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Summary. In the estimation of a population mean or total from a random sample, certain methods
based on linear models are known to be automatically design consistent, regardless of how well
the underlying model describes the population. A suf®cient condition is identi®ed for this type of
robustness to model failure; the condition, which we call `internal bias calibration', relates to the
combination of a model and the method used to ®t it. Included among the internally bias-calibrated
models, in addition to the aforementioned linear models, are certain canonical link generalized
linear models and nonparametric regressions constructed from them by a particular style of local
likelihood ®tting. Other models can often be made robust by using a suboptimal ®tting method.
Thus the class of model-based, but design consistent, analyses is enlarged to include more real-
istic models for certain types of survey variable such as binary indicators and counts. Particular
applications discussed are the estimation of the size of a population subdomain, as arises in tax
auditing for example, and the estimation of a bootstrap tail probability.
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1. Introduction

The use of regression models to derive estimators of population quantities such as means and
totals is well established. Examples may be found in standard texts such as Cochran (1977),
and a fairly recent survey is SaÈ rndal et al. (1992). It is well known that estimators based on
certain linear model speci®cations enjoy a robustness property, namely that they are design
consistent for the target quantity even under gross failure of the model on which they are
based. A familiar example is the ratio estimator

T̂ � Nÿ1
PN
i�1

xi

�P
s

yj

.P
s

xj

�
of a ®nite population mean

T � Nÿ1
PN
i�1

yi,

when s is a simple random sample; here T̂ may be derived as the best linear unbiased
predictor of T under the linear model speci®cation E�yi� � xi�, var�yi� � �2xi. In repeated
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sampling, when the sample size is large, T̂ is approximately unbiased for T regardless of
whether the corresponding linear model approximately represents the population regression.
The class of linear-model-based estimators that are asymptotically design unbiased, or

design consistent, and in that sense robust to model failure, has been explored by several
researchers, e.g. Little (1983), Robinson and SaÈ rndal (1983), Wright (1983) and SaÈ rndal and
Wright (1984). The technical distinction between asymptotic design unbiasedness and design
consistency will be unimportant in what follows. Both are de®ned with reference to an
appropriate asymptotic framework that allows n and N to increase together under some fairly
mild restrictions, and, provided that var�T̂ �=T 2 ! 0 as n, N!1, asymptotic design
unbiasedness implies design consistency. Various speci®c formulations of the asymptotic
framework are possible, with minor di�erences which also are not crucial to the development
below. The essential feature of estimators with the desired properties is that their bias, in
repeated sampling, is an order of magnitude smaller than their standard deviation if the
sample size is su�ciently large. The present work identi®es some types of non-linear
regression model, including certain generalized linear and nonparametric regressions, which
have this robustness property for estimating a population mean or total. The class of `robust
models' is thereby extended to include more realistic representations of populations
involving, for example, a binary indicator or a count as the main survey variable, and
further to accommodate complex patterns of non-linearity that are not adequately described
by linear or even generalized linear models.
Suppose that the quantity of interest is of the general form

T �PN
i�1

ai yi,

where i indexes population units, N is the population size and �yi, ai� are values associated
with each unit; before sampling, ai is known and yi unknown for each i. Familiar examples
are ai � 1 and ai � 1=N, where respectively the population total and the population mean are
the target quantities. The work reported here was motivated initially by a tax auditing
application, discussed further in Section 3.1 later, in which each of N transactions of a
company under audit is either taxable �yi � 1� or not �yi � 0�, the size of the ith transaction
being the known amount of money ai, and T � �N

i�1aiyi being the total amount taxable. The
same estimation problem arises also in other application contexts; for example in market
research ai may be the turnover of the ith in a population of farms, and yi � 1 if the farm
takes a particular periodical, so that �N

1 aiyi is the total turnover of subscribers.
To estimate T, a random sample s of size n is drawn from the units f1, . . ., Ng. Most often

in practice s is drawn without replacement, but much of the following discussion may be
straightforwardly adapted also to with-replacement sampling. Write p�s� for the probability
of selecting each particular sample s, and denote the ®rst-order inclusion probabilities by
�i � P�i 2 s� �i � 1, . . ., N�, assumed to be all non-zero. In what follows, the sampling plan
is taken as ®xed, the focus being on models and associated estimators, i.e. design issues are
regarded as outside the scope of the present paper.
Operationally, a model for the population values fyi: i � 1, . . ., Ng provides a set
M� fŷi: i � 1, . . ., Ng of predicted values. Two alternative estimates of T derived fromM
are then the `projective' form

T̂pro �
PN
i�1

aiŷi �1�
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and the `predictive' form

T̂pre �
P
i2s

aiyi �
P
i=2s

aiŷi, �2�

in terminology similar to that of SaÈ rndal and Wright (1984). If the ®nite population values
y1, . . ., yN are themselves viewed as a random sample from a `superpopulation' described by
the model (e.g. Royall (1970)), then estimation of T is a prediction problem, and T̂pre is
preferred to T̂pro in situations where the two forms di�er. Some of the most commonly used
linear regression approaches involve estimation procedures which ensure thatP

s

aiŷi �
P
s

aiyi

for all samples s, so that T̂pre � T̂pro; the above ratio estimator of T � Nÿ1� yi, with

ŷi � xi
P
s

yj

�P
s

xj

� �
,

is a particular instance. Under simple random sampling and other equal �i designs, this
`predictive±projective equivalence' (PPE) property has a certain intuitive appeal; moreover,
as will be shown in Section 2.1, under equal probability sampling PPE is su�cient for design
consistency of T̂, where T̂ here denotes either of the equivalent forms T̂pro and T̂pre. More
generally, with unequal probability designs, the corresponding su�cient condition is
essentially a weighted version of PPE, with weights determined by the reciprocal inclusion
probabilities �ÿ1i .
The paper is organized as follows. In Section 2 a su�cient condition is identi®ed under

which a model-based estimator as in equation (1) or (2) is design consistent, and implications
of that condition are explored in the broad classes of linear, generalized linear, strati®ed
and nonparametrically smooth `local' regression models. Section 3 discusses two particular
applications: estimation of the size of a population subdomain, as in the tax auditing or
market research contexts outlined above, and improved bootstrap tail probability estimation
by logistic regression on a control variate. Some brief concluding remarks are collected in
Section 4.
It should be noted at the outset that the title of this paper is a slight over-simpli®cation,

even if the rather special interpretation of `robust' is accepted. As has been hinted at above,
and as will be evident in Section 2, the condition for design consistency is a condition on the
combination of a model and an associated ®tting procedure. Thus, for example, in the case of
the ratio estimator above, it is the pairing of

(a) the linear model E�yi� � xi�, var�yi� � �2xi, and
(b) the calculation of predicted values by weighted least squares estimation of � from the

sample

which results in the PPE property and hence, under simple random sampling, design
consistency. In general, especially appealing model±method combinations are of course those
in which the method is optimal for the model, as with the optimally weighted least squares
estimation used in the ratio estimator example above. In the wider context of generalized
linear models, this consideration will be found to provide a special role for models with
canonical link; for example in the case of binary yi the maximum likelihood ®t of a suitably
speci®ed logistic regression can be used directly to yield a design consistent estimator of T,
but the same is not true of, for example, probit or complementary log±log-regressions. A
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model whose optimal ®tting method fails to yield a design consistent T̂ can often be made
robust by using an appropriately modi®ed, suboptimal ®tting procedure; some examples of
this are discussed brie¯y in Sections 2.2.2 and 2.2.3.

2. Robust model-based estimators

2.1. Internally bias-calibrated models
In typical applications ŷi is derived from a regression formula ŷi � �̂�xi�, where xi �
�xi1, . . ., xip� is a vector of p known covariate values associated with each unit �i �
1, . . ., N �, and �̂�.� is a regression function, either known in advance or calculated from
the sample data f�yi, xi�: i 2 sg. If �̂�.� does not depend on s, the estimator

T̂diff �
PN
i�1

ai �̂�xi� �
P
i2s

ai
�i
fyi ÿ �̂�xi�g �3�

is known as a di�erence estimator, is easily shown to be exactly design unbiased for T and
under weak limiting assumptions is design consistent as the sample size increases (e.g. Cassel
et al. (1976) and SaÈ rndal et al. (1992)). A simple, well-known example is the `Horvitz±
Thompson' unbiased estimator

T̂diff �
P
s

�ÿ1i ai yi,

which results from taking �̂�xi� � 0.
If �̂�.� is estimated from the sample, T̂diff as in equation (3) is no longer exactly unbiased in

repeated sampling, but under further weak assumptions is asymptotically unbiased and, as a
consequence, remains design consistent for T. In the particular case where �̂�xi� is a linear
regression with coe�cients estimated from the sample by ordinary or weighted least squares,
T̂diff is known as a generalized regression estimator (e.g. Cassel et al. (1976), SaÈ rndal (1980)
and SaÈ rndal et al. (1992)). In essence, provided that �̂�xi� converges in probability, at an
appropriate rate, to some ®xed function ��xi� as the sample size increases, T̂diff in equation (3)
behaves like a di�erence estimator in su�ciently large samples, and in particular is design
consistent; and this argument is easily seen to apply not only to linear models but also in
general. The estimator T̂diff may be viewed as a `bias-calibrated' version of the simple model
projection estimator T̂pro � �N

1 ai �̂�xi�: the extra term �s �
ÿ1
i aifyi ÿ �̂�xi�g estimates the

population sum �N
1 ai fyi ÿ �̂�xi�g and thus removes, approximately, the bias of T̂pro in

repeated sampling. Alternatively, T̂diff may be expressed in terms of the predictive estimator,
T̂pre � T̂pro ��s ai fyi ÿ �̂�xi�g, as

T̂diff � T̂pre �
P
i2s

ai��ÿ1i ÿ 1�fyi ÿ �̂�xi�g,

in which the second term again removes the estimated bias. The terminology `bias calibrated'
is borrowed from Chambers et al. (1993), where a similar device is used to reduce bias under
the model due to smoothing.
Consider now a general model-based estimator T̂ in one of the two forms T̂pre or T̂pro of

equations (1) and (2). For each population unit i, de®ne qi � �ÿ1i if T̂ is of the form T̂pro, or
qi � �ÿ1i ÿ 1 if T̂ is of the form T̂pre. Then, if
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P
i2s

qiaifyi ÿ �̂�xi�g � 0 �4�

for all possible samples s, the combination of model and associated ®tting procedure, which
together determine the mapping s 7! �̂�.�, will be called internally bias calibrated (IBC) for T
through T̂. The following observations are immediate from the discussion above:

(a) if the model and its associated ®tting procedure are IBC for T through T̂, then T̂ is
design consistent for T;

(b) under equal probability sampling schemes with �i � n=N for all units, e.g. simple
random sampling or strati®ed random sampling with proportional allocation, the IBC
and PPE properties coincide.

In the rest of this paper, terms such as `IBC model' etc. will often be used as a convenient
shorthand to refer to a pairing of a model and ®tting procedure which is IBC for a speci®ed
target quantity T through one or both of T̂pre and T̂pro, with appropriate quali®cation being
provided when such usage is ambiguous.
The IBC condition (4), although su�cient, is by no means necessary for design consistency;

the informal argument above indicates that if condition (4) holds in expectation under
repeated sampling, or indeed if

E
hP
i2s

qiaiyi
i
� E

hP
i2s

qiai �̂�xi�
i
� bn

where bn is su�ciently small as n increases, the same result holds, i.e. T̂ is approximately
design unbiased, and hence under standard conditions design consistent, for T. In the
following, however, the focus is on models which satisfy condition (4) exactly for all samples,
sinceÐas will be shownÐthis seems a su�ciently rich class of models for many practical
purposes.
Models with the IBC property, compared with those requiring `external' bias calibration as

in T̂diff, are attractive from several viewpoints. From a model-based standpoint, Little (1983)
argued strongly that it is more `principled' to build models which automatically yield design
consistent estimators than to make a post-modelling adjustment such as the bias calibration
in equation (3). From the opposite viewpoint of purely design-based inference, wherein the
model has no status other than as a device used to generate an estimator, it may be argued
that estimators of the form T̂pre or T̂pro are appealing mainly for their `cosmetic' simplicity
(SaÈ rndal and Wright, 1984), relative to an externally bias-calibrated form as in equation (3);
there may be advantages also in the simplicity with which the estimator's design variance can
be estimated, especially in the case of T̂pro derived from a non-linear parametric model, since
general results such as those of Binder (1983) apply whenever the projected regression
formula is estimated by solving score-like equations. A third view is provided by the
theoretical framework of Godambe and Thompson (1986), in which the IBC condition
emerges as an implicit requirement of the optimum estimating functions approach; see
Section 4 for brief further discussion.
The remaining parts of this section explore the construction of IBC models of various

kinds. For linear models, design consistency has been extensively studied, and the property
which we have called IBC is certainly not new; see, for example Brewer (1979), SaÈ rndal
(1980), Little (1983), Wright (1983), Mantel (1991) and especially Isaki and Fuller (1982),
SaÈ rndal and Wright (1984), Brewer et al. (1988) and Brewer (1995). The main aim of this
paper is to extend the same ideas to non-linear regression models. The known results for
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linear models are encompassed in Section 2.2.1 below, where a linear model is viewed as a
particular instance of a canonical link generalized linear model.

2.2. Generalized linear models
2.2.1. Canonical link models
For calculation of the coe�cients �̂ in the generalized linear model

�̂�xi� � gÿ1��̂1xi1 � . . .� �̂p xip�, �5�
consider the system of weighted estimating equations

ur �
P
i2s

wir

yi ÿ �̂�xi�
Vf�̂�xi�g

xir
g0f�̂�xi�g

� 0 �r � 1, . . ., p�. �6�

Here g�.� and V�.� are respectively the link and variance functions for the generalized linear
model and the fwirg are ®xed constants: if wir � wi, the fwig are straightforward case weights,
and more generally wir may be viewed as the relative weight of the ith unit in the rth equation.
When wir � 1, equations (6) are the standard maximum likelihood equations for the
exponential family generalized linear model with �̂�xi� as in equation (5) and var�yi�
proportional to V��̂�, or alternatively they are best linear (`quasi-likelihood') estimating
equations for the same mean±variance speci®cation; see McCullagh and Nelder (1989) for a
full account. Case weights wi may be used, for example, to accommodate a known pattern of
non-proportionality between var�yi� and V��i� or may be chosen to depend in some way on
the inclusion probabilities �i. For estimating the general target quantity T � �N

1 aiyi, it
follows from equation (6) that the model has the IBC property if

(a) V��� / 1=g0��� and
(b) qiai is a linear combination of �wi1xi1, . . ., wipxip�, say

qiai � �1wi1xi1 � . . .� �pwipxip �i � 1, . . ., N�.
For, if (a) and (b) are satis®ed,P

i2s
qiaifyi ÿ �̂�xi�g �

Pp
r�1
�rur � 0,

as required.
Condition (a) above is satis®ed whenever the link function g�.� is canonical, relative to

variance function V�.�; common examples are the linear model with variance free of the mean
�g��� � �, V��� � 1�, log-linear models with variance proportional to the mean �g��� �
log���, V��� � �� and logit models for binary data �g��� � logf�=�1ÿ ��g, V��� � ��1ÿ ���.
Condition (b) may be satis®ed by an appropriate choice of covariates xir and weights wir,

the considerations involved in this choice being essentially the same as in linear models.
As a simple, but familiar and important, example, consider the estimation of the

population mean Nÿ1�N
1 yi under an equal probability plan such as simple random sampling.

Here ai and qi are both constant, and we see that any canonical link generalized linear model
containing an intercept term (xi1 � 1, say), ®tted by ordinary, unweighted maximum
likelihood, has the IBC property, which in this case coincides with the PPE property
introduced in Section 1. For concreteness, suppose that a single auxiliary variable x is
available. Familiar estimators of the population mean are then the linear regression estimator
based on the model

8 D. Firth and K. E. Bennett



�̂�xi� � �̂1 � �̂2xi, V��̂� � 1, �7�
and the ratio estimator as in Section 1, which is based on

�̂�xi� � �̂xi, V��̂� � �̂. �8�
The ®rst of these is plainly a canonical link model with an intercept term, whereas the `ratio'
model (8) may be re-expressed as

logf�̂�xi�g � log��̂� � log�xi�, V��̂� � �̂, �9�
i.e. as a canonical link model in which log��̂� is the intercept term. Of course, it may be that
neither model (7) nor model (8) is a good description of the population scatter of y versus x.
One possibility, even if the assumed mean±variance relationship is adequate, is non-linearity
of �̂�x� in x. The linear model (7) can be elaborated directly, by adding further terms such as
polynomials or regression splines to the linear predictor, to accommodate non-linearity while
maintaining the IBC property. If the ratio model (8) is to be similarly elaborated, while
maintaining both the IBC property and regression through the origin, �̂�0� � 0, an
appropriate route would be the addition of extra terms to the linear predictor of the log-
linear representation (9); the direct addition of further terms to �̂xi in model (8) would violate
the IBC property, and thus in general would yield a design inconsistent estimator. A further
possibility is that models (7) and (8) are both unrealistic on account of the assumed mean±
variance relationships. For example, if yi is binary the appropriate mean±variance
relationship is necessarily V��� � ��1ÿ ��, and a more appropriate model would then be a
logistic regression; any logistic regression model containing an intercept term is IBC for
Nÿ1�N

1 yi. More generally, when T � �N
1 aiyi with the faig unequal, the maximum likelihood

®t of any canonical link model with ai in the span of xi1, . . ., xip is IBC under simple random
sampling: for an application involving binary yi, see Section 3.1.
In general, there is an in®nite number of ways to achieve condition (b) by weighting and/or

the inclusion of suitable extra terms in the linear predictor. To illustrate, consider the use of
T̂pre based on the simple linear model

�̂�xi� � �̂1 � �̂2xi �10�
to estimate T � Nÿ1�N

1 yi under an unequal probability sampling plan. If model (10) is ®tted
by ordinary least squares, the IBC condition requires qi � �ÿ1i ÿ 1 to be a linear combination
of f1, xig, which will not usually be the case. Three speci®c prescriptions to achieve IBC in this
instance are

(a) ®t model (10) using case weights wir � wi � �ÿ1i ÿ 1 (prescription 1);
(b) ®t model (10) using instrumental variable estimation (Brewer et al., 1988; Brewer,

1995) by setting, for example, wi1 � 1 and wi2 � �ÿ1i =xi so that �ÿ1i is in e�ect used as
an instrument for xi in estimating the model (prescription 2);

(c) include �ÿ1i as an extra covariate, and ®t without weights, i.e. use `weights' wir � 1
(prescription 3).

From a purely model-based viewpoint, prescription 3 seems preferable as it avoids the use of
possibly suboptimal weights: optimum estimation under the model requires weights pro-
portional to 1= var�yi�, so wir � 1 is optimal if variation around model (10) is thought to be
homoscedastic. For an alternative, design-based perspective on the choice of weights, see
SaÈ rndal (1980). Note that under model (10) all three prescriptions are suboptimal, in the
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case of prescription 3 not because of ine�cient weighting but on account of the redundant
covariate �ÿ1i . A possible advantage of the `redundant' covariate, though, is a contribution to
model robustness if the residual variation around model (10) is correlated with �ÿ1i . The
instrumental variable approach exempli®ed in prescription 2 provides a ¯exible alternative to
pure case weighting and if the fwirg are chosen optimally will often lose little in terms of
e�ciency; a more detailed assessment is in preparation as a separate paper.
Little (1983) suggested model elaboration in the spirit of prescription 3 above, but

involving the inclusion of a separate indicator variable for each distinct value of �i used in the
sampling plan. The set of such indicator variables includes qi in its span, and so the IBC
condition holds for the model thus elaborated, whether T is estimated through T̂pre or T̂pro. If
the number of distinct values of �i is largeÐ the extreme situation being where each unit has
its own unique value of �iÐthis approach results in a model with a very large number of
`nuisance' parameters. Little (1983) recognized this problem and proposed a random e�ects
formulation to overcome it; the inclusion of a single extra covariate as in prescription 3 is an
alternative means of incorporating parsimoniously the dependence on �i needed to ensure
design consistency.
Finally we note that, for estimation via the projective form T̂pro, the route to the IBC

property corresponding to prescription 1 above is to use case weights wir � wi � �ÿ1i , as in the
method of `pseudomaximum likelihood' for estimation of the model coe�cients (e.g. Binder
(1983) and Skinner et al. (1989), section 3.4). In general, then, the pseudomaximum like-
lihood ®t of a canonical link model with ai in the span of fxi1, . . ., xipg is IBC for T � �N

1 aiyi
through T̂pro � �N

1 ai �̂�xi�.

2.2.2. Non-canonical models
The essence of the previous section is that, because of the cancellation of V and 1=g0 in the
estimating equations (6), canonical link models ®tted by maximum likelihood are subject to
precisely the same considerations as linear models ®tted by least squares, with regard to the
use of weights, instrumental variables and/or extra terms in the linear predictor to ensure
design consistency. The same can be made to apply also to non-canonical links if the
weighted maximum likelihood equations (6) are replaced by

ur* �
P
i2s

wirfyi ÿ �̂�xi�gxir � 0 �r � 1, . . ., p� �11�

for the calculation of �̂1, . . ., �̂p; note that equations (11) and (6) are identical in the case of a
canonical link. Thus, if g is non-canonical relative to the assumed form of V�.�, the IBC
property can still be made to hold by using equations (11) to ®t the model, combined with an
appropriate choice of weights and covariates as discussed earlier. In general the resultant
estimates �̂1, . . ., �̂p are then suboptimal under the model. In some situations the loss of
e�ciency is small; for example, in the estimation of a probit regression for binary yi,
equations (11) and (6) are rather similar because V��� � ��1ÿ �� is approximately
proportional to 1=g0��� � �f�ÿ1���g. In other contexts model e�ciency may be partially
recoverable by choosing case weights wir � wi to be such that Vf�̂�xi�g g0f�̂�xi�g=wi is more
nearly constant than Vg0.

2.2.3. Ordered multinomial regression
We note here one further, important class of models in which the maximum likelihood ®t
does not in general yield a design consistent estimator, but where a suboptimal ®tting method
may be used to achieve that end.
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Suppose that ordered response categories are labelled 1, . . ., K, that yi � �yi1, . . ., yiK� for
the ith unit is an indicator vector with elements

yik � 1 if unit i is in category k,
0 otherwise

n
and that interest is in the vector of population proportions T � Nÿ1�N

1 yi. A commonly used
class of models relating yi to auxiliary variables xi1, . . ., xip is the class of `cumulative link'
regressions of the form

�̂k�xi� � gÿ1��̂k � �̂1xi1 � . . .� �̂pxip� �k � 1, . . ., Kÿ 1�,
where g�.� is a link function such as the logit or probit and �̂k�xi� models the regression of the
cumulative indicator yi1 � yi2 � . . .� yik � zik, say; see, for example, McCullagh and Nelder
(1989), section 5.2, or Agresti (1989), chapter 9. The multinomial likelihood equations for
such a model are considerably more complicated than equations (6), and even with the logit
link they do not simplify to a form which allows the IBC property to be engineered by a
suitable choice of weights and/or extra covariates.
A simple alternative approach to ®tting such a model is to treat the fzik: k � 1, . . ., Kÿ 1g

as if they were independent binary observations, i.e. in e�ect to use a system of `generalized
estimating equations' with working correlations all set to 0 (Liang and Zeger, 1986). Design
consistent estimation of each of the cumulative proportions T1 � . . .� Tk, and hence of T, is
then achieved directly as in Section 2.2.1 if g is the logit link, or as in Section 2.2.2 otherwise.
This incurs a loss of e�ciency under the model, since in reality the fzik: k � 1, . . ., Kÿ 1g are
of course correlated. Some preliminary investigations in Wolfe (1996) suggest that the loss of
e�ciency due to using `independence' estimating equations for this purpose is often small and
may thus be a reasonable price to pay for design consistency.

2.3. Strati®ed models
As one approach to model robustness, the population may be divided into strata, or groups,
labelled g � 1, . . ., G, and separate models �̂g�xi� used locally within each stratum. The
corresponding `global' regression function is then

�̂�xi� �
P
g

�̂g�xi�Iig,

where fIig: g � 1, . . ., Gg are binary indicators of stratum membership. The target quantity
T � �N

1 aiyi may be similarly decomposed as T � �gTg, where

Tg �
PN
1

aiyiIig,

and clearly if each of the �̂g�.� is IBC for the corresponding stratum target Tg then �̂�.� is IBC
for T. If the same strata are used also in the sampling design, in such a way that p�s� implies
constant �i sampling within each stratum, the IBC property is achieved globally by simply
ensuring PPE for each of the within-stratum models, irrespective of the rates at which
di�erent strata are sampled.
A simple example is the so-called separate ratio estimator for T � Nÿ1�N

1 yi in the presence
of a scalar covariate xi; in the case of constant �i within strata,
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T̂ � Nÿ1
PN
i�1

xi
PG
g�1

�̂gIig,

with

�̂g �
P
i2s

yiIig

.P
i2s

xiIig. �12�

The implicit model underlying equation (12) is a separate linear regression through the origin
within each stratum. Royall and Herson (1973) demonstrated that within-stratum modelling
in this fashion provides a degree of robustness to failure of the model underlying the
standard, `global' ratio estimator introduced in Section 1.

2.4. `Smooth' local models
Local models as in Section 2.3 are appealing on account of their semiparametric ¯avour
and comparative robustness relative to global parametric models, but the potentially large
discontinuities in �̂�x� at stratum boundaries will be implausible in many contexts and may
have an adverse e�ect on the e�ciency with which population quantities are estimated.
A smooth version of the same idea is as follows: for each population unit i, obtain �̂�xi�

from a local likelihood ®t (Tibshirani and Hastie, 1987) of some simple model that has the
IBC property. Local likelihood ®tting typically employs kernel weights based on distances
jxi ÿ xjj, but in general kernel-weighted local ®ts, even of models which themselves have the
IBC property, fail to yield a result with that same property. In the following, a general
method is given for obtaining a regression function �̂�xi�, by a construction based on local
likelihood ®tting, which has the required IBC property. For simplicity, it will be assumed that
a single auxiliary variable x is available; the approach can easily be extended in principle to
multidimensional x, but the amount of computation involved grows rapidly.
Suppose that �̂�x�, and its associated ®tting procedure, together comprise a model which is

IBC for �N
1 aiyi through one or both of T̂pre and T̂pro; the simplest example, for ai � 1=N and

with equal probability sampling, is

�̂�x� � nÿ1
P
s

yi,

in which dependence on x is null. Let the members of s have �x, y� values f�x�1�, y�1��,
. . ., �x�n�, y�n��g, arranged so that x�1�4 . . .4 x�n�. Let k be some ®xed positive integer: the
constant k will determine the e�ective bandwidth, or alternatively the e�ective degrees of
freedom, of the smoothing method proposed here. Denote by �̂r�x�, for r 2 f2ÿ k, . . ., ng,
the ®t of the model to the subset s�r� of the sample, where

s�r� �
f�x�1�, y�1��, . . ., �x�r�kÿ1�, y�r�kÿ1��g �2ÿ k4 r < 1�,
f�x�r�, y�r��, . . ., �x�r�kÿ1�, y�r�kÿ1��g �14 r4 nÿ k� 1�,
f�x�r�, y�r��, . . ., �x�n�, y�n��g �nÿ k� 1 < r4 n�,

8><>:
so that each �̂r�x� is a local ®t obtained from a maximum of k sample points, with fewer
points being used near the ends of the sample. Now de®ne the sample ®tted values to be

ŷ�i� � kÿ1
Pi

r�iÿk�1
�̂r�x�i�� �14 i4 n�,

12 D. Firth and K. E. Bennett



i.e. the ®tted value at the sample point �x�i�, y�i�� is the average of the local ®ts �̂r�x�i��, over the
k values of r for which �x�i�, y�i�� 2 s�r�. We shall refer to this as the `k-fold local ®t' of the base
model �̂�x�. Extreme cases are the onefold local ®t which has ŷ�i� � y�i� for all i, and thus
involves no smoothing of the data, and the `1-fold local ®t', which reproduces the global ®t
of �̂�x� to the entire sample. As may easily be veri®ed, if �̂�x� and its associated ®tting method
have the IBC property for T � �N

1 aiyi, the k-fold local ®t retains that property, for any value
of k.
In the simplest case where �̂�x� is constant, each �̂r is simply the mean of the y�i� in s�r�. A

simple, explicit matrix representation of the smoothing operation is then available: let M be
the �n� kÿ 1� � n incidence matrix with elements

mri � 1 i 2 s�r�,
0 otherwise,

�
and let M* be M with each row divided by its total, i.e.

mri* � mri=mr. ;

then

ŷs � kÿ1MTM*ys,

where ys denotes the vector �y�1�, . . ., y�n��, etc.
A k-fold local ®t provides ®tted values for the sampled units, but not for unsampled units

as required for evaluation of T̂. For this, interpolation is needed between the points f�x�1�,
ŷ�1��, . . ., �x�n�, ŷ�n��g, with extrapolation to any x-values outside the interval �x�1�, x�n��. A
simple prescription is to perform linear interpolation to calculate �̂�xi� for xi within any of the
intervals f�x�r�, x�r�1��: r � 1, . . ., nÿ 1g, and to de®ne �̂�xi� � ŷ�1� if xi < x�1� and �̂�xi� � ŷ�n�
if xi > x�n�. Any ties may be broken in an obvious way by averaging, for example. Other
interpolation methods are of course possible, but our experience is that, at least with
moderate or large sample sizes, the results from di�erent interpolations are not discernibly
di�erent.
In Bennett (1994), a detailed theoretical and empirical investigation is made of estimators

based on the k-fold local ®t of various models, in particular the ratio model (8) for estimation
of T � Nÿ1 �N

1 yi under simple and strati®ed random sampling schemes.
Concerning the choice of k, our empirical experience is that, although a value such as

k � n=4 is frequently better than k � 1, there is often little or nothing to be gained by using
much smaller values of k, except perhaps if the sample is su�ciently large that very localized
features emerge strongly in the data. From the design-based viewpoint, the usual non-
parametric smoothing concern about bias due to oversmoothing does not apply, since by
construction T̂ derived from a k-fold local ®t is approximately design unbiased, regardless of
k; and, as might be expected, the design variance of T̂ is often found to be minimized by a
fairly large choice of k. Of course, an asymptotic model-based analysis would still require
k! 1, i.e. the bandwidth tends to 0, as n!1 for consistency under a completely
nonparametric model (e.g. Dorfman (1992), Chambers et al. (1993) and Dorfman and Hall
(1993)).
An alternative nonparametric regression approach would be via penalized likelihood ®tting

of a general function �̂�x� as described in, for example, Green and Silverman (1994), resulting
in a natural cubic spline with knots at the sample values x�r�. This method could presumably
also be tuned to satisfy the IBC condition for a particular target quantity T. We have not
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pursued this in detail but would be surprised if the results di�ered very much from those of a
k-fold local ®t o�ering a comparable degree of smoothing.

3. Examples

3.1. Estimating the size of a subdomain
Suppose that yi indicates membership of a population subdomain, i.e. yi � 1 if a member and
yi � 0 if not, and that ai is the known size of each population unit i. Then T � �N

1 aiyi is the
total size of the subdomain. Application contexts include the two that were outlined brie¯y
in Section 1, namely audit sampling and market research. In the following discussion, for
concreteness, we use the terminology of a tax auditing application, but the methodology is
quite general. For further details of the auditing context, see Stokes (1990).
In the tax auditing application introduced in Section 1, ai is the size of the ith transaction

and yi is binary, with yi � 1 if the transaction is taxable and yi � 0 if not. If s is drawn by
simple random sampling from the population of transactions, then as shown in Section 2.2.1
the maximum likelihood ®t of a simple logistic regression

�̂�ai� �
exp��̂1 � �̂2ai�

1� exp��̂1 � �̂2ai�
�13�

is IBC for T � �N
1 aiyi. Further terms can be added as necessary to the linear predictor to

accommodate non-linearity, on the logit scale, of the dependence on ai, or to allow
dependence on other covariates if such are available.
Other possible IBC models for the regression of yi on ai here include the linear model

�̂�ai� � �̂1 � �̂2ai, var�yi� � constant, �14�

the ratio model

�̂�ai� � �̂, var�yi� / 1=ai, �15�

which when ®tted by weighted least squares yields the standard ratio estimator

T̂ratio �
PN
1

ai
P
s

ajyj

�P
s

aj,

and the `expansion' model

�̂�ai� � �̂=ai, var�yi� / 1=a2i , �16�

which similarly yields the simple expansion estimator

T̂expand � �N=n�
P
s

aiyi.

Models (14)±(16) are included here largely for comparison. Model (16) may be re-expressed
as �E�aiyi� � �̂, var�yi� � constant�, which is plainly unrealistic for the context. The ratio
model (15), however, is more familiarly written as �E �aiyi� � �̂ai, var�aiyi� / ai� and is very
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commonly used in the audit sampling context (Stokes, 1990), as it is in many others. One
potential advantage of models (14)±(16) is that they each can be written in terms of a
prediction formula that is linear in ai, and thus they can still be used in situations where the
individual values of ai are unknown outside the sample but where the mean transaction size
�a � Nÿ1 �N

1 ai is known; the same cannot be said of a logistic regression, for example.
Fig. 1 displays the results of a small simulation experiment to explore the performance of

various estimators under 2% simple random sampling from a synthetic population of 20000
transactions �ai, yi�. The population, available electronically via the ®rst author's home page
at www.stats.ox.ac.uk, was designed to reproduce some features of real audit
populations and also to be not very well described by standard models such as linear or
logistic regressions; it was generated by sampling from the superpopulation model

ai � gamma�4, 1�, P�yi � 1jai� � 0:9
exp�ai ÿ 0:5�

1� exp�ai ÿ 0:5� . �17�

`Expansion', `ratio', `linear' and `logit±linear' in Fig. 1 are the estimators corresponding to
the models (16), (15), (14) and (13) above. `Logit±quadratic' results from adding a quadratic
term �̂2a

2
i to the linear predictor in model (13), whereas `logit±spline' is a two-parameter

elaboration of model (13) which uses a piecewise linear ®t on the logit scale, with knots at the
33rd and 67th percentiles of the distribution of ai. Other design consistent estimators
considered are two di�erent k-fold ®ts of the expansion model (16), or equivalently of a
simple mean model applied directly to the faiyig; the expansion estimator itself is thus the
corresponding `1-fold' ®t. Also displayed in Fig. 1 are three estimators which depart
systematically from the IBC condition. The ®rst is based on a simple logistic regression as in
model (13) but with log �ai� replacing ai as the covariate. The other two are based on simpler
models: `strati®ed' refers to the strati®ed mean model
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T̂strat �
PN
i�1

ai�̂gIig,

where g � 1, 2, 3 are strata divided at the 33rd and 67th percentiles of ai, Iig indicates stratum
membership and �̂g is the sample mean of yiIig; `independence' refers to the unstrati®ed
version �N

1 ai�nÿ1�s yi�, naturally associated with a model in which the ®rst two moments of
yi, at least, do not depend on ai (see Stokes (1990), `model �0'). Finally in Fig. 1, included as a
standard comparator, is the design consistent di�erence estimator (3) that would result from
using as �̂�ai� the `true' superpopulation regression in model (17).
Fig. 1 is based on 2000 simple random samples of size 400. The design consistent

estimators all have good bias properties, as expected. With the exception of the expansion
estimator, which is based on the very unrealistic model (16), the variances of di�erent
methods are essentially the same. The standard error attached to each of the variance
estimates shown is approximately 0:1� 106. Comparison with the di�erence estimator of the
true model, which would of course be unavailable in practice, indicates that as far as design
variance is concerned there is little or nothing to be gained in this example by using more
elaborate models than the models here which involve between two and four parameters.
Among the design inconsistent estimators, two miss the target by a considerable margin.

The third, based on logistic regression of yi on log�ai�, is almost unbiased in repeated
sampling; this model does not have the IBC property, but �s ai� ŷi ÿ yi�, although not
identically equal to 0, is found to have a mean in repeated sampling of only about 6, i.e.
approximately 6=400 per unit sampled. Thus this estimator's bias, which would dominate
asymptotically, is not serious in samples of moderate size.
To illustrate behaviour under an unequal probability sampling scheme, Fig. 2 displays the

results of a second experiment involving strati®ed random sampling from the same
population. Samples of size 190, roughly 1% of the population, were drawn by combining
simple random subsamples of size 95 from each of two strata, the ®rst stratum being the top
5% of transactions ranked by size, the second being the remaining 19000 smaller
transactions. Stratum allocation here is thus highly non-proportional, with inclusion
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probabilities �i 19 times greater for the largest 5% than in the remainder of the population.
Fig. 2 is again based on 2000 samples and shows the empirical sampling distribution of four
estimators:

(a) the di�erence estimatorÐ the standard di�erence estimator, based on the true popu-
lation-generating process �̂�ai� � P�yi � 1jai� as in model (17), and taking account of
the unequal f�ig;

(b) the logit estimatorÐ T̂pro (or, equivalently here, T̂pre) from the unweighted maximum
likelihood ®t of the simple logistic regression (13);

(c) the weighted logit estimatorÐ T̂pro from the ®t of model (13) weighted by wir � �ÿ1i ,
i.e. the pseudomaximum likelihood ®t of model (13);

(d) the logit estimator with a term addedÐ T̂pro (or again, equivalently, T̂pre) from the
unweighted maximum likelihood ®t of the elaborated logistic regression

�̂�ai� �
exp��̂1 � �̂2ai � �̂3ai�ÿ1i �

1� exp��̂1 � �̂2ai � �̂3ai�ÿ1i �
,

which is piecewise linear on the logit scale since �i is constant within strata.

Estimators (a), (c) and (d) are design consistent by construction, but estimator (b) is not. Fig.
2 shows that, whereas the logistic ®t which takes no account of the sampling scheme yields an
estimator with smaller variance than the other three methods, its bias dominates even at this
relatively small sample size. Among the three design consistent estimators there is little
di�erence in terms of performance in repeated sampling: the simple logistic regression (13),
which is known here to be an incorrect description of the population, when equipped with the
IBC property by either of the two devices used above is comparable with the `ideal' di�erence
estimator.

3.2. Estimating a bootstrap tail probability
In Monte Carlo sampling the regression modelling of simulation output to improve
estimation e�ciency is known as the method of control variates (e.g. Hammersley and
Handscomb (1964) and Ripley (1987)). If the estimand is the population mean of y and the
variable x has known population mean �x, say, a linear model �̂�x� � �̂1 � �̂2x yields the
natural projective estimator �̂1 � �̂2 �x. If not only the mean but also the entire distribution of
x is known, and especially if that distribution is ®nite, the possibility exists of using a non-
linear model, with potentially greater e�ciency gains.
As an instance of this consider the estimation of a tail probability in the bootstrap

distribution of some statistic; see, for example, Efron and Tibshirani (1993) for an
introduction to bootstrap ideas. Here the population of interest is the ®nite collection of all
possible resamples i from an observed sample distribution function, and yi � I�zi > c�, where
zi is the statistic of interest, c is a ®xed constant and I�.� is the indicator function. Since yi is
binary, a natural style of design consistent model for estimating �y under simple random
sampling, either with or without replacement, is a logistic regression

�̂�xi� �
exp��̂1 � �̂2xi�

1� exp��̂1 � �̂2xi�
, �18�

in which �̂1 is present to ensure the IBC property and xi is a suitable control variate. The
essential requirement of xi is that the mean of �̂�xi�, in the population of resamples, should be
available analytically to enable its direct use as the projective estimator of the `target'
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T � P�zi > c�. In the bootstrap context, candidate control variates typically include simple
functions of the resample order statistics, or counts of the occurrence in resamples of some
known probability event; in principle, x may be multivariate.
The most standard bootstrap sampling scheme is simple random sampling with

replacement. Alternative, unequal probability sampling plans arise from the notion of
importance sampling, in which the relative frequency of resample i is deliberately changed,
say from fi to gi, to provide more information on the target quantity; see, for example,
Hammersley and Handscomb (1964), Ripley (1987) or in the speci®c context of bootstrap
methods Hesterberg (1996). Much of the development in Sections 1 and 2 continues to apply,
and in particular the natural projective estimator as in equation (1) is consistent for the
population mean of aiyi if the IBC condition (4) holds, where now qi denotes the ratio fi=gi of
relative frequencies under simple random sampling and under the sampling plan actually
used.
As a simple example, suppose that the empirical distribution function to be resampled is

univariate with increments 1=m at each of m distinct points of support, and that the statistic
of interest is the mean, i.e. zi is the mean of resample i. Let xi be the number of items in
resample i which themselves exceed c. Then, in simple random resampling with replacement,
the distribution of xi is binomial�m, p�, where p is the proportion of the support points which
exceed c, and the mean of �̂�xi� in equation (18) is straightforwardly calculated, whatever the
values of �̂1 and �̂2. No claim of optimality is made for this particular choice of control
variate, its primary motivation being its simplicity for illustration; it is reasonable, though, to
expect this xi to be su�ciently correlated with the resample mean zi to be of some use in
variance reduction.
Table 1 presents the results of a small experiment to compare the logistic regression (18)

with the standard linear model approach to exploiting the control variate xi, under simple
random resampling. The 10 rows of the table correspond to 10 di�erent distribution
functions that were resampled, thus de®ning 10 di�erent bootstrap populations of interest.
Each of the 10 distribution functions has m � 10; they were in fact generated at random by
simulation from the normal density, but for the present purposes their genesis is not very
important. For each of the 10 distribution functions Fj, j � 1, . . ., 10, a value of cj was
determined such that in resampling Tj � PFj

�zi > cj� � 0:025, mirroring the design of a
similar study by Efron and Tibshirani (1993), section 23.7. The performance of estimators of
each Tj based on 1000 bootstrap resamples from Fj was then evaluated empirically using 100
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Table 1. Empirical ef®ciency of estimators of an upper
2.5% tail probability, for 10 different bootstrap populations

Population Linear Logit

1 1.3 2.2
2 1.3 1.7
3 0.95 1.2
4 1.1 1.3
5 1.1 1.1
6 1.2 2.4
7 1.0 1.5
8 1.3 1.4
9 1.1 1.8
10 1.2 2.1

Average 1.2 1.7



replications of the whole procedure; Table 1 shows the estimated e�ciency of each estimator
relative to the simple resampling estimator �1000

i�1 I�zi > cj�=1000.
It might be expected a priori that the logistic regression (18) would be more realistic than a

linear model for the binary response yi here and therefore should yield a more e�cient
estimator. The results in Table 1 show that the logit model is consistently more e�cient,
o�ering an average improvement of about 70%, compared with the linear model's 20%. In
both cases the bias for estimating �y was found to be negligible; both of these canonical link
models are IBC on account of the intercept term.
Generalization to importance sampling is straightforward, the IBC condition being

satis®ed if P
s

qi �̂�xi� �
P
s

qiyi,

as may be achieved by using the fqig as weights, for example. Hesterberg (1996) and Firth
(1996) have demonstrated situations where the e�ciency of importance sampling is
substantially improved by the use of an appropriate control variate via a linear model;
when yi is binary, still greater improvements may be possible by using a logistic regression to
exploit the control variate.

4. Concluding remarks

In this paper, the focus has been on models and estimators derived from them. For inference
on T, estimation of var�T̂� will also be needed. A detailed discussion is outside the scope of
this paper, and here we note only that

(a) the variance to be estimated may be the variance in repeated sampling (`design
variance') or variance under the assumed model (`model variance'), or a hybrid,
depending on one's inferential standpoint, and

(b) for T̂ derived from a parametric model, some general asymptotic methods are
available, e.g. for model variance as in Valliant (1985) and for design variance as in
Binder (1983).

Further work is needed on the estimation of var�T̂� when T̂ is derived from the sort of
nonparametric model described in Section 2.4.
In Section 2 it was shown that a model without the IBC property may be equipped with it

by the addition of an extra covariate, or by weighted ®tting or by a combination of these two
devices. The choice of method may in practice be constrained by features of the problem at
hand; for example, weights need to be known only for the sample but in general to construct
the estimator the value of an extra covariate must be known for the whole population. In
terms of e�ciency, there seems to be no clear cut `best' recipe. Both devices are suboptimal
under the model, and which one is more e�cient will in general depend on the number of
covariates already present and their relationship to any potential extra covariates. A simple,
model-based principle might be that weights should always be chosen to maximize e�ciency
under the model; such weights would usually be determined by assumptions made about
variances, leaving the addition of extra covariates as the favoured route to the IBC property.
The addition of such extra, design-related covariates may also o�er a degree of protection
against model bias, as noted in Section 2 and by various other researchers (e.g. Little (1983),
Rubin (1985) and Nordberg (1989)). An alternative principle, leading to a di�erent
conclusion, is optimality of the system of estimating equations used (Godambe and
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Thompson, 1986), using a criterion de®ned with respect to both the model and repeated
sampling. Optimum estimators based on this principle use design-based case weights
throughout, to achieve the IBC property not only for T but also for the full set of parameters
in the implicit model; this more restrictive framework thereby excludes the possibility of more
than one route to the IBC condition for T alone and typically implies the use of weights
which would be judged suboptimal by model-based criteria.
Finally, we note that estimators based on non-linear models will not be available in all

sampling problems. In particular, if auxiliary variables xi1, . . ., xip are available in the
sample but only the totals x:1, . . ., x:p or means �x1, . . ., �xp are known for the population,
�̂�x� is necessarily constrained to be linear to allow the estimator to be calculated.
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