9167 5.8542 5.8542 1.5761
36 10 4, 2 2, 2 8.0167 0.6296 2.3167 2.3100 3.3567 1.1296
36 10 4, 2 2, 3 8.0167 0.6296 2.3167 2.3100 3.3567 1.5741
40 12 8, 4 2, 2 7.9722 0.4400 2.1667 4.1944 5.6944 0.7800
40 12 8, 4 4, 2 7.9722 0.4400 2.1667 4.1944 5.6944 1.1400
42 12 10, 4 2, 2 8.9583 0.5306 3.9167 3.5972 4.6875 0.9490
42 12 10, 4 3, 3 8.9583 0.5306 3.9167 3.5972 4.6875 1.3673
46 10 6, 2 2, 2 14.1000 1.0019 3.0000 3.5133 5.6800 1.8318
46 10 6, 2 2, 3 14.1000 1.0019 3.0000 3.5133 5.6800 2.5406
48 14 8, 4 2, 2 9.9167 0.4792 3.8810 6.4728 5.9982 0.8542
48 14 8, 4 4, 3 9.9167 0.4792 3.8810 6.4728 5.9982 1.3542
50 14 10, 4 2, 2 10.9286 0.5984 3.4337 3.7092 4.7449 1.0728
50 14 10, 4 2, 4 10.9286 0.5984 3.4337 3.7092 4.7449 1.8920

It is obvious from Table (5) that both RLSS and RLSSM outperform the other designs
under this type of populations whatever the number of random starts. The RLSS proce-
dure has higher efficiency than the proposed design but, as noted earlier, does not offer
an unbiased estimator for the sampling variance.

26



4.3 Auto-correlated Populations

According to Cochran (1946), under this kind of populations it is assumed that two
elements yi, y j are positively correlated with a correlation which depends only on the
distance ”d = | j− i|” and decreases as d increases. The mean and variance of y′is are
supposed to be constant. This type of populations is frequently observed in extensive
samplings where the variance within a group of elements increases steadily as the size
of the group increases.

E(yi) = µ, Var(yi) = σ
2, Cov(yi,y j) = ρdσ

2 ∀i 6= j (4.11)

Under this type of populations, the expected variance of SRS was obtained by Cochran
(1946) to be as follows.

σ
2

SRS = (
1
n
− 1

N
)σ2[1− 2

N(N−1)

N−1

∑
d=1

(N−d)ρd] (4.12)

The expected variance of the multi-start systematic sample mean is given by Gautschi
(1957) as:

σ
2

MSSS =
k−1

N
σ

2[1− 2
N(kt−1)

N−1

∑
d=1

(N−d)ρd +
2kt2

n(kt−1)

n
t −1

∑
d=1

(
n
t
−d)ρktd] (4.13)

Chang and Huang (2000) gave the expected variance of RLSS in the form:

σ2
RLSS =

σ2

N2{k(N−n+ r)

−2∑
(n−r)k−1
d=1 [(n− r)k−d]ρd +2k2

∑
n−r−1
d=1 (n− r−d)ρdk

−2
r(k+1)−1

∑
d=1

[r(k+1)−d]ρd +2(k+1)2
r−1

∑
d=1

(r−d)ρd(k+1)} (4.14)

The expected variances of CSS and MRSS are given in Huang (2004) by:

σ
2

CSS = (
1
n
− 1

N
)σ2 +

2σ2

Nn2

N

∑
t=1

n−1

∑
i=0

n−1

∑
j>i

ρ|(ik+t)−( jk+t)|−
2σ2

N2

N−1

∑
d=1

(N−d)ρd (4.15)

and
σ2

MRSS = (1
n −

1
N )σ

2 + 2σ2

Nn2 ∑
N
t=1{ n−r−1

k[(n−r)k−1] ∑
(n−r)k−1
i=0 ∑

(n−r)k−1
j>i ρ|(t+ j)−(t+i)|

+1
k ∑

(n−r)k−1
i=0 ∑

r
j=1 ρ|(t+i)−[ j(k+1)+t+(n−r)k−1]|

+∑
r
i=0 ∑

r
j>i ρ|[i(k+1)+t+(n−r)k−1]−[ j(k+1)+t+(n−r)k−1]|}

−2σ2

N2

N−1

∑
d=1

(N−d)ρd (4.16)
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The expected variance of the NPSS design is obtained by Leu and Tsui (1996) as follows:

σ2
NPSS = (1

n −
1
N )σ

2 + 2
Nn2 σ2{a(a−1)

u(u−1) ∑
N
t=1[∑

u−1
i=0 ∑

u−1
( j>i ρ|(t+ j)−(t+i)|]

+a
u ∑

N
t=1[∑

u−1
i=0 ∑

n−a
j=1 ρ|(t+i)−( jk+t+u−1)|]

+∑
N
t=1[∑

n−a
i=0 ∑

n−a
j>i ρ|(ik+t+u−1)−( jk+t+u−1)|]}

− 2
N2 σ

2
N−1

∑
d=1

(N−d)ρd (4.17)

The expected variance under the RLSSM design is given in the next theorem.

Theorem 6: The expected variance of the mean of the RLSSM design is obtained in the
following form:

σ2
RLSSM = σ2

N2{k(N−n+ r)− 2(k−1)
t1k−1 ∑

(n−r)k−1
d=1 [(n− r)k−d]ρd +

2t2
2 k(k+1)2

[t2(k+1)−1]

×∑

r
t2
−1

d=1 ( r
t2
−d)ρdt2(k+1)+

2t2
1 k2(k−1)
t1k−1 ∑

n−r
t1
−1

d=1 (n−r
t1
−d)ρdt1k

− 2k
[t2(k+1)−1]

r(k+1)−1

∑
d=1

[r(k+1)−d]ρd} (4.18)

Proof: Let EM[Var(ȳRLSSM)] = ξ [Var(ȳRLSSM)] = σ2
RLSSM, then we have the following;

σ2
RLSSM = 1

N2{
(n−r)2k2(k−1)

t1k−1 ξ [ 1
t1k ∑

t1k
i=1(ȳ1i− Ȳ1)

2]+ r2(k+1)2k
[t2(k+1)−1]

×ξ [ 1
t2(k+1) ∑

t2(k+1)
i=1 (ȳ2i− Ȳ2)

2]}.

Let I = (n− r)2k2 k−1
t1k−1ξ [ 1

t1k ∑
t1k
i=1(ȳ1i− Ȳ1)

2]

and II = r2(k+1)2 k
[t2(k+1)−1]ξ [

1
t2(k+1) ∑

t2(k+1)
i=1 (ȳ2i− Ȳ2)

2].

Working on I gives;

I = (n− r)2k2( k−1
t1k−1)

t1σ2

n−r (1−
1

t1k){1−
2

(n−r)k(t1k−1) ∑
(n−r)k−1
d=1 [(n− r)k−d]ρd

+
2t2

1 k
(n−r)(t1k−1) ∑

(n−r)
t1
−1

d=1 [n−r
t1
−d]ρdt1k}

= (n− r)k(k−1)σ2{1− 2
(n−r)k(t1k−1) ∑

(n−r)k−1
d=1 [(n− r)k−d]ρd +

2t2
1 k

(n−r)(t1k−1)

×∑

n−r
t1
−1

d=1 [n−r
t1
−d]ρdt1k}

Working on II in the same fashion one can easily show that;
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II = r2(k+1)2 k
[t2(k+1)−1] .

t2σ2

r (1− 1
t2(k+1)){1−

2
r(k+1)[t2(k+1)−1] ∑

r(k+1)−1
d=1 [r(k+1)−d]ρd

+
2t2

2 (k+1)
r[t2(k+1)−1] ∑

r
t2
−1

d=1 [ r
t2
−d]ρdt1(k+1)}

= rk(k+1)σ2{1− 2
r(k+1)[(t2(k+1)−1] ∑

r(k+1)−1
d=1 [r(k+1)−d]ρd +

2t2
2 (k+1)

r[t2(k+1)−1]

×∑

r
t2
−1

d=1 [ r
t2
−d]ρdt1(k+1)}

Thus, σ2
RLSSM = 1

N2 [I + II] = (4.18). Hence the theorem follows.

It can be easily verified that when t1 = t2 = 1, expression (4.18) reduces to (4.14). In
other words, the expected variance of RLSSM is reduced to that of RLSS when only one
random start is selected. Additionaly, if there is no remainder term, r = 0, the proposed
design is equivalent to the multi-start systematic sampling design and (4.18) reduces to
(4.13).

Looking at formulas (4.12) through (4.18) shows the difficulty in obtaining a general
result about the relative efficiency of the considered sampling designs. However, per-
formance comparisons can be carried out empirically for three types of correlograms
considered by Cochran (1946), which are

i. Linear correlogram: ρd = 1−d/L ; L≥ N−1
ii. Exponential correlogram: ρd = e−λd

iii. Hyperbolic correlogram: ρd = tanh(d−3/5)

where correlogram is the curve, or the function produced by ploting the set of corre-
lations ρd for pairs of units that are d units apart against d.

Taking L = N and λ = 1, the numerical values of the expected variance of the sample
mean under each of SRS, RLSS, CSS, NPSS, MRSS and RLSSM are obtained, using R
package for statistical computing, for the three types of correlograms as in Tables (6),
(7) and(8), respectively.

Clearly, the numerical results in Tables (6), (7) and (8), show that the proposed sam-
pling procedure is better than SRS for the three different types of correlogram regardless
the number of random starts. Compared with RLSS procedure, the suggested sampling
design has higher expected variance in all cases. However, the propsed design still has
the merit over RLSS by handling the two main statistical issues of LSS simultaneously.
On the other hand, the suggested sampling procedure is more efficient than CSS in most
cases, espcially for large population and sample sizes, for populations with linear correl-
ogram.
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Table 6. The Expected variances corresponding to six sampling procedures, namely, SRS, RLSS, CSS,
NPSS, MRSS and RLSSM for populations exhibt a linear correlogram (ρd = 1− (d/N)).

N n u,a t1, t2 σ2
SRS σ2

RLSS σ2
CSS σ2

NPSS σ2
MRSS σ2

RLSSM
20 8 12, 4 2, 2 0.0263 0.0050 0.0175 0.0185 0.0156 0.0087
36 8 6, 2 2, 2 0.0333 0.0051 0.0090 0.0108 0.0181 0.0094
36 8 16, 4 2, 2 0.0333 0.0051 0.0090 0.0181 0.0181 0.0094
36 10 4, 2 2, 2 0.0247 0.0033 0.0072 0.0071 0.0104 0.0058
36 10 4, 2 2, 3 0.0247 0.0033 0.0072 0.0071 0.0104 0.0079
40 12 8, 4 2, 2 0.0199 0.0023 0.0054 0.0105 0.0142 0.0040
40 12 8, 4 4, 2 0.0199 0.0023 0.0054 0.0105 0.0142 0.0055
42 12 10, 4 2, 2 0.0203 0.0023 0.0089 0.0082 0.0106 0.0040
42 12 10, 4 3, 3 0.0203 0.0023 0.0089 0.0082 0.0106 0.0058
46 10 6, 2 2, 2 0.0267 0.0033 0.0057 0.0066 0.0107 0.0060
46 10 6, 2 2, 3 0.0267 0.0033 0.0057 0.0066 0.0107 0.0080
48 14 8, 4 2, 2 0.0172 0.0017 0.0067 0.0078 0.0104 0.0030
48 14 8, 4 4, 3 0.0172 0.0017 0.0067 0.0078 0.0104 0.0047
50 14 10, 4 2, 2 0.0175 0.0030 0.0049 0.0059 0.0076 0.0030
50 14 10, 4 2, 4 0.0175 0.0030 0.0049 0.0059 0.0076 0.0050
100 22 10, 4 2, 2 0.0119 0.0007 0.0031 0.0034 0.0051 0.0012
100 30 16, 2 2, 2 0.0079 0.0007 0.0037 0.0034 0.0060 0.0006
100 40 4, 8 2, 2 0.0051 0.0002 0.0135 0.0086 0.0049 0.0003
200 60 26, 2 2, 2 0.0039 0.0001 0.0034 0.0032 0.0037 0.0002
200 80 44, 4 2, 2 0.0025 0.0001 0.0134 0.0120 0.0041 0.0001
200 80 44, 4 4, 4 0.0025 0.0001 0.0134 0.0120 0.0041 0.0002

Table 7. The Expected variances corresponding to six sampling procedures, namely, SRS, RLSS, CSS,
NPSS, MRSS and RLSSM for populations exhibt an exponential correlogram (ρd = e−d).

N n u,a t1, t2 σ2
SRS σ2

RLSS σ2
CSS σ2

NPSS σ2
MRSS σ2

RLSSM
20 8 12, 4 2, 2 0.0708 0.0469 0.0512 0.0583 0.0585 0.0623
36 8 6, 2 2, 2 0.0941 0.0714 0.0699 0.0783 0.0839 0.0859
36 8 16, 4 2, 2 0.0941 0.0714 0.0699 0.0839 0.0839 0.0859
36 10 4, 2 2, 2 0.0699 0.0490 0.0649 0.0540 0.0575 0.0618
36 10 4, 2 2, 3 0.0699 0.0490 0.0649 0.0540 0.0575 0.0649
40 12 8, 4 2, 2 0.0567 0.0384 0.0377 0.0469 0.0515 0.0491
40 12 8, 4 4, 2 0.0567 0.0384 0.0377 0.0469 0.0515 0.0526
42 12 10, 4 2, 2 0.0579 0.0399 0.0402 0.0466 0.0493 0.0507
42 12 10, 4 3, 3 0.0579 0.0399 0.0402 0.0466 0.0493 0.0545
46 10 6, 2 2, 2 0.0763 0.0575 0.0622 0.0618 0.0654 0.0691
46 10 6, 2 2, 3 0.0763 0.0575 0.0622 0.0618 0.0654 0.0715
48 14 8, 4 2, 2 0.0494 0.0336 0.0336 0.0397 0.0431 0.0428
48 14 8, 4 4, 3 0.0494 0.0336 0.0336 0.0397 0.0431 0.0469
50 14 10, 4 2, 2 0.0502 0.0345 0.0352 0.0394 0.0414 0.0438
50 14 10, 4 2, 4 0.0502 0.0345 0.0352 0.0394 0.0414 0.0470
100 22 10, 4 2, 2 0.0350 0.0256 0.0327 0.0281 0.0301 0.0311
100 30 16, 2 2, 2 0.0231 0.0151 0.0151 0.0153 0.0207 0.0194
100 40 4, 8 2, 2 0.0140 0.0089 0.0110 0.0154 0.0119 0.0120
200 60 26, 2 2, 2 0.0116 0.0075 0.0076 0.0076 0.0103 0.0097
200 80 44, 4 2, 2 0.0075 0.0044 0.0055 0.0054 0.0060 0.0060
200 80 44, 4 4, 4 0.0075 0.0044 0.0055 0.0054 0.0060 0.0070
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Table 8. The Expected variances corresponding to six sampling procedures, namely, SRS, RLSS, CSS,
NPSS, MRSS and RLSSM for populations exhibt a hyperbolic correlogram (ρd = tanh(d−3/5)).

N n u,a t1, t2 σ2
SRS σ2

RLSS σ2
CSS σ2

NPSS σ2
MRSS σ2

RLSSM
20 8 12, 4 2, 2 0.0468 0.0170 0.0292 0.0340 0.0318 0.0291
36 8 6, 2 2, 2 0.0689 0.0303 0.0322 0.0396 0.0494 0.0457
36 8 16, 4 2, 2 0.0689 0.0303 0.0322 0.0494 0.0494 0.0457
36 10 4, 2 2, 2 0.0512 0.0192 0.0284 0.0258 0.0309 0.0306
36 10 4, 2 2, 3 0.0512 0.0192 0.0284 0.0258 0.0309 0.0355
40 12 8, 4 2, 2 0.0421 0.0147 0.0171 0.0272 0.0337 0.0238
40 12 8, 4 4, 2 0.0421 0.0147 0.0171 0.0272 0.0337 0.0285
42 12 10, 4 2, 2 0.0433 0.0154 0.0214 0.0250 0.0291 0.0247
42 12 10, 4 3, 3 0.0433 0.0154 0.0214 0.0250 0.0291 0.0303
46 10 6, 2 2, 2 0.0579 0.0241 0.0290 0.0302 0.0365 0.0363
46 10 6, 2 2, 3 0.0579 0.0241 0.0290 0.0302 0.0365 0.0412
48 14 8, 4 2, 2 0.0377 0.0128 0.0174 0.0224 0.0272 0.0207
48 14 8, 4 4, 3 0.0377 0.0128 0.0174 0.0224 0.0272 0.0267
50 14 10, 4 2, 2 0.0385 0.0132 0.0166 0.0205 0.0236 0.0212
50 14 10, 4 2, 4 0.0385 0.0132 0.0166 0.0205 0.0236 0.0269
100 22 10, 4 2, 2 0.0291 0.0103 0.0156 0.0149 0.0187 0.0158
100 30 16, 2 2, 2 0.0192 0.0055 0.0087 0.0084 0.0152 0.0090
100 40 4, 8 2, 2 0.0123 0.0029 0.0145 0.0162 0.0090 0.0051
200 60 26, 2 2, 2 0.0102 0.0027 0.0055 0.0052 0.0082 0.0044
200 80 44, 4 2, 2 0.0066 0.0014 0.0106 0.0093 0.0053 0.0025
200 80 44, 4 4, 4 0.0066 0.0014 0.0106 0.0093 0.0053 0.0037

For exponential and hyperbolic correlograms, CSS is more efficient than the proposed
procedure in most cases. Considering the NPSS and MRSS procedures, our procedure is
superior to both of NPSS and MRSS for populations with linear correlogram. In case of
exponential correlogram, these two procedures outperform our procedure in most cases.
For populations exhibit hyperbolic correlogram the proposed sampling procedure out-
performs the two procedures for two random starts from each of the two strata and it
becomes less efficient for larger numbers of random starts.

It is worth noting that for small samples, when we increase the sample size while fixing
the population size, we will have a gain in precision for all of the six sampling pro-
cedures. On the other hand, for large populations, only the two remainder systematic
sampling designs will have gains in effeciency while the expected variance of the other
designs increases.

4.4 On the Choice of the Number of Random Starts

The effect of choosing certain number of random starts from each subpopulation, t1 and
t2, on the efficiency of the proposed sampling procedure is of considerable interest. From
the numerical study introduced in the previous two sections, it can be clearly noticed that
with the increase of the chosen random starts, the efficiency of the proposed sampling
design decreases considerably. Also, an increase of a single random start in the number
of random strats from the second subpopulation, t2, while fixing the number of random
starts from the first subpopulation, t1, has a higher effect on the efficiency of the proposed
procedure than increasing t1 while fixing t2.
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5

Conclusions and Future Work

Remainder linear systematic sampling with multiple random starts is an extension of the
remainder linear systematic sampling procedure of Chang and Huang (2000). Similar
to RLSS, RLSSM can be used when the population size is not a multiple of the sample
size; additionally, it provides an unbiased estimator for the variance of the sample mean.
Thus, the proposed sampling procedure can handle the two main statistical issues of the
usual linear systematic sampling simultaneously. In the same context, our sampling de-
sign is not only easily applicable in the practice, but it can also be considered as a general
systematic sampling design that can produce many other sampling procedures as special
cases. For example, LSS, RLSS and MSSS.

It is found that the proposed design outperforms all other mentioned designs, except
RLSS, for populations that exhibit perfect linear trend. It has the same efficiency of
RLSS and more efficient than the other designs for randomly ordered populations in
some cases. For auto-correlated populations, the proposed design is more efficient than
the other designs, except RLSS, in case of linear correlogram. Both of RLSS and CSS
outperform the proposed design for populations with hyperbolic correlogram in most
cases.

Focusing on the choice of the number of random starts from each subpopulation, the
numerical study showed that increasing the number of random starts in any of the two
subpopulations leads to a substantial loss of efficiency of the proposed multi-start sam-
pling procedure.

To conclude, if the statistician has the choice between the six sampling procedures in-
volved in the performance comparisons, it is suggested to choose the remainder linear
systematic sampling with multiple random starts as the variance of the sample mean can
be estimated unbiasedly regardless the form of the population and the relation between
N and n. However, the remainder linear systematic sampling procedure is considerably
more efficient than the multi-start version. Thus, if the statistician can find at least a
consistent estimator for the sampling variance, it might be worth to use the single start
remainder linear systematic sampling procedure.

From this study, two main points can be considered for future research. First, by fol-



lowing the same rationale of this study, the sampling variance of the CSS design can
be estimated unbiasedly through incorporating the idea of multiple random starts into
this design. Second, motivated by Sampath (2012), the finite population variance of the
study variable, Y , can be estimated under the proposed RLSSM design by utilizing the
idea of multiple random starts.
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APPENDIX



R- programs for the numerical study

1. Computing the value of sigma-squared (CSS) when N = 20,n = 8 for populations
with linear trend:
N <−20
n <−8
k <−2
A <−0
B <−0
C <−0
sigma2CSS <−0
f or(i in 1 : N){A <−A+((i− ((N +1)/2))2)
}
f or(i in 1 : (N−1)){
f or( j in (i+1) : N){B <−B+((i− ((N +1)/2))∗ ( j− ((N +1)/2)))
}
}
f or(t in 1 : N){
f or(i in 0 : (n−2)){
f or( j in (i+1) : (n−1)){
C <−i f ((t +(i∗ k))<= N&(t +( j ∗ k))<= N){C+((t +(i∗ k)− ((N +1)/2))∗ (t +
( j ∗ k)− ((N +1)/2)))
} else i f ((t+(i∗k))<= N&(t+( j∗k))> N){C+((t+(i∗k)− ((N+1)/2))∗ (t+( j∗
k)−N− ((N +1)/2)))
} else i f ((t+(i∗k))> N&(t+( j∗k))<= N){C+((t+(i∗k)−N−((N+1)/2))∗(t+
( j ∗ k)− ((N +1)/2)))
} else{C+((t +(i∗ k)−N− ((N +1)/2))∗ (t +( j ∗ k)−N− ((N +1)/2)))
}
}
}
}
(1/N)∗ ((1/n)− (1/N))∗A+(2/(N ∗ (n2)))∗C− (2/(N2))∗B

2. Computing the value of sigma-squared (CSS) when N = 20,n = 8 for populations
with exponential correlogram:
N <−20
n <−8
k <−2
B <−0
D <−0
sigma2CSS <−0
f or(d in 1 : (N−1)){rhod <−exp(−d)
B <−B+(N−d)∗ rhod
}
f or(t in 1 : N){
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f or(i in 0 : (n−2)){
f or( j in (i+1) : (n−1)){
D<−i f (((t+ i∗k)<=N)&((t+ j∗k)<=N)){D+exp(−(abs((t+ i∗k)−(t+ j∗k))))
}else i f (((t + i ∗ k) <= N)&((t + j ∗ k) > N)){D+ exp(−(abs((t + i ∗ k)− (t + j ∗ k−
N))))
}else i f (((t + i∗ k)> N)&((t + j ∗ k)<= N)){D+ exp(−(abs((t + i∗ k−N)− (t + j ∗
k))))
}else {D+ exp(−(abs((t + i∗ k−N)− (t + j ∗ k−N))))
}
}
}
}
sigma2CSS <−((1/n)− (1/N))+(2/(N ∗ (n2)))∗D− (2/(N2))∗B

3. Computing the value of sigma-squared (MRSS) when N = 20,n = 8 for populations
with linear trend:
N <−20
n <−7
k <−2
r <−6
A <−0
B <−0
C <−0
D <−0
E <−0
f or(i in 1 : N){A <−A+((i− ((N +1)/2))2)
}
f or(i in 1 : (N−1)){
f or( j in (i+1) : N){B <−B+((i− ((N +1)/2))∗ ( j− ((N +1)/2)))
}
}
f or(t in 1 : N){
f or(i in 0 : ((n− r)∗ k−2)){
f or( j in (i+1) : ((n− r)∗ k−1)){
C <−i f ((t+ i)<=N&(t+ j)<=N){C+((t+ i−((N+1)/2))∗(t+ j−((N+1)/2)))
}elsei f ((t + i) <= N&(t + j) > N){C + ((t + i− ((N + 1)/2)) ∗ (t + j− N − ((N +
1)/2)))
}elsei f ((t + i) > N&(t + j) <= N){C + ((t + i− N − ((N + 1)/2)) ∗ (t + j− ((N +
1)/2)))
}else{C+((t + i−N− ((N +1)/2))∗ (t + j−N− ((N +1)/2)))
}
}
}
}
f or(t in 1 : N){
f or(i in 0 : ((n− r)∗ k−1)){
f or( j in 1 : (r)){
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D < −i f ((i+ t) <= N&(t + j ∗ (k+1)+ (n− r)∗ k−1) <= N){D+(((i+ t)− ((N +
1)/2))∗ (t + j ∗ (k+1)+(n− r)∗ k−1− ((N +1)/2)))
}elsei f ((i + t) <= N&(t + j ∗ (k + 1) + (n− r) ∗ k− 1) > N){D + (((i + t)− ((N +
1)/2))∗ (t + j ∗ (k+1)+(n− r)∗ k−1−N− ((N +1)/2)))
}elsei f ((i+ t)> N&(t + j ∗ (k+1)+(n− r)∗ k−1)<= N){D+(((i+ t)−N− ((N +
1)/2))∗ (t + j ∗ (k+1)+(n− r)∗ k−1− ((N +1)/2)))
}else{D+(((i+ t)−N− ((N +1)/2))∗ ((t + j ∗ (k+1)+ (n− r)∗ k−1)−N− ((N +
1)/2)))
}
}
}
}
f or(t in 1 : N){
f or(i in 1 : (r−1)){
f or( j in (i+1) : r){
E < −i f ((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1) <= N&(t + j ∗ (k+ 1)+ (n− r) ∗ k− 1) <=
N){E +((t + i∗ (k+1)+(n− r)∗ k−1− ((N +1)/2))∗ ((t + j ∗ (k+1)+(n− r)∗ k−
1)− ((N +1)/2)))
}elsei f ((t + i ∗ (k + 1) + (n− r) ∗ k− 1) <= N&(t + j ∗ (k + 1) + (n− r) ∗ k− 1) >
N){E +(((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1)− ((N + 1)/2)) ∗ ((t + j ∗ (k+ 1)+ (n− r) ∗
k−1)−N− ((N +1)/2)))
}elsei f ((t + i ∗ (k + 1) + (n− r) ∗ k− 1) > N&(t + j ∗ (k + 1) + (n− r) ∗ k− 1) <=
N){E +(((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1)−N− ((N + 1)/2)) ∗ ((t + j ∗ (k+ 1)+ (n−
r)∗ k−1)− ((N +1)/2)))
}else{E +(((t + i∗ (k+1)+(n− r)∗k−1)−N− ((N+1)/2))∗ ((t + j∗ (k+1)+(n−
r)∗ k−1)−N− ((N +1)/2)))
}
}
}
}
(1/N)∗((1/n)−(1/N))∗A+((n−r−1)/(k∗((n−r)∗k−1)))∗(2/(N ∗(n2)))∗(C)+
(1/k)∗ (2/(N ∗ (n2)))∗D+(2/(N ∗ (n2)))∗E− (2/(N2))∗B

4. Computing the value of sigma-squared (MRSS) when N = 20,n = 8 for populations
with hyperbolic correlogram :
N <−20
n <−8
k <−2
r <−4
A <−0
B <−0
C <−0
D <−0
f or(d in 1 : (N−1)){rhod <−tanh(d(−3/5))
B <−B+(N−d)∗ rhod
}
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f or(t in 1 : N){
f or(i in 1 : (r−1)){
f or( j in (i+1) : r){
D <−i f (((t+ i∗ (k+1)+(n− r)∗k−1)<= N)&((t+ j∗ (k+1)+(n− r)∗k−1)<=
N)){D+tanh((abs((t+ i∗(k+1)+(n−r)∗k−1)−(t+ j∗(k+1)+(n−r)∗k−1)))(−
3/5))
}elsei f (((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1) <= N)&((t + j ∗ (k+ 1)+ (n− r) ∗ k− 1) >
N)){D+ tanh((abs((t + i∗ (k+1)+(n− r)∗ k−1)− (t + j ∗ (k+1)+(n− r)∗ k−1−
N)))(−3/5))
}elsei f (((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1) > N)&((t + j ∗ (k+ 1)+ (n− r) ∗ k− 1) <=
N)){D+ tanh((abs((t + i∗ (k+1)+(n− r)∗k−1−N)− (t + j ∗ (k+1)+(n− r)∗k−
1)))(−3/5))
}else{D+ tanh((abs((t + i ∗ (k+ 1)+ (n− r) ∗ k− 1−N)− (t + j ∗ (k+ 1)+ (n− r) ∗
k−1−N)))(−3/5))
}
}
}
}
f or(t in 1 : N){
f or(i in 0 : ((n− r)∗ k−1)){
f or( j in 1 : r){
C <−i f (((t + i)<= N)&((t + j ∗ (k+1)+(n− r)∗k−1)<= N)){C+ tanh((abs((t +
i)− (t + j ∗ (k+1)+(n− r)∗ k−1)))(−3/5))
}elsei f (((t+ i)<= N)&((t+ j∗(k+1)+(n−r)∗k−1)> N)){C+tanh((abs((t+ i)−
(t + j ∗ (k+1)+(n− r)∗ k−1−N)))(−3/5))
}elsei f (((t + i)> N)&((t + j∗ (k+1)+(n− r)∗k−1)<= N)){C+ tanh((abs((t + i−
N)− (t + j ∗ (k+1)+(n− r)∗ k−1)))(−3/5))
}else{C+ tanh((abs((t + i−N)− (t + j ∗ (k+1)+(n− r)∗ k−1−N)))(−3/5))
}
}
}
}
f or(t in 1 : N){
f or(i in 0 : ((n− r)∗ k−2)){
f or( j in (i+1) : ((n− r)∗ k−1)){
A <−i f (((t + i)<= N)&((t + j)<= N)){A+ tanh((abs((t + j)− (t + i)))(−3/5))
}elsei f (((t + i)<= N)&((t + j)> N)){A+ tanh((abs((t + j−N)− (t + i)))(−3/5))
}elsei f (((t + i)> N)&((t + j)<= N)){A+ tanh((abs((t + j)− (t + i−N)))(−3/5))
}else{A+ tanh((abs((t + j−N)− (t + i−N)))(−3/5))
}
}
}
}
((1/n)− (1/N))+(2/(N ∗ (n2)))∗ (((n− r−1)/(k∗ ((n− r)∗k−1)))∗A+(1/k)∗C+
D)− (2/(N2))∗B
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5. Computing the value of sigma-squared (NPSS) when N = 20,n = 8 for populations
with linear trend :
N <−20
n <−8
k <−2
u <−12
a <−4
A <−0
B <−0
C <−0
D <−0
E <−0
f or(i in 1 : N){A <−A+((i− ((N +1)/2))2)
}
f or(i in 1 : (N−1)){
f or( j in (i+1) : N){B <−B+((i− ((N +1)/2))∗ ( j− ((N +1)/2)))
}
}
f or(t in 1 : N){
f or(i in 0 : (u−2)){
f or( j in (i+1) : (u−1)){
C <−i f ((t+ i)<=N&(t+ j)<=N){C+((t+ i−((N+1)/2))∗(t+ j−((N+1)/2)))
}elsei f ((t + i) <= N&(t + j) > N){C + ((t + i− ((N + 1)/2)) ∗ (t + j− N − ((N +
1)/2)))
}elsei f ((t + i) > N&(t + j) <= N){C + ((t + i− N − ((N + 1)/2)) ∗ (t + j− ((N +
1)/2)))
}else{C+((t + i−N− ((N +1)/2))∗ (t + j−N− ((N +1)/2)))
}
}
}
}
for (t in 1:N) for (i in 0:(u-1)) for (j in 1:(n-a)) D <−i f ((i+ t)<= N&(t +( j ∗ k)+
u−1)<= N){D+(((i+ t)− ((N +1)/2))∗ (t +( j ∗ k)+u−1− ((N +1)/2)))
}elsei f ((i+ t)<= N&(t +( j ∗ k)+u−1)> N){D+(((i+ t)− ((N +1)/2))∗ (t +( j ∗
k)+u−1−N− ((N +1)/2)))
}elsei f ((i+ t)> N&(t +( j ∗k)+u−1)<= N){D+(((i+ t)−N− ((N +1)/2))∗ (t +
( j ∗ k)+u−1− ((N +1)/2)))
}else{D+(((i+ t)−N− ((N +1)/2))∗ ((t +( j ∗ k)+u−1)−N− ((N +1)/2)))
}
}
}
}
f or(t in 1 : N){
f or(i in 1 : (n−a−1)){
f or( j in (i+1) : (n−a)){
E <−i f ((t +(i∗ k)+u−1)<= N&(t +( j ∗ k)+u−1)<= N){E +((t +(i∗ k)+u−
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1− ((N +1)/2))∗ (t +( j ∗ k)+u−1− ((N +1)/2)))
}elsei f ((t+(i∗k)+u−1)<= N&(t+( j∗k)+u−1)> N){E+(((t+(i∗k)+u−1)−
((N +1)/2))∗ ((t +( j ∗ k)+u−1)−N− ((N +1)/2)))
}elsei f ((t+(i∗k)+u−1)> N&(t+( j∗k)+u−1)<= N){E+(((t+(i∗k)+u−1)−
N− ((N +1)/2))∗ ((t +( j ∗ k)+u−1)− ((N +1)/2)))
}else{E +(((t +(i∗ k)+u−1)−N− ((N +1)/2))∗ ((t +( j ∗ k)+u−1)−N− ((N +
1)/2)))
}
}
}
}
(1/N)∗((1/n)−(1/N))∗A+((a∗(a−1))/(u∗(u−1)))∗(2/(N ∗(n2)))∗(C)+(a/u)∗
(2/(N ∗ (n2)))∗D+(2/(N ∗ (n2)))∗E− (2/(N2))∗B
6. Computing the value of sigma-squared (NPSS) when N = 20,n = 8 for populations
with linear correlogram :
N <−20
n <−8
u <−12
a <−4
k <−2
L <−N
A <−0
B <−0
C <−0
D <−0
f or(d in 1 : (N−1))rhod <−(1− (d/L))
B <−B+(N−d)∗ rhod
}
f or(t in 1 : N){
f or(i in 1 : (n−a−1)){
f or( j in (i+1) : (n−a)){
D <−i f (((t + i∗ k+u−1)<= N)&((t + j ∗ k+u−1)<= N)){D+1− ((abs((t + i∗
k+u−1)− (t + j ∗ k+u−1)))/L)
}elsei f (((t + i∗ k+u−1)<= N)&((t + j ∗ k+u−1)> N)){D+1− ((abs((t + i∗ k+
u−1)− (t + j ∗ k+u−1−N)))/L)
}elsei f (((t + i∗ k+u−1)> N)&((t + j ∗ k+u−1)<= N)){D+1− ((abs((t + i∗ k+
u−1−N)− (t + j ∗ k+u−1)))/L)
}else{D+1− ((abs((t + i∗ k+u−1−N)− (t + j ∗ k+u−1−N)))/L)
}
}
}
}
f or(t in 1 : N){
f or(i in 0 : (u−1)){
f or( j in 1 : (n−a)){
C <−i f (((t + i)<= N)&((t + j∗k+u−1)<= N)){C+1− ((abs((t + i)− (t + j∗k+
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u−1)))/L)
}elsei f (((t+ i)<= N)&((t+ j∗k+u−1)> N)){C+1−((abs((t+ i)−(t+ j∗k+u−
1−N)))/L)
}elsei f (((t + i) > N)&((t + j ∗ k+ u− 1) <= N)){C+ 1− ((abs((t + i−N)− (t + j ∗
k+u−1)))/L)
}else{C+1− ((abs((t + i−N)− (t + j ∗ k+u−1−N)))/L) }
}
}
}
f or(t in 1 : N){
f or(i in 0 : (u−2)){
f or( j in (i+1) : (u−1)){
A <−i f (((t + j)<= N)&((t + i)<= N)){A+1− ((abs((t + j)− (t + i)))/L)
}elsei f (((t + i)<= N)&((t + j)> N)){A+1− ((abs((t + j−N)− (t + i)))/L)
}elsei f (((t + i)> N)&((t + j)<= N)){A+1− ((abs((t + j)− (t + i−N)))/L)
}else{A+1− ((abs((t + j−N)− (t + i−N)))/L)
}
}
}
}
((1/n)-(1/N))+(2/(N*(n2)))∗(((a∗(a−1))/(u∗(u−1)))∗A+(a/u)∗C+D)−(2/(N2))∗
B
7. Computing the value of sigma-squared (RLSSM) when N = 20,n = 8, t1 = 2, t2 = 2
for populations with exponential correlogram :
N <−20
n <−8
k <−2
r <−4
t1 <−2
t2 <−2
A <−0
B <−0
C <−0
D <−0
sigmaRLSSM <−0
f or(d in 1 : (((n− r)∗ k)−1)){rhod <−exp(−d)
A <−A+((2∗ (k−1))/(t1∗ k−1))∗ (((n− r)∗ k−d)∗ rhod)
}
f or(d1 in 1 : (((n− r)/t1)−1)){rhodt1k <−exp(−(d1∗ t1∗ k))
B <−B+(2∗ (t12)∗ (k2)∗ (k−1)/(t1∗ k−1))∗ ((((n− r)/t1)−d1)∗ rhodt1k)
}
f or(d2 in 1 : (r ∗ (k+1)−1)){rhod <−exp(−(d2))
C <−C+(2∗ k/(t2∗ (k+1)−1))∗ ((r ∗ (k+1)−d2)∗ rhod)
}
f or(d3 in 1 : ((r/t2)−1)){rhodt2(k+1)<−exp(−(d3∗ t2∗ (k+1)))
D <−D+(2∗ t22 ∗ k ∗ ((k+1)2)/(t2∗ (k+1)−1))∗ (((r/t2)−d3)∗ rhodt2(k+1))
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}
sigmaRLSSM <−sigmaRLSSM+((1/(N2))∗ (k ∗ (N−n+ r)−A+B−C+D))
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