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1. Introduction

Assume that Y1, Y2, . . . , Yn is a random sample
from a population with the common distribu-
tion. Suppose one is interested in estimating
a population mean µ from observed samples
Y1 = y1, Y2 = y2, . . . , Yn = yn.

Then one might want to use the sample mean
ȳ = 1

n

∑n
i=1 yi to estimate µ. Given observed

samples, ȳ is just a single number. Then how
one can know the goodness of this estimate ȳ

for µ?

Note that ȳ is calculated from the formula

Ȳ =
1

n

n∑
i=1

Yi,

a function of the observable r.v.’s Y1, Y2, . . . , Yn
and the (constant) sample size n.

Since Ȳ is also a r.v. itself, it has the proba-
bility distribution. If one knows the probability
distribution of Ȳ , one can know the goodness
of Ȳ for µ.
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Assumption
“Y1, Y2, . . . , Yn is a random sample from a pop-
ulation with probability mass function p(y) or
probability density function f(y)”

⇔ the random variable (r.v.)s Y1, Y2, . . . , Yn are
independent with common probability mass func-
tion p(y) or common density function f(y)

⇔ Y1, . . . , Yn
iid∼ p(y) or f(y)

(Def 7.1)
A statistic is a function of the observable ran-
dom variables in a sample and known constants
for a parameter of our interest. A statistic it-
self is a random variable.

(e.g.) Ȳ = 1
n

∑n
i=1 Yi

(Def 7.2)
The sampling distribution of the statistic is the
probability distribution for the statistic (or the
distribution of the statistic for all possible sam-
ples of a given size).

(e.g.) Sampling distribution of Ȳ = 1
n

∑n
i=1 Yi?
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How one can obtain the sampling distribution
of a statistic?

[M1] The sampling distribution of a statistic is the prob-
ability distribution, under repeated sampling of the pop-
ulation, of a given statistic.

(Example 1) The sample Ȳ is to be calculated from a
random sample of size 2 taken from a population con-
sisting of ten values (2,3,4,5,6,7,8,9,10,11). Find the
sampling distribution of Ȳ , based on a random sample
of size 2.

There are 45 possible samples of two items selected
from the ten items(see [Table 1]). Assuming each sam-
ple of size 2 is equally likely, [Table 2] shows the sampling
distribution for Ȳ based on n = 2 observations selected
from the population (2,3,4,5,6,7,8,9,10,11).

(Example 2) Consider a large normal population. As-
sume we repeatedly take samples of a given size from the
population and calculate the sample mean of the data
values for each sample, ȳ. Different samples will lead
to different sample means. The distribution of these
means is the “sampling distribution of Ȳ ” (for the given
sample size).

[M2] One can mathematically derive the sampling dis-

tribution of a statistic if one knows the distribution of

the random variables Y1, . . . , Yn (using Chapter 6)
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[Table 1] for (Example 1)

Sample ȳ Sample ȳ Sample ȳ Sample ȳ
2,3 2.5 2,4 3 2,5 3.5 2,6 4
2,7 4.5 2,8 5 2,9 5.5 2,10 6

2,11 6.5 3,4 3.5 3,5 4 3,6 4.5
3,7 5 3,8 5.5 3,9 6 3,10 6.5

3, 11 7 4,5 4.5 4,6 5 4,7 5.5
4,8 6 4,9 6.5 4,10 7 4,11 7.5
5,6 5.5 5,7 6 5,8 6.5 5,9 7

5,10 7.5 5,11 8 6,7 6.5 6,8 7
6,9 7.5 6,10 8 6,11 8.5 7,8 7.5
7,9 8 7,10 8.5 7,11 9 8,9 8.5

8,10 9 8,11 9.5 9,10 9.5 9,11 10
10,11 10.5

[Table 2] for (Example 1)
ȳ 2.5 3 3.5 4 4.5 5 5.5 6 6.5

p(ȳ) 1
45

1
45

2
45

2
45

3
45

3
45

4
45

4
45

5
45

ȳ 7 7.5 8 8.5 9 9.5 10 10.5
p(ȳ) 4

45
4

45
3

45
3

45
2

45
2

45
1

45
1

45

This sampling distribution provides a way to make sta-

tistical inferences about Ȳ in the example: calculate the

following probability: P (3.5 ≤ Ȳ ≤ 9.5) = 41/45.
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2. Sampling Distributions related to
the normal distribution

In many applied problems it is reasonable to assume

that the observed random variables in a random sample,

Y1, Y2, . . . , Yn, are independent with a common, normal

density function. In this section, we will develop the

sampling distributions of various statistics calculated by

using the observations in a random sample from a nor-

mal population(or independent random samples from

two normal populations).

Inference about µ of a normal population with
known variance σ2

(Theorem 7.1)
Let Y1, Y2, . . . , Yn be a random sample of size
n from a normal distribution with mean µ and
variance σ2. Then

Ȳ =
1

n

n∑
i=1

Yi ∼ N
(
µ, σ2/n

)
.

Z ≡
Ȳ − µȲ
σ2
Ȳ

=
√
n

(
Ȳ − µ
σ

)
∼ N (0,1) .
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(Example 7.2) A bottling machine can be reg-
ulated so that it discharges an average of µ

ounces per bottle. It has been observed that
the amount of fill dispensed by the machine
is normally distributed with σ = 1.0 ounce. A
sample of n = 9 filled bottles is randomly se-
lected from the output of the machine a given
day and the ounces of fill machined for each.
Find the probability that the sample mean will
be within 0.3 ounce of the true mean µ for the
particular setting.

(Example 7.3) In Example 7.2, how many ob-
servations should be included in the sample if
we wish Ȳ to be within 0.3 ounce of µ with (at
least) probability 0.95?
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3. The central limit theorem

By Theorem 5.12, E(Ȳ ) = µ and V (Ȳ ) =
σ2/n if Y1, Y2, . . . , Yn represents a random sam-
ple from any distribution with mean µ and vari-
ance σ2.

If one samples from a normal distribution, Ȳ
has a normal distribution(Theorem 7.1).

[Question]
But what can we say about the sampling distri-
bution of Ȳ if the variables Yi are not normally
distributed?

[Answer]
Under some conditions, Ȳ will have a sam-
pling distribution that is approximately normal
as long as the sample size is large.
In this section we will develop an approxima-
tion for the sampling distribution of Ȳ that can
used regardless of the distribution of the
population from which the sample is taken
: the Central Limit Theorem.
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(Theorem 7.4)
Let Y1, Y2, . . . , Yn be independent and identi-
cally distributed random variables with E(Yi) =
µ <∞ and V (Yi) = σ2 <∞. Define

Un ≡
Ȳ − E(Ȳ )√
V ar(Ȳ )

=
√
n

(
Ȳ − µ
σ

)

where Ȳ = 1
n

∑n
i=1 Yi. Then the distribution

function of Un converges to a standard normal
distribution function as n→∞.

Note that

• P (a ≤ Ȳ − µ ≤ b) = P

(
a

σ/
√
n
≤ Un ≤ b

σ/
√
n

)
≈ P

(
a

σ/
√
n
≤ Z ≤ b

σ/
√
n

)
for large n where

Z ∼ N(0,1).

• The central limit theorem can be applied
to a random sample Y1, Y2, . . . , Yn from any
distributions, so long as E(Yi) = µ and
V (Yi) = σ2 are both finite and the sam-
ple size is large.
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(Example 7.8) Achievement test scores of all
high school seniors in a state have mean 60
and variance 64. A random sample of n =
100 students from one large high school had a
mean score of 58. Is there evidence to suggest
that this high school is inferior?(Calculate the
probability that the sample mean is at most 58
when n = 100)

(Example 7.9) The service time for customers
through a checkout counter in a retail store are
independent random variable with mean 1.5
minutes and variance 1.0. Approximate the
probability that 100 customers can be served
in less than 2 hours of total service time.
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4. The normal approximation to bino-
mial distribution

The central limit theorem also can be used
to approximate probabilities for some discrete
random variables when the exact probabilities
are tedious to calculate. One useful example
involves the binomial distribution for large val-
ues of the number of trials, n.

Suppose that Y has a binomial distribution
with n trials and probability of success on any
one trial denoted by p. How we can obtain
P (Y ≤ b)?

[M1]. P (Y ≤ b) =
∑b
i=0 P (Y = b) where Y ∼

b(n, p). For some values of the sample size n,
tables are available, but direct calculation is
tedious for large values of n for which tables
may be not available.
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[M2]. We can use the central limit theorem for
large values of n : we can think Y , the number
of successes in n trials, as a sum of a sample
consisting of 0s and 1s; that is

Y =
n∑
i=1

Xi

where

Xi =

1 if ith trial results in success,

0 otherwise.

The Xi for i = 1,2, . . . , n are independent Bernoulli
random variables, and Xi has E(Xi) = p and
V (Xi) = p(1 − p) for i = 1,2, . . . , n. Conse-
quently, when n is large, the sample fraction
of successes,

Y

n
=

1

n

n∑
i=1

Xi = X̄

possesses an approximately normal sampling
distribution with mean E(Y/n) = E(Xi) = p

and variance V (Y/n) = V (Xi)/n = p(1− p)/n.
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Thus, by the central limit theorem, we can
think that if Y ∼ b(n, p) and n is large, then
Y/n has an approximately normal sampling dis-
tribution with mean E(Y/n) = p and variance
V (Y/n) = p(1 − p)/n (in other words, Y pos-
sesses an approximately normal sampling dis-
tribution with mean E(Y ) = np and variance
V (Y ) = np(1− p) )

(Example 7.10)Candidate A believes that she
can win a city election if she can earn at least
55% of the votes in precinct I. She also believes
that about 50% of the city’s voters favor her.
If n = 100 voters show up to vote at precinct
I, what is the probability that candidate A will
receive at least 55% of their votes?
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In this approximation,
(1) One tries to approximate a discrete distri-
bution represented by a histogram with a con-
tinuous density function.

(2) Slight adjustment on the boundaries (called
0.5 continuity correction) can lead to substan-
tial improvement in the approximation.

(Example) Suppose Y ∼ B(6,5). Calculate
P (2 ≤ Y ≤ 4)

(Example 7.10 revisited)

14


