Sampling Distribution Models
Sampling Distribution of a Proportion
On October 4, 2004, less than a month before tbsigential election, a Gallup Poll
asked 1016 national adults, aged 18 or older, wihay supported for President; 49%
said they’d chosen John Kerry. A Rasmussen Pafingikst a few weeks later found
45.9% of 1000 likely voters supporting Kerry. Wae@oll “wrong?”

We want to imagine the results from all the rand@mples of size 1000 that we did not
take. What would the histogram of all the sampbesk llike? Where do you expect the
center of the histogram to be? We can simulatewa to simulate a bunch of those
random samples of 1000 that we did not really di&e.choose the same probabilipy (

= 0.49). The following histogram of the proporticmsaying they would vote for Kerry

for 2000 independent samples of 1000 voters whettrtie proportion ip = 0.49. What
type of shape is the graph? The center satd what is the standard deviation? We saw

with binomial distribution the standard deviatisn/ﬁ . Now we want the standard
deviation of the proportion of succesggsThe sample proportiofis the number of
successes divided by the number of trials, n, sstandard deviation is

.dm:iT%ﬂﬂ:ﬁgﬁmmw=&-M)

So for this problem the proportion is p = 0.49 watetandard deviation of

o(p) = ,/m,/—(o"‘g N053 _ 01580 1.58%.
n\ 1000

Since it is normal, we know that 95% of normallgtdbuted values are within 2 standard
deviations of the mean, so we should not be s@pifs95% of various polls gave results
that were near 49% but varied above or below thatdmore than 3.16% (1.58 x 2).

The proportions supporting Kerry found in the twalg above 49% and 45.9% are both
consistent with a true proportion of 49%. This isalvwe mean bgampling error. It is

not really arerror at all, but juswariability you'd expect to see from one sample to
another. A better term would lsampling variability.

In other words, if we draw repeated random sampi¢ise same size, from the same
population and measure the proportign,we get for each sample, then the collection of

these proportions will pile up around the undedypopulation proportiorp, in such a
way that a histogram of the sample proportionslEmodeled by a normal model.
Most models are useful only when specific assumptare true. Here there are two:
1. The sampled value must be independent of ethehn.o

2. The sample size, must be large enough.

The following are the conditions before using tibenmal model:

1. Randomization Condition: The sample should BR&. Or at least the sampling
method was not biased and the sample should refréasepopulation.

2. 10% Condition: The sample sire must be no larger than 10% of the population. For
the polls, the population is so large, so the 1ib@dwere sampled is a small fraction of
the population.

3. Success/Failure Condition: The sample sizeédas big enough so that batp and

nqg are at least 10. We need to expect at least kfesses and at least 10 failures to have



enough data for sound conclusions. For the polisyecess” might be voting for Kerry.
With p = 0.49, we expect 1000 x 0.49 = 490 succeasd 1000 x 0.51 = 510 failures.

Think of proportions from random samples as randoamntities and then say something
this specific about their distribution is a fundanta insight. No longer is a proportion
something we just compute for a set of data. Wetsesea random quantity that has a
distribution. We call that distribution ttampling distribution model for the

proportion. This allows us to determine the amaintariation we should expect in
samples. Suppose we spin a coin 100 times in toddecide whether it is fair or not. If
we get 52 heads, we’re probably not surprised.weesurprised to get 90 heads? What
about 64 heads? In this case we need a samplitndpdieon model. The sampling model
quantifies the variability, telling us how surpngia sample proportion is.

The Sampling Distribution Model for Proportions. Provided that the sample values
are independent and the sample size is large enthekampling distribution opis

modeled by a normal model with mepfip) = p and standard deviatiar(p) = ,|- >3 |

n

Example Suppose that about 13% of the population isHaftded. A 200-seat school
auditorium has been built with 15 “lefty seats,atsethat have a built-in desk on the left
rather than the right arm of the chair. In a clais80 students, what is the probability that
there will not be enough seats for the left-hanstedents?

Answer: Since 15 out of 90 is16.7%, we need to firelprobability of finding more than
16.7% left-handed students out of a sample of @eifproportion of lefties is 13%.
Check the conditions:

1. Randomization: 90 students in the class cahdgght of as a random sample of
students.

2. 10% Condition: 90 is surely less than 10% efgbpulation of all students.

3. Success/Failure Conditiomp = 90(0.13) = 11.7 20 & ng = 90(0.87) = 78.3 10.

The population proportion is p = 0.13. Since theditbons are met, we will model the
sampling distribution of p with a normal model wittean 0.13 and standard deviation of
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S L ‘/—(X) — 0.035.
a(p) : 0

Now find the z-score and look on the table of ndrpmababilities.

;= p-p _0.167-013
a(p) 0.035
14.5% chance that there will not be enough seathéoleft-handed students in the class.

106, so P(p) > 0.167= P(z > 106) = 0.1446. There is about a



Sampling Distribution of a Mean

The winter 1995 issue @hance magazine gave data on the length of the overtime
period for all 251 National Hockey League (NHL) yuéf games between 1970 and 1993
that went into overtime. In the hockey playoff, theertime period ends as soon as one of
the teams scores a goal. The figure displays adratn of the data. The graph shows that
although most overtime periods lasted less thami2@tes, a few games had long
overtime periods. If we think of the 251 valuesagsopulation, the histogram shows the
distribution of values in that population. We fouih@ mean of these values to be p =
9.841, so that is the balance point for the popratistogram. The median value for the
population is 8.000. For each of the sample size$n10, 20, and 30, we selected 500
random samples of size Then the histograms were constructed for eatheofour
sample sizes. The histograms are shown below. &stihve samples from a normal
population, the averages of the 500 means fordhedifferent sample sizes are all close
to the population mean p = 9.841. Comparison ofdbe X histograms also show as
increases, the histogram'’s spread about the cdeteeases. Sv,s less variable for a
large sample size than it is for a small sample.sihe fifth histogram below is a
histogram based on narrower class intervals forxthialues from samples of size 30.
This figure shows that far = 30, the histogram has a shape much like a nazorak.

This is predicted by th€entral Limit Theorem.

The sampling distribution ainy mean becomes more nearly normal as the sample size
grows;thisistrue regardless of the shape of the population distribution.

Central Limit Theorem: The mean of a random sample has a samplingluisitsn

whose shape can be approximated by a normal mbadellarger the sample, the better
the approximation will be. Do not mistakenly thithle CLT says that the data are
normally distributed as long as the sample is lamgeugh. As samples get larger, we
expect the distribution of the data to look moke fihe population from which it is

drawn. You can collect a sample of CEO salariesifemext 1000 years, but the
histogram will be skewed to the right. The CLT doestalk about the distribution of the
data from the sample. It talks about the samplensiaad sample proportions of many
different random samples drawn from the same papulaWe never draw all those
samples, so the CLT is talking about an imaginasiridution—the sampling distribution
model.

The Sampling Distribution Model for a M ean:

When a random sample is drawn from any populatih mean and standard deviation,
its sample mean has a sampling distribution withdhme mean but whose stand
deviation is. No matter what population the randsample comes from, the shape of the
sampling distribution is approximately normal asdas the sample size is large enough.
The larger the sample used, the more closely th@alapproximates the sampling
distribution for the mean (Central Limit Theorer» 30).

Summary:
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when the population is finite if no more than 1084h@ population is included in the

sample.

3. When the population distribution is normal, saenpling distribution o is also

normal for any sample size

. This rule is exact if the population is infinaed is approximately correct



4. When is sufficiently large, the sampling distiion of X is well approximated by a
normal curve, even when the population distributsitself not normal.

If nis large or if the population distributionn®rmal, then the standardized variable
_X—Hy _
O-Y

X ;,u has (at least approximately) a standard normaiiloligion.
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Example: Suppose that mean adult weight is 175 ¢gewith a standard deviation of 25
pounds. An elevator in a building has a weighttliafi10 persons or 2000 pounds. What
is the probability that the 10 people who get andlevator overload its weight limit?

z

Check the conditions!!

Randomization: We will assume that the 10 people getting oneflegator are a random
sample from the population.

Independence: It is reasonable to think that the weights ofrd@domly sampled people
will be independent.

10% Condition: 10 people are surely less than 10%of the populaif possible elevator
riders.

L arge enough sample: The distribution of population weights is rouglsymmetric, so
the sample of 10 seems large enough.

Since the conditions are satisfied, the CentralitCirheorem says that the sampling
distribution of X has a normal model with mean 175 and standard ti@via

o 25 i ' _
o, =— =——=791. Now find the standardized variable, z.
*Jn V10
2= X(; o 203;;11 75316, so P(%) > 200= P(z > 316) = 0.0008. The chance that a

random collection of 10 adults will exceed the atev's weight limit is only 0.0008. So,
if they are a random sample, it is quite unlikélgtt10 people will exceed the total
weight limit allowed on the elevator.

Both of the sampling distributions we looked at moemal. We know for proportions,

o(p)oro, = 1/% , and for meansg(X)or o, = %. These are great if we know, or

pretend that we knovp or o, and sometimes we’ll do that. Often we know olhlg t
observed proportior, or the sample standard deviatisn\We use what we know and

we estimate. That may not seem like a big dealitlygts a special name. Whenever we
estimate the standard deviation of a samplingildigion, we call it astandard error.

(Not a great name because it is not standard anodyabhade an error. But it is shorter than sayitige ‘estimated standard deviation
of the sampling distribution of the sample stati&}i
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For a sample proportion, p, the standard error i§E(|E))or E, = Ly

n

. s
For the sample mean, X , the standard error i§E(X)or SE, = — .
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