
Chapter 2

Sample Statistics

In this chapter, we explore further the nature of random variables. In par- Chapter topics:

1. Populations and samples

2. Sample statistics

3. Data pooling

ticular, we are interested in the process of gaining knowledge of a partic-
ular random variable through the use of sample statistics. To kick off the
chapter, two important concepts are described: the notion of a population
and subsets of that population, called samples. Next, the utility of sample
statistics in describing random variables is introduced, followed by a dis-
cussion of the properties of two important samples statistics: the sample
mean and the sample variance. The chapter closes with a discourse on the
process of data pooling, a process whereby multiple samples are used to
obtain a sample statistic.

2.1 Populations and Observations

2.1.1 A Further Look at Random Variables

As we discovered in the last chapter, a random variable is a variable that Many experiments in science
result in outcomes that must be
described by probability
distributions — i.e., they yield
random variables.

The values collected in an
experiment are observations of
the random variable.

The population is the collection
of all possible observations of a
random variable. A sample is a
subset of the population.

contains some uncertainty, and many experiments in natural science in-
volve random variables. These random variables must be described in
terms of a probability distribution. We will now extend this concept fur-
ther.

When an experiment involving random variables is performed, data are
generated. These data points are often measurements of some kind. In
statistics, all instances of a random variable as called observations of that
variable. Furthermore, the set of data points actually collected is termed a
sample of a given population of observations.

For example, imagine that we are interested in determining the ‘typical’
height of a student who attends the University of Richmond. We might
choose a number of students at random, measure their heights, and then
average the values. The population for this experiment would consist of the
heights of all students attending UR, while the sample would be the heights
of the students actually selected in the study.

To generalize: the population consists of the entire set of all possible
observations, while the sample is a subset of the population. Figure 2.1
demonstrates the difference between sample and population.

A population can be infinitely large. For example, a single observation
might consist of rolling a pair of dice and adding the values. The act of
throwing the dice can continue indefinitely, and so the population would
consist of an infinite number of observations. Another important exam-
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Population

Sample

Figure 2.1: Illustration of population and sample. The population is the box that
contains all possible outcomes of an experiment, while the sample contains the
outcomes that are actually observed in an experiment.

ple occurs for experiments in which the measurement process introduces a
random component into the observation. Since measurements can theoret-
ically be repeated indefinitely, the population of measurements would also
be infinite. The concept of a population can be somewhat abstract in such
cases.

2.1.2 Population Parameters

A population is a collection of all possible observations from an exper-Population parameters describe
characteristics of the entire
population.

iment. These observations are generated according to some probability
distribution. The probability distribution also determines the frequency
distribution of the values in the population, as shown in figure 2.2.

Population parameters are values that are calculated from all the val-
ues in the population. Population parameters describe characteristics —
such as location and dispersion — of the population. As such, the pop-
ulation parameters are characteristics of a particular experiment and the
conditions under which the experiment is performed. Most scientific ex-
periments are intended to draw conclusions about populations; thus, they
are largely concerned with population parameters.

The best indicators of the location and dispersion of the observations in
a population are the mean and variance. Since the probability distribution
is also the frequency distribution of the population, the mean and vari-
ance of the probability distribution of a random variable are also the mean
and variance of the observations in the population. If one had access to all
the values in the population, then the mean and variance of the values in
population could be calculated as follows:

The two most important
population parameters are the
population mean, µx , and the
population variance, σ2x .

µx = 1
N

N∑
i=1

xi (2.1)

σ 2
x =

1
N

N∑
i=1

(xi − µx)2 (2.2)

where N is the number of observations in the population and xi are the
values of individual observations of the random variable x. The values µx
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Figure 2.2: Role of probability distribution in populations. The same distribution
function dictates the probability distribution of the random variable (i.e., a single
observation in the population) and the frequency distribution of the entire popula-
tion.

and σ 2
x are the population mean and the population variance, respectively.

The population standard deviation, σx , is commonly used to describe dis-
persion. As always, it is simply the positive root of the variance.

From eqns. 2.1 and 2.2 we can see that

• The population mean µx is the average of all the values in the popu-
lation — the “expected value,” E(x), of the random variable, x;

• The population variance σ 2
x is the average of the quantity (x − µx)2

for all the observations in the population — the “expected value” of
the squared deviation from the population mean.

Other measures of location and dispersion, such as those discussed in sec-
tion 1.3, can also be calculated for the population.

2.1.3 The Sampling Process

The method used to obtain samples is very important in most experiments.
Any experiment has a population of outcomes associated with it, and usu-
ally our purpose in performing the experiment is to gain insight about one
(or more) properties of the population. In order to draw valid conclusions
about the population when using samples, it is important that representa-
tive samples are used, in which the important characteristics of the popu-

A representative sample is one
whose properties mirror those of
the population. One way to
obtain a representative sample is
to collect a random sampling of
the population.

lation are reflected by the members of the sample. For example, if we are
interested in the height of students attending UR, we would not want to
choose only basketball players in our sampling procedure, since this would
not be a good representation of the characteristics of the student body.
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Figure 2.3: In a random sample objects are chosen randomly (circled points) from
the population. Random sampling ensures a representative sample, where the
probability distribution of the sampled observation is the same as the frequency
distribution for the entire population.

For the same reason, we would not want to choose a sample that contains
either all males or all females.

It is often difficult to ensure that a sample is a good representative of
the populations. One common way to do so is a sampling procedure called
random sampling. A truly random sampling procedure would mean that
each observation in the population (e.g., each student in the university) has
an equal probability of being included in the sample.

So the point of a sample is to accurately reflect the properties of the
population. These properties — such as the population mean and variance
— are completely described by the variable’s probability distribution. A
representative sample is one in which the same distribution function also
describes the probabilities of the values chosen for the sample, as shown in
figure 2.3.

Now examine figure 2.4 carefully. One thousand observations were cho-
sen randomly1 from a population described by a normal distribution func-
tion with µx = 50 and σx = 10. If the sample is representative of the
population, the same probability distribution function should determine
the values of the observations in the sample. On the right side of the fig-A statistician would say we

‘sampled a normal distribution’
(with µx = 50, σx = 10).

ure, the observed frequency distribution of values in the sample (the bar
chart) is compared with a normal distribution function (with µx = 50 and
σx = 10). As you can see, the two match closely, implying that the sample
is indeed representative. Since the same distribution function describes
both population and sample, they share the same characteristics (such as
location and dispersion). This is importance, since we are usually using
characteristics of the sample to draw conclusions about the nature of the
population from which it was obtained.

1Actually, the values were generated according to an algorithm for random number gener-
ation (sometimes called a pseudo-random number generator). Such generators are standard
fare in many computer applications — such as MS Excel — and are important components
of most computer simulations.
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Figure 2.4: One thousand observations were chosen at random from the popu-
lation of a normally-distributed variable (µx = 50, σx = 10). On the right, the
frequency distribution of the sample (horizontal bars) is well described by a nor-
mal distribution (solid line).

2.2 Introduction to Sample Statistics

2.2.1 The Purpose of Sample Statistics

Let’s return to our example of the heights of the students at UR Suppose Sample statistics describe
characteristics of the sample.
They are usually used to
estimate population parameters.

we were interested in comparing the mean height of the students currently
attending UR with the mean height of those attending some other school.
Our first task would be to determine the mean height of the students at
both schools. The “brute force” approach would be to measure the height
of every student at each school, average each separately, and then compare
them. However, this approach is tedious, and is not usually necessary.
Instead, we can measure the heights of a sample of each population, and
compare the averages of these measurements.

Population parameters are values calculated using all the values in the
population. These values are generally not available, so sample statistics
are used instead. A sample statistic is a value calculated from the values
in a sample. There are two primary purposes for sample statistics:

1. Sample statistics summarize the characteristics of the sample — just
as population parameters do for populations.

2. Sample statistics estimate population parameters. Thus, properties of
the population are inferred from properties of the sample.

The field of Statistics is largely concerned with the properties and uses of
sample statistics for data analysis — indeed, that is the origin of its name.
Two major branches in the field of Statistics are Descriptive Statistics and
Inferential Statistics. The first of these deals with ways to summarize the
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results of experiments through informative statistics and visual aids. The
second — and generally more important — branch is concerned with using
statistics to draw conclusions about the population from which the sample
was obtained. It is with this second branch of Statistics that we will be most
concerned.

2.2.2 Sample Mean and Variance

The two most important sample statistics are the sample mean, x, and the
sample variance, s2x. If there are n observations in the sample, then the
sample mean is calculated using the following formula:

x = 1
n

n∑
i=1

xi (2.3)

Sometimes the symbol xn will be used to emphasize that the sample mean
is calculated from n observations.

Likewise, the sample variance is calculated using the observations in
the sample. If the population mean if known, then the sample variance is
calculated as

Equations 2.4a and 2.4b provide
different estimates of σ2x . If µx
is known, eqn. 2.4a gives a
better estimate. Usually µx is
not known, so eqn. 2.4b must be
used to estimate σ2x .

s2x =
1
n

n∑
i=1

(xi − µx)2 (2.4a)

Generally, however, the value of µx is not known, so that we must use x
instead:

s2x =
1

n− 1
n∑
i=1

(xi − x)2 (2.4b)

As before, the sample standard deviation, sx , is the positive root of the
sample variance. If the value of µx is known, then either formula can be
used to calculate sample variance — and they will give different values! Why
are there two different formulas for the sample variance? Notice that when
the true mean µx is replaced by the sample mean, x, then the denominator
in the formula changes from n to n − 1. The value of the denominator
is the number of degrees of freedom, ν, of the sample variance (or the
sample standard deviation calculated from the variance). When s2x (or sx) is
calculated by eqn. 2.4a, when ν = n, while if eqn. 2.4b must be used — the
usual scenario — ν = n−1. When the sample must be used to determine s2x ,
then one degree of freedom is lost in the calculation, and the denominator
must reflect the decrease. [At this point, don’t worry too much about what
a “degree of freedom” is; it is sufficient for now to know that more degrees
of freedom is better].

The main purpose of the sample mean x is to estimate the populationSample statistics provide
estimates of population
parameters:
x �→ µx
sx �→ σx

mean µx , just as the sample variance s2x estimates the population vari-
ance σ 2

x . The equations used to calculate the sample statistics (eqns. 2.3
and 2.4a)and the corresponding population parameters (eqns. 2.1 and 2.2),
look very similar; the main difference is that the population parameters are
calculated using all N observations in the population set, while the sample
statistics are calculated using the n observations in the sample, which is a
subset of the population (i.e., n > N). Despite the similarity of the equa-
tions, there is one critical difference between population parameters and
sample statistics:
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A sample statistic is a random variable while
a population parameter is a fixed value.

Go back and inspect fig. 2.4, which shows 1000 observations drawn
from a population that follows a normal distribution. The true mean and
standard deviation of the population are µx = 50 and σx = 10. How-
ever, the corresponding sample statistics of the 1000 observations are
x = 49.811 and sx = 10.165. Another sample with 1000 different observa-
tions would give different values for x and sx ; the population parameters
would remain the same, obviously, since the same population is being sam-
pled. Since x and sx vary in a manner that is not completely predictable,
they must be random variables, each with its own probability distribution.

We illustrate these concepts in the next example.

Example 2.1

The heights of students currently enrolled at UR and VCU are compared
by choosing ten students (by randomly choosing student ID numbers)
and measuring their heights. The collected data, along with the true
means and standard deviations, are shown in the following table:

school population parameters sample
µx = 68.07 in 73.03, 70.63, 65.32, 69.51, 71.81,

UR σx = 4.11 in 65.91, 72.41, 65.21, 65.78, 67.51
µx = 68.55 in 63.65, 68.68, 75.64, 62.45, 73.63,

VCU σx = 4.88 in 70.44, 63.17, 68.01, 63.22, 65.51

Calculate and compare the means and standard deviations of these two
samples.

Most calculators provide a way to calculate the mean, variance and stan-
dard deviation of a number. Compare your calculator’s answer to the fol-
lowing results, calculated from the definitions of the samplemean and sam-
ple standard deviation.

For the two groups, the sample mean is easily calculated.

xur = 1
10

(73.03+ · · · + 67.51)
= 68.71 in

xvcu = 1
10

(63.65+ · · · + 65.51)
= 67.44 in

Since we know the population mean, µx , we may use eqn. 2.4a to calculate
the sample standard deviation, sx.

sur =
√
1
10

[(73.03− 68.07)2 + · · · + (67.51− 68.07)2]
= 3.03 in

svcu =
√
1
10

[(63.65− 68.55)2 + · · · + (65.51− 68.55)2]
= 4.56 in
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In most cases, the population mean µx will not be known, and eqn. 2.4b
must be used.

sur =
√
1
9
[(73.03− 68.71)2 + · · · + (67.51− 68.71)2]

= 3.13 in

svcu =
√
1
9
[(63.65− 67.44)2 + · · · + (65.51− 67.44)2]

= 4.66 in

Almost all calculators will use eqn. 2.4b to calculate sample standard devi-
ation.

Let’s summarize the results in a table:

µx x σx sx (by eqn. 2.4a) sx (by eqn. 2.4b)
UR 68.07 in 68.71 in 4.11 in 3.03 in 3.13 in
VCU 68.55 in 67.44 in 4.88 in 4.56 in 4.66 in

Notice that in all cases the sample statistics do not equal the true values (i.e.,
the population parameters). However, they appear to be reasonably good
estimates of these values.

Since the sample means are random variables, there will be an element
of chance in the value of the sample mean, just as for any random variable.
If more samples are drawn from the population of UR or VCU students,
then the sample mean will likely not be the same. This seems intuitive:
if we choose two groups of ten students at UR, it is not likely that the
mean height of the two groups will be the same. However, in both cases
the sample mean is still an estimate of the true mean of all the students
enrolled at UR.

Now, in this example, we happen to “know” that the mean height of
the entire population of VCU students is more than mean height of the
UR students. However, the mean height in the sample of UR students is
greater than the mean of the sample of VCU students! Based on the sample
alone, we might be tempted to conclude from this study that UR students
are taller (since xur > xvcu), if we didn’t know already that the opposite is
true (i.e., that µur < µvcu).

Obviously, it would be wrong to conclude that UR students are taller
based on our data. The seeming contradiction is due to the fact that sample
statistics are only estimates of population parameters. There is an inher-
ent uncertainty in this estimate, because the sample statistic is a random
variable. The difference between the value of a sample statistic and the cor-
responding population parameter is called the sampling error. Sampling er-
ror is an unavoidable consequence of the fact that the sample contains only
a subset of the population. Later, we will find out how to protect ourselves
somewhat from jumping to incorrect conclusions due to the presence of
sampling error; this is a very important topic in science.

Aside: Calculation of Sample Variance

In example 2.1, two different equations (see eqn. 2.4) are used to calculate
the sample standard deviation. Which is “correct?” Neither — both are sim-
ply different estimates of the true standard deviation. A better question is,
are both estimates equally “good?” The answer is no; the sample variance
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Figure 2.5: Twenty college students were chosen at random and both their height
and weight were recorded. The two variables are positively correlated.

calculated using the true mean value (eqn. 2.4a), is generally the better es-
timate of the true variance, because it has an extra degree of freedom.

If the true mean is known, either estimate can be used as long as you
use the correct number of degrees of freedom of your statistic. You will
need to know the degrees of freedom in order to use the variance/standard
deviation you calculate from your measurements. If we use eqn. 2.4a for the
estimate, then we are essentially making use of an extra bit of information
(knowledge of the value of µx); this is the extra degree of freedom, and
results in a slightly better estimate.

Even though eqn. 2.4a gives a better estimate of the population variance,
eqn. 2.4b is used much more commonly, since the value of µx is generally
not known.

2.2.3 Covariance and Correlation (Variable Independence)

Up to this point, we have only been concerned with a single random vari- Covariance and correlation
indicate the strength of the
relationship between two
variables

able at a time. However, there are times when we are interested in more
than one property of a single object. In other words, we might observe
the value of two or more random variables in a single experiment. These
variables might or might not be related to one another; the strength of the
relationship is indicated by a population parameter called the covariance
of the two variables.

Let’s imagine that we record the heights and weights of a representative
sample of 20 male students at UR; figure 2.5 shows the data that might
be recorded. From the figure, we see that there is a fairly strong linear
association between the two variables: students with a greater height tend
to weigh more. We would say that there is a linear covariance or linear
correlation between the variables.
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For this experiment, the population would consist of the height and
weight of all students attending UR. If all N values in the population were
known, we could calculate the population covariance, σxy :

σxy = 1
N

N∑
i=1

(xi − µx)(yi − µy) (2.5)

where µx and µy are the population means for the height and weight, re-
spectively.

Normally, of course, a sample is obtained from the population. The
sample covariance sxy of two random variables x and y is defined by one
of the following two expressions:

sxy = 1
n

n∑
i=1

(xi − µx)(yi − µy) (2.6a)

if µx and µy are known, and

sxy = 1
n− 1

n∑
i=1

(xi − x)(yi −y) (2.6b)

if µx and µy are unknown (the usual situation)
Note the similarity between the above expressions and those for the

sample variance (eqn. 2.4). Essentially, the variance is the covariance of a
random variable with itself: in other words, σ 2

x = σxx .
As mentioned earlier, the covariance measures the association between

two random variables x and y . There are two problems associated with the
use of the covariance to describe the relationship between variables:

1. The covariance value is sensitive to changes in units. For example,
the sample covariance of the data in fig. 2.5 is sxy = 128.9 lb2in2.
If we specified the heights of the students in cm and the weight in
kg, then we would obtain a different value for the sample covariance:
sxy = 148.8kg2cm2.

2. There is no obvious relationship between the magnitude of the co-
variance and the strength of the association between the variables.
For example, we mentioned that sxy = 128.9 lb2in2 for the student
data. Is this covariance value “large,” indicating a high degree of lin-
ear association, or not?

A solution to these problems is to use to calculate the correlation coeffi-
cient (sometimes simply called the correlation) between the two variables.
The population parameter ρxy is given by

ρxy = σxy

σx ·σy
(2.7)

where σxy is the population covariance, and σx and σy are the populationThe population correlation
coefficient is estimated by the
sample correlation coefficient:

rxy �→ ρxy

standard deviations of x and y , respectively. The sample correlation co-
efficient, rxy , is calculated using the sample covariance, sxy , and standard
deviation values, sx and sy :

rxy = sxy
sx · sy (2.8)
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The correlation coefficient is not affected by changes in units, and is al-
ways a value between −1 and 1. Values near −1 or 1 indicate strong linear
associations between the two variables; for the data in fig. 2.5, r = 0.8892.
Positive values of covariance or correlation coefficient indicate that the vari-
ables increase or decrease “together”: an increase in x will tend to be ac-
companied by an increase in y . If the correlation coefficient is negative,

−1 < ρxy < +1

then an increase in x tends to be accompanied by a decrease in y . If ei-
ther the covariance or correlation coefficient is zero, then there is no linear
association between the two variables.

Two variables are said to be correlated when a change in one variable is
Independent variables
are not correlated:
ρxy = σxy = 0

generally reflected (either linearly or nonlinearly) by a change in the other.
When there is no such association between variables, they are said to be
independent . For example, while we might expect a relationship between
the variables height and weight, we probably would not anticipate any such
association between height and, say, intelligence. These variables are inde-
pendent of one another: the value of one (the height) does not affect the
value of the other (intelligence). A necessary condition for variables to be
independent is that ρxy = 0.

Aside: Notation Conventions in Statistics

If you have been observant, you might have noticed a trend in the sym- Sample statistics, usually given
as Latin characters, estimate
population parameters, usually
represented by Greek characters:
x �→ µx
sx �→ σx
rxy �→ ρxy

But sometimes a ‘hat’ is used to
represent sample statistics:
µ̂x �→ µx
σ̂x �→ σx
ρ̂xy �→ ρxy

bols chosen for population parameters and sample statistics: population
parameters have mostly been Greek characters (e.g., µx , and ρxy ) while the
corresponding sample statistics have used Latin characters. This is a con-
vention that is commonly followed in statistics: population parameters are
Greek characters such as α, β and γ, while the sample statistics used to
estimate these parameters as the corresponding Latin characters: a is a
sample statistic to estimate α, b estimates β, and g estimates γ. Note that
the symbol for the mean, x, is something of an anomaly from this point of
view.

This convention has one drawback: there are some Greek characters
(such as omicron, o, or kappa, κ) that are difficult to distinguish from their
Latin counterparts; other Greek characters have no counterparts in the En-
glish alphabet (e.g., χ or ω). Partly due to these facts, there is another
convention: sample statistics are indicated by a ‘hat’ above the appropriate
population parameter. Thus, the sample variance might be identified by
either s2x or σ̂ 2

x , and the sample mean may be either x or µ̂x .
Being familiar with these conventions makes it easier to classify the

many symbols we will come across in our study of statistics.

2.3 Properties of Sample Statistics

2.3.1 Introduction

A sample statistic reveals characteristics of the sample, just as a popula-
tion parameter does the same for the entire population. One must always
remember, however, the two most important facts about sample statistics:

• A sample statistic is usually meant to estimate a population parame-
ter.
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• A sample statistic is a random variable.

Since a sample statistic is a random variable, it has an associated prob-
ability distribution, just like any other random variable. The probability
distribution of a sample statistic is sometimes called its sampling distri-
bution. The nature of the sampling distribution is key in determining the
properties of the sample statistic. These properties are important, because
they tell us how well a sample statistic does its job — in other words, how
well the statistic can estimate the desired population parameter.

Let’s imagine (again) that we are interested in the ‘typical’ height of a
student who attends the University of Richmond. Imagine further that we
collect three samples and calculate a sample mean for each.

1. Sample A contains the measured heights of 10 students chosen ran-
domly from the population; the mean of this sample is xA.

2. Sample B, with mean xB , contains the measured heights of 50 male
students all chosen from the same dorm.

3. Sample C, mean xC , contains the measured heights of 50 students
chosen randomly from the population.

In each case, the idea is to use the sample mean to estimate the mean
µx of the entire population of students. Since we collected three samples,
we have three different estimates (xA, xB and xC ) of the same parameter
(µx). So now ask yourself: which of these three estimates is “best?” Most
people would intuitively choose xC as the best estimate of µx ; the question
is, why is that estimate is better than the other two?

Actually, the best estimate of µx
would probably be obtained by
pooling the data from samples A
and C. See section 2.4 on page
46 for more details.

The answer to this question — which sample statistic is best? — can be
answered by considering the characteristics of the sampling distribution
of each statistic. There are generally two key parameters of the sampling
distribution: location and dispersion.

1. The location of the sampling distribution, as described by the mean
(or expected value) of the statistic, reveals how accurately the sample
statistic estimates a population parameter.

2. The dispersion of a sampling distribution is described by the stan-
dard deviation of the distribution, which is often called the standard
error of the statistic. The standard error indicates the uncertainty
associated with the estimate of the population parameter.

Ideally, we would want the mean of the sampling distribution to be equal
to the population parameter we wish to estimate. In our example, it turns
out that samples A and C both give unbiased estimates of the true mean
µx of the entire student body:

E(xA) = E(xC) = µx

However, xB gives a biased estimate of µx :

E(xB) ≠ µx

Sample B’s estimate of µx is biased because the sample is not representa-
tive of the population, since only males from a single dorm were chosen.

So both xA and xC are unbiased estimates of the same parameter µx :
in other words, they are each equally accurate indicators of student height,
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since they are each calculated from representative samples. So why is xC
intuitively preferred to xA? The reason, as we will discuss later in more
detail, is due to the relative values of the standard deviation (i.e., the stan-
dard error) of the two estimates of µx . The standard error of xA is larger
than that of xC :

σ(xA) > σ(xC)

A larger standard error means greater uncertainty in the estimate of the
population parameter. Thus, it is more likely that xC , rather than xA, will
be closer to µx .

xC is the preferred estimate of
µx because it is unbiased, unlike
xB , and has less uncertainty
than xA.

This is not an isolated example. There are often situations more than
one statistic available to estimate a given population parameter. Recall
that both eqn. 2.4a and eqn. 2.4b are available to estimate the population

Equations 2.4a and 2.4b:
s2x = 1

n
∑
(xi − µx)2

s2x = 1
n−1

∑
(xi − x)2variance σ 2

x . Both equations give unbiased estimates of the population
variance: in other words,

E(s2x) = σ 2
x

Producing an unbiased estimate of σ 2
x is the reason that n − 1 (instead of

n) is used in the denominator of eqn. 2.4b.
To summarize, sample statistics are random variables with their own

probability distributions, called sampling distributions. The important char-
acteristics of a sample statistic are bias and standard error. Bias reflects the
location of the sampling distribution, and whether the mean is equal to the
desired population parameter. Standard error indicates the uncertainty as-
sociated with a sample statistic: the larger the standard error, the greater
the uncertainty in the statistic.

Important qualities of sample
statistics as estimators of
population parameters:

1. Bias

2. Standard error

2.3.2 Sampling Distribution of the Mean

The Sample Mean as a Random Variable

All sample statistics are random variables, and the sample mean is cer-
tainly no exception. In fact, we have just noted that the sample mean x
becomes a more certain estimate of the population mean µx as the number
of observations in the sample increases. To understand the properties of
the sampling distribution of xn, imagine the following dice-throwing ex-
periment:

Remember that xn denotes the
mean of n measurements.

• 200 people each have a single die

• Each person tosses the die n times and then reports the mean, xn, of
the values observed.

• All 200 sample means — one from each person — are collected. The
mean and standard deviation of these 200 values are calculated.

This experiment was performed, using a random number generator, for
n = 1, 5, and 20. The results are shown in table 2.1.

Examine the table carefully, for it provides a good illustration of the
typical behavior of the sample mean as a random variable. In all cases,
the sample mean is an unbiased estimate of the population mean: in other
words, E(xn) = µx for all values of n. However, the observed standard
deviation of the 200 sample means decreased markedly as the value of n
increased. In fact, the central limit theorem (see next section) predicts that
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Table 2.1: Results of dice-tossing experiment described in the text. The table
compares the mean and standard deviation of 200 values of the sample mean, xn,
of n observations. In all cases, xn provides an unbiased estimate of µx, but the
standard error of the mean, s(xn), decreases as n increases.

n = 1 toss n = 5 tosses n = 20 tosses
mean, x 3.32 3.42 3.49

std dev, s(xn) 1.76 0.82 0.35

the standard deviation of the sample mean of n observations is given by
the following expression.

σ(xn) = σx√
n

(2.9)

where σ(xn) is the standard deviation of the mean of n observations (i.e.,
the standard error of the mean) and σx is the standard deviation of the
individual observations of the random variable x.

Recall that we intuitively “trust” the mean of a large number of measure-
ments. Now we have observed that this is because the standard deviation
of the sample mean — the uncertainty of our estimate of the population
mean µx — decreases as n gets larger. In other words, the larger the sam-
ple, the more likely that the sample mean is close to the population mean.
Equation 2.9 provides a quantitative measure of just how much better xn
becomes as n increases.

We’re not finished with the samplemean yet. Figure 2.6 shows the distri-
bution of the values of the 200 sample means collected in the dice-tossing
experiment. For a single throw of the die (i.e., n = 1) we would expect that
any of the integers 1–6 would be equally likely, and this is more or less what
was actually observed (see plot on the top of the figure). As n increases,
equation 2.9 predicts that the sample means xn cluster more closely to the
population mean µx = 3.5, and this was indeed observed (see bottom two
figures). However, something interesting is happening: the distribution of
values begins to resemble a normal distribution (solid line in the bottom
figures) even though the probability distribution describing a single throw
of the die definitely does not follow a normal distribution.

This behavior points to a second important aspect of the sample mean
as a random variable. Not only does s(xn) decrease as n increases (as
described in eqn. 2.9) but the probability distribution of x also begins to
resemble a normal probability distribution as n increases, even if the dis-
tribution of the individual observations, x, does not follow a normal distri-
bution. These two aspects are combined in the central limit theorem.

The Central Limit Theorem

The central limit theorem is concerned with the probability distribution
(i.e., the sampling distribution) of the sample mean, xn, of n observations.
Let x be a random variable that follows probability distribution p(x), with
mean µx and standard deviation σx . The sample mean of nmeasurements,
xn, follows a probability distribution p(xn) with mean µ(xn) and standard
deviation σ(xn).

The central limit theorem can be stated as follows:
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Figure 2.6: Results of dice-tossing experiment described on page 41. The bars
show the distribution of 200 sample means of n measurements. As n increases,
the distribution of sample means begins to follow a normal probability distribu-
tion even though the original distribution of the random variable (top figure) is
distinctly non-normal.
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The probability distribution, p(xn), of the sample mean of n
observations of a random variable x will tend toward a normal
distribution with

µ(xn) = µx

σ(xn) = σx√
n

The central limit theorem has three very important aspects:

1. The means of the probability distributions of x and xn are the same
for any value of n. In other words, the sample mean is an unbiased
estimate of the population mean.

2. The standard error of the mean of n observations, σ(x) can be calcu-
lated from the standard deviation, σx, of the individual observations.

3. The probability distribution of the sample mean, p(xn), will tend to
be a normal distribution even if the p(x) is not a normal distribution.

This last aspect of the central limit theorem is one of the reasons that
we usually assume a normal probability distribution for measurements.
Even if the original observation are not exactly normally-distributed, their
means are, if the sample is large enough. The distribution of the mean will
more closely approximate a normal distribution as n increases and as the
probability distribution of the original variable x more closely resembles a
normal distribution. Note that if p(x) is a normal distribution, then p(x)
is also normal, for any value of n.

Figure 2.7 compares the probability distribution of x (a normally dis-
tributed variable) with the probability distributions of the sample mean xn
for various values of n. As the number of observations in the sample mean
increases, the sampling distribution narrows.

Example 2.2

The levels of cadmium, which is about ten times as toxic as lead, in soil
is determined by atomic absorption. In five soil samples, the following
levels were measured:

8.6, 3.6, 6.1, 5.5, 8.4ppb
Report the mean concentration of cadmium in these soil samples, as well
as the standard deviation of the mean.

This is an important example, because when reporting the standard devi-Remember that the standard
deviation of a sample statistic is
called the standard error of the
statistic.

ation of an analyte concentration determined in the laboratory, it is the
standard deviation of the mean that is usually given.

The reported cadmium concentration in the soil would be the mean of
the five measurements, calculated by the usual method.

x = 1
5
(8.6+ · · · + 8.4) = 6.44ppb

The standard deviation is the root of the variance calculated from eqn. 2.4b

sx =
√
1
4
[(8.6− 6.44)2 + · · · + (8.4− 6.44)2] = 2.10ppb
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Figure 2.7: Comparison of probability distributions of individual observations (x,
solid line) and sample means (x, dashed lines). As the number of observations n
in the sample increases, the sample mean x tends to be closer to the population
mean µx.

But we need the standard deviation of the mean of the 5 measurements:

s(x) = sx√
5
= 0.94ppb

Thus, the analyst would estimate the cadmium level in the soil at 6.44ppb.
The standard deviation of this estimate is 0.94ppb.

It is very important to understand why the estimated error of this value
is 0.94ppb, and not 2.10ppb. The latter value represents the spread in the
five individual measurements. The standard error of 0.94ppb, however,
represents our best guess of the spread of themean of five measurements.
In other words, if another five soil samples were collected and the cad-
mium levels were measured again and averaged, and this entire process
were repeated many times, the standard deviation of the mean concentra-
tions would be close to 0.94ppb.

Standard Error and Significant Figures

In example 2.2, the sample mean was 6.44ppb, and the standard deviation
(i.e., the standard error) of the mean was 0.94ppb. The standard error
indicates the magnitude of the uncertainty in the calculated mean.

Before continuing, we will now address the following question: how
many significant figures should be used for a measurement mean and its
standard error? The concept of significant figures is a crude attempt to
indicate the precision of a measurement: the last significant digit of a mea-
surement is the first “uncertain” digit of the number.

The use of standard deviation supersedes the concept of significant fig-
ures as an indicator of measurement precision. The standard deviation is
much superior in this respect. Likewise, the rules governing the effect of
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calculations on the significant figures are actually a crude attempt at error
propagation calculations (covered in section 3.1.4).

Imagine that we calculate a measurement mean of 12.11254cm and a
standard error of 1.22564cm. In this case, the size of the standard error
makes reporting the mean to five decimal places look a little foolish. So,
how many digits to keep? An argument can be made that the standard error
should always have only one digit, and that the mean should be reported to
the same precision. With this guideline, we would state the mean as 12 cm,
with a standard error of 1 cm. The argument for this approach is that the
standard error determines the final significant digit in the sample mean.

My own approach is to keep two digits in the standard error, so that
we would report a mean and error of 12.1 cm and 1.2 cm, respectively. The
reasoning behind this practice is that the standard error and the mean are
often used to construct intervals, in hypothesis testing, in error propaga-
tion calculations, or for other purposes. Providing an extra digit avoids
rounding error in such manipulations.

In the next chapter we discuss a very useful way to report measure-
ments (as confidence intervals), and we will revisit the question of how
many significant figures to retain in reported measurements. At this point
it is sufficient for you to realize that the concept of significant figures is
simply a crude attempt to indicate the precision of measured values. The
use of standard errors and confidence intervals, however, is a much more
refined indication of precision.

2.4 Combining Samples: Data Pooling

2.4.1 Introduction

Experimental measurements may be quite expensive and labor-intensive toData pooling — combining
observations from more than
one sample — yields a pooled
statistic, which is often the best
estimate of a population
parameter.

obtain. However, we generally want to have as many measurements as pos-
sible in order to obtain a reliable estimate of the property we are measur-
ing. For this reason, measurements from a variety of different sources are
sometimes combined to obtain a superior estimate, called a pooled statis-
tic. For example, we may collect a number of lake samples and measure the
lead concentration in each sample; we might then combine these results to
obtain a better estimate of the concentration of lead in the lake. This pro-
cess of combining measurements that have been obtained under different
conditions is known as data pooling.

The process is best illustrated by an example.

Example 2.3

You wish to estimate the mean height of the students attending the Uni-
versity of Richmond. You divide the work between two assistants. The
first chooses eight students randomly and measures their height. The
other assistant is a little more lazy: he only manages to measure the
heights of three students, (again chosen randomly from the population).

Sample 1: 67.97, 67.63, 74.67, 64.58, 63.93, 66.67, 68.95, 68.66 in.
Sample 2: 71.70, 65.01, 63.46 in.

Obtain the best possible estimate of the mean height of the entire popu-
lation of students attending UR.
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sample 1

data pool

sample 2

Figure 2.8: Data pooling. In this process, the observations of two or more samples
are used to calculate a pooled sample statistic.

It is easy enough to calculate the means for the two samples. Let’s also
calculate the standard errors of these sample means.

Sample 1, n = 8: x = 67.88 in, sx = 3.29 in, s(x) = sx√
8 = 1.16 in

Sample 2, n = 3: x = 66.73 in, sx = 4.38 in, s(x) = sx√
3 = 2.53 in

So we have two estimates of the population mean µx : 67.88 in and
66.73 in. If we were forced to choose between these two estimates, then
we would choose the first, since it is the mean of a larger sample and con-
sequently has the smallest standard error. However, it is possible to get an
even better estimate of µx by data pooling.

The problem with using the first sample to estimate µx is that we are
essentially throwing away valuable information — the three measurements
taken by the second assistant. It is better to use the measurements from
both samples; this is data pooling, and in this case it will yield a pooled
mean, xpool as the estimate of the population mean, µx . The concept of
data pooling is illustrated in figure 2.8.

For this example, the easiest way to pool the data is to simply to com-
bine all the observations and then calculate the mean of all 11 measure-
ments.

xpool = 1
11

∑
[(67.97+ · · · + 68.66)+ (71.70+ · · · + 63.46)]

= 67.57 in

The best estimate of the mean height of the population is thus 67.57 in, the
pooled mean. This is a better estimate than either of the sample means
because more observations are used in its calculation (i.e., the standard
error of the pooled mean is less than the standard error of either of the
unpooled estimates).



48 2. Sample Statistics

b1

b2

b3

bpoolβ

Sample statistics and pooled
statistics all estimate the same
population parameter

b1

b2

b3

bpool

sample 1

sample 2

sample 3

w1

w2

w3

Pooled statistics can be calculated by combining
sample statistics in a weighted average

Figure 2.9: Data pooling: calculating a pooled statistic from sample statistics.
Sample statistics are combined in a weighted average (eqn. 2.10) to produce a
pooled statistic. The pooled statistic estimates the same population parameter as
the sample statistics.

2.4.2 Pooled Statistics

A pooled statistic is an estimate of a population parameter that is calcu-
lated using the observations in more than one sample. The philosophy of
a pooled statistic is that it provides the best estimate of the population
parameter because it combines the information from the largest pool of
observations.

Let’s say that we need to obtain an estimate of the population parameter
β. We collect k random samples and calculate a sample statistic b for each
sample; each of these statistics must provide an unbiased estimate of the
same population parameter β. We can calculate a pooled estimate of the
population parameter by calculating a weighted average of the individual
sample statistics:

One way to obtain a pooled
statistic is calculate the weighted
average of multiple sample
statistics.

βpool =
k∑
i=1

wibi (2.10)

where
∑k

i=1wi = 1. The weights wi are determined by the standard error
in the individual sample statistics bi.

Important: combining sample statistics in this manner to calculate a
pooled estimate only makes sense if the sample statistics all estimate
the same population parameter.

If the individual sample statistics bi each provide an unbiased estimate
of the shared population parameter β, then the pooled statistic bpool also
provides an unbiased estimate of β. See figure 2.9.

The population parameters we are most often interested in are the mean
µx and variance σ 2

x . The general expression for calculating a pooled mean
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from k sample means is

xpool =
k∑
i=1

ni

ntot
xi (2.11)

=
∑
nixi∑
ni

where xi is the mean of the ith sample, which contains ni observations,
and ntot is the total number of observations in all k samples.

In example 2.11 we could have calculated the pooled mean by using eqn.
2.11:

xpool = 8 · 67.88+ 3 · 66.73
8+ 3

= 67.57 in

As you can see, we obtain the same result as in example 2.3. This method of
calculating the pooled mean is useful in situations where only the sample
means are available (and not the individual estimates).

The pooled variance can be calculated by using the following equation

s2pool =
k∑
i=1

νi
νtot

s2i (2.12)

=
∑
νis2i∑
νi

where s2i is the variance of the ith sample, which has νi = n − 1 is the
degrees of freedom, and νtot is the degrees of freedom of the pooled sample
variance, calculated by summing the individual νi values:

νtot =
k∑
i=1

νi

For small sample sizes, the standard error of the sample variance is no-
toriously large. Thus, it is beneficial to pool data when possible, as demon-
strated in the following example.

Example 2.4

The following results show the percentage of the total available intersti-
tial water recovered by centrifuging samples taken at different depths in
sandstone:

Depth, m Water recovered, % Mean Variance
7 33.3, 35.7, 31.1 33.37 5.29
8 43.6, 45.2 44.4 1.28
16 73.2, 68.7, 73.6, 70.9 71.6 5.15
23 72.5, 70.4, 65.2 69.37 14.12

Assuming that the variance for this method of water measurement is
constant for all the data, calculate the pooled variance. How many de-
grees of freedom are in this statistic?
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Four samples were obtained, and it is clearly stated that we are to assume
that the variance of the observations are the same for all the samples; this is
an important assumption, because it means that it is appropriate to calcu-
late a pooled variance. For each of the samples, the variance was calculated.
Each of these sample variance estimates the same population variance, σ 2

x .
However, we may use eqn. 2.12 to obtain a better estimate.

Presumably, eqn. 2.4b was used to calculate the sample variances (since
the population mean for each sample is unknown) and so the degrees of
freedom, ν, for each sample variance, s2i , is given by νi = ni − 1. With this
in mind,

The pooled variance is a
weighted average of the
individual sample variances.

s2pool =
2 · 5.29+ 1 · 1.28+ 3 · 5.15+ 2 · 14.12

2+ 1+ 3+ 2
=
(
2
8

)
5.29+

(
1
8

)
1.28+

(
3
8

)
5.15+

(
2
8

)
14.12

= 6.95 (%)2

The pooled variance has eight degrees of freedom (ν = 8). The larger the
degrees of freedom for variance estimates, the smaller the standard error
of the statistic; thus, the pooled variance is superior to any of the individual
sample variance values.

A pooled estimate, spool , of the population standard deviation (σx) can
be obtained by calculating the positive root of the pooled variance.

Example 2.5

Assume the following measurements, all made using the same analytical
method, have the same standard deviation, σ . Provide the best estimate
of the standard deviation of the method. How many degrees of freedom
are in this estimate?

32.5; 36.6; 35.7 24.9; 21.7 98.2; 102.1

Certainly we may calculate the standard deviation of each set of measure-
ments, yielding s1 = 2.15, s2 = 2.26 and s3 = 2.76. These sample statistics
all provide estimates of the shared standard deviation, σ , of the measure-
ments. Of these statistics, s1 gives the best estimate, since it has two de-
grees of freedom (the other estimates only have one).

However, if we use s1 as our estimate, we are essentially wasting four
measurements. Since all the measurements share the same standard devia-
tion, we may pool the data to provide a superior estimate.

spool =
√
2 · s21 + 1 · s22 + 1 · s23

2+ 1+ 1

=
√
2 · 4.64+ 1 · 5.12+ 1 · 7.61

4

= 2.35
There are four degrees of freedom in this estimate of σ , providing the best
estimate of the shared population parameter.

You should learn to spot opportunities for data pooling; in real life, data
does not come with a sign that reads “pool me.” Remember: when we are
pooling data, there is an implicit assumption that the data share the same
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value for the population parameter; indeed, it is this shared population
parameter that we are trying to estimate. In the last two examples, it was
stated that all measurements shared the same variance, so it is appropriate
to pool all the measurements to calculate s2pool using eqn. 2.12. However, in
both cases it would have been inappropriate to combine the measurements
to calculate a pooled mean, since the individual samples did not share a
common population mean, µx .

2.5 Summary and Skills

Many experiments in science produce random variables. The outcomes of Important skills developed in
this chapter:

1. Ability to calculate x and sx
with a calculator.

2. Ability to calculate s(x), and
to use the proper number of
significant figures to report
both x and s(x)

3. Ability to calculated pooled
statistics (especially spool )
and to recognize when it is
appropriate to do so.

these experiments, usually measurements of some kind, are called obser-
vations of the random variable. The collection of all possible observations
is an experiment’s population. Normally only a small fraction of the popu-
lation, the sample, is actually produced by an experiment.

Characteristics of a population, such as location and dispersion, are de-
scribed by population parameters. The goal of most experiments is to draw
conclusions about one or more population parameters. These parameters
— such as the population mean, µx , and population standard deviation, σx
— could be calculated if the values of all the observations in the population
were known. Since that is not normally the case, sample statistics must be
used to estimate population parameters. The two most important sample
statistics are the sample mean, x, and the sample standard deviation, sx .
If several samples produce sample statistics that estimate the same pop-
ulation parameter, these sample statistics can be combined to produce a
pooled statistic that is often the best possible estimate of the population
parameter.

Sample statistics are themselves random variables. Like any other ran-
dom variable, the sample statistics have an associated uncertainty, char-
acterized by the standard error (i.e., the standard deviation) of the statis-
tic. Also like any other random variable, sample statistics each have their
own probability distribution, called the sampling distribution of the statis-
tic. Perhaps the most important is the distribution of the sample mean of n
measurements, xn. The central limit theorem describes the characteristics
of this distribution. The central limit theorem states that the distribution
of xn tends toward a normal distribution with a mean of µx and a standard
deviation of σx√

n .


