
Sampling Distribution Models 
Sampling Distribution of a Proportion 
On October 4, 2004, less than a month before the presidential election, a Gallup Poll 
asked 1016 national adults, aged 18 or older, whom they supported for President; 49% 
said they’d chosen John Kerry. A Rasmussen Poll taken just a few weeks later found 
45.9% of 1000 likely voters supporting Kerry. Was one poll “wrong?”  
 
We want to imagine the results from all the random samples of size 1000 that we did not 
take. What would the histogram of all the samples look like? Where do you expect the 
center of the histogram to be? We can simulate. We want to simulate a bunch of those 
random samples of 1000 that we did not really draw. We choose the same probability (p 
= 0.49). The following histogram of the proportions a saying they would vote for Kerry 
for 2000 independent samples of 1000 voters when the true proportion is p = 0.49. What 
type of shape is the graph? The center is at p and what is the standard deviation? We saw 
with binomial distribution the standard deviation is npq  . Now we want the standard 

deviation of the proportion of successes,�p . The sample proportion �p is the number of 
successes divided by the number of trials, n, so the standard deviation is  
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So for this problem the proportion is p = 0.49 with a standard deviation of  
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Since it is normal, we know that 95% of normally distributed values are within 2 standard 
deviations of the mean, so we should not be surprised if 95% of various polls gave results 
that were near 49% but varied above or below that by no more than 3.16% (1.58 x 2). 
The proportions supporting Kerry found in the two polls above 49% and 45.9% are both 
consistent with a true proportion of 49%. This is what we mean by sampling error. It is 
not really an error at all, but just variability you’d expect to see from one sample to 
another. A better term would be sampling variability.  
In other words, if we draw repeated random samples of the same size, n, from the same 
population and measure the proportion, �p , we get for each sample, then the collection of 
these proportions will pile up around the underlying population proportion, p, in such a 
way that a histogram of the sample proportions can be modeled by a normal model.  
Most models are useful only when specific assumptions are true. Here there are two: 
1.  The sampled value must be independent of each other. 
2.  The sample size, n, must be large enough. 
 
The following are the conditions before using the normal model: 
1.  Randomization Condition: The sample should be a SRS. Or at least the sampling 
method was not biased and the sample should represent the population. 
2.  10% Condition: The sample size, n, must be no larger than 10% of the population. For 
the polls, the population is so large, so the 1000 that were sampled is a small fraction of 
the population.  
3.  Success/Failure Condition: The sample size has to be big enough so that both np and 
nq are at least 10. We need to expect at least 10 successes and at least 10 failures to have 



enough data for sound conclusions. For the polls, a “success” might be voting for Kerry. 
With p = 0.49, we expect 1000 x 0.49 = 490 successes and 1000 x 0.51 = 510 failures.  
 
Think of proportions from random samples as random quantities and then say something 
this specific about their distribution is a fundamental insight. No longer is a proportion 
something we just compute for a set of data. We see it as a random quantity that has a 
distribution. We call that distribution the sampling distribution model for the 
proportion. This allows us to determine the amount of variation we should expect in 
samples. Suppose we spin a coin 100 times in order to decide whether it is fair or not. If 
we get 52 heads, we’re probably not surprised. Are we surprised to get 90 heads? What 
about 64 heads? In this case we need a sampling distribution model. The sampling model 
quantifies the variability, telling us how surprising a sample proportion is. 
The Sampling Distribution Model for Proportions: Provided that the sample values 
are independent and the sample size is large enough, the sampling distribution of �p is 
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Example: Suppose that about 13% of the population is left-handed. A 200-seat school 
auditorium has been built with 15 “lefty seats,” seats that have a built-in desk on the left 
rather than the right arm of the chair. In a class of 90 students, what is the probability that 
there will not be enough seats for the left-handed students? 
Answer: Since 15 out of 90 is16.7%, we need to find the probability of finding more than 
16.7% left-handed students out of a sample of 90 if the proportion of lefties is 13%. 
Check the conditions: 
1. Randomization: 90 students in the class can be thought of as a random sample of 
students. 
2.  10% Condition: 90 is surely less than 10% of the population of all students. 
3.  Success/Failure Condition: np = 90(0.13) = 11.7 > 10 & nq = 90(0.87) = 78.3 > 10. 
 
The population proportion is p = 0.13. Since the conditions are met, we will model the 
sampling distribution of p with a normal model with mean 0.13 and standard deviation of 
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Now find the z-score and look on the table of normal probabilities.  
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14.5% chance that there will not be enough seats for the left-handed students in the class. 
 
 
 
 
 
 
 
 



Sampling Distribution of a Mean 
The winter 1995 issue of Chance magazine gave data on the length of the overtime 
period for all 251 National Hockey League (NHL) playoff games between 1970 and 1993 
that went into overtime. In the hockey playoff, the overtime period ends as soon as one of 
the teams scores a goal. The figure displays a histogram of the data. The graph shows that 
although most overtime periods lasted less than 20 minutes, a few games had long 
overtime periods. If we think of the 251 values as a population, the histogram shows the 
distribution of values in that population. We found the mean of these values to be µ = 
9.841, so that is the balance point for the population histogram. The median value for the 
population is 8.000. For each of the sample sizes n = 5, 10, 20, and 30, we selected 500 
random samples of size n. Then the histograms were constructed for each of the four 
sample sizes. The histograms are shown below. As with the samples from a normal 
population, the averages of the 500 means for the four different sample sizes are all close 
to the population mean µ = 9.841. Comparison of the four x  histograms also show as n 
increases, the histogram’s spread about the center decreases. So,x is less variable for a 
large sample size than it is for a small sample size. The fifth histogram below is a 
histogram based on narrower class intervals for the x values from samples of size 30. 
This figure shows that for n = 30, the histogram has a shape much like a normal curve.  
This is predicted by the Central Limit Theorem. 
The sampling distribution of any mean becomes more nearly normal as the sample size 
grows; this is true regardless of the shape of the population distribution.  
Central Limit Theorem: The mean of a random sample has a sampling distribution 
whose shape can be approximated by a normal model. The larger the sample, the better 
the approximation will be. Do not mistakenly think the CLT says that the data are 
normally distributed as long as the sample is large enough. As samples get larger, we 
expect the distribution of the data to look more like the population from which it is 
drawn. You can collect a sample of CEO salaries for the next 1000 years, but the 
histogram will be skewed to the right. The CLT does not talk about the distribution of the 
data from the sample. It talks about the sample means and sample proportions of many 
different random samples drawn from the same population. We never draw all those 
samples, so the CLT is talking about an imaginary distribution—the sampling distribution 
model.  
 
The Sampling Distribution Model for a Mean: 
When a random sample is drawn from any population with mean and standard deviation, 
its sample mean has a sampling distribution with the same mean but whose stand 
deviation is. No matter what population the random sample comes from, the shape of the 
sampling distribution is approximately normal as long as the sample size is large enough. 
The larger the sample used, the more closely the normal approximates the sampling 
distribution for the mean (Central Limit Theorem n > 30).  
Summary: 
1.  µ µx =  
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when the population is finite if no more than 10% of the population is included in the 
sample. 
3.  When the population distribution is normal, the sampling distribution of x is also 
normal for any sample size n.  



4.  When is sufficiently large, the sampling distribution of x is well approximated by a 
normal curve, even when the population distribution is itself not normal. 
 
If n is large or if the population distribution is normal, then the standardized variable 
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Example: Suppose that mean adult weight is 175 pounds with a standard deviation of 25 
pounds. An elevator in a building has a weight limit of 10 persons or 2000 pounds. What 
is the probability that the 10 people who get on the elevator overload its weight limit? 
 
Check the conditions!! 
Randomization: We will assume that the 10 people getting on the elevator are a random 
sample from the population. 
Independence: It is reasonable to think that the weights of 10 randomly sampled people 
will be independent. 
10% Condition: 10 people are surely less than 10%of the population of possible elevator 
riders. 
Large enough sample: The distribution of population weights is roughly symmetric, so 
the sample of 10 seems large enough. 
 
Since the conditions are satisfied, the Central Limit Theorem says that the sampling 
distribution of x has a normal model with mean 175 and standard deviation 
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random collection of 10 adults will exceed the elevator’s weight limit is only 0.0008. So, 
if they are a random sample, it is quite unlikely that 10 people will exceed the total 
weight limit allowed on the elevator. 
 
Both of the sampling distributions we looked at are normal. We know for proportions, 
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pretend that we know,p or σ , and sometimes we’ll do that. Often we know only the 
observed proportion,�p , or the sample standard deviation, s. We use what we know and 
we estimate. That may not seem like a big deal, but it gets a special name. Whenever we 
estimate the standard deviation of a sampling distribution, we call it a standard error. 
(Not a great name because it is not standard and nobody made an error. But it is shorter than saying, “the estimated standard deviation 
of the sampling distribution of the sample statistic.”) 

For a sample proportion, �p , the standard error is  ( )
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For the sample mean, x , the standard error is  ( )
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