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Repeated systematic sampling: As we have seen, the problem with
systematic random sampling is that the validity of SRS formulas for variance
estimation depend on the assumption of a random population. One way to
address this problem is to instead use repeated systematic sampling. Essen-
tially, instead of taking one 1-in-k sample, we take ns samples that are each
1-in-k′, where k′ = kns . For example, instead of taking one 1-in-5 sample to
yield 60 measurements, we can take 10 1-in-50 samples to get the same sam-
ple size. We then use the variation between the repeated samples to obtain
a more accurate variance estimate. Let yi be the mean of the ith systematic
sample. Then our estimator µ̂ and estimated variance V̂ (µ̂) for µ̂ are:
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.

Understanding population structure via an ANOVA decompo-
sition of clusters: Previously it was stated that

V ar(ysy) =
σ2

n
[1 + (n− 1)ρ],

where ρ is the intraclass correlation between elements in the same system-
atic random sample. Now we will explain this concept a bit more. Imagine
the population as consisting of k clusters, each of size n, where N = nk is
the total population size. As stated previously, when we draw a 1− in− k
systematic random sample, we are actually performing cluster sampling in
which we select one of the k clusters. Think of the population as consisting
of these k clusters, and consider performing an analysis of variance (ANOVA)
for differences among the clusters. This would lead to familiar ANOVA con-
cepts like the mean-square between clusters (MSB), the mean-square within
clusters (MSW ), and the total mean-square (MST ). It is shown in the text
that for large N , the intraclass correlation ρ is approximated by:
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ρ ≈ MSB −MST

(n− 1)MST
.

Upon examining this expression, it becomes easy to see how different
population structures affect ρ, and hence V ar(ysy). In a random population,
MSB and MST will be almost equal, so ρ ≈ 0 and V ar(ysy) ≈ σ2/n. In an
ordered population, MSB will be less than MST, so ρ will have a negative
value and V ar(ysy) will be lower than under SRS. In a periodic population,
MSB will be more than MST, so ρ will have a positive value and V ar(ysy)
will be much higher than under SRS.

A variance estimator based on successive differences: If obser-
vations yi are independent and identically distributed (iid) with variance σ2,
then di = yi − yj satisfies E(di) = 0 and V (di) = 2σ2. Since E(di) = 0,
the usual sample variance of the d′is,

∑
(di − d)2/(n− 1) is adjusted to give∑

d2i /n as an estimator of 2σ
2. We can use this idea to develop a variance

estimator based on successive differences. Now let di = yi+1 − yi for i = 1
to n− 1 . Then our variance estimator is:

V̂d(ysy) =
(N − n)

N

1

n
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2(n− 1) .

Some examples in the text are used to show that for ordered populations,
this estimator is better than the variance estimator based on SRS. However,
this estimator does not resolve the problems encountered by data from a
periodic population; repeated systematic sampling is the only method we
have studied that is adequate in that situation.
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