Sampling Distributions

1 A random sample, a statistic

The basic setup of statistical inference involves a target population for which some character-
istics are sought. These may be its center, as measured by its mean or median, or its spread,
as measured by the standard deviation or IQR. These have numeric values. A parameter
is a numeric value summarizing a population. To find out the values of the parameters, a
random sample may be chosen from the population. With a sample in hand, we can compute
sample statistics, or numeric summaries of the sample. For instance, the population mean is
the (unknown) center of the population, the sample mean is simply the average value of the
terms in the sample. These may be completely different. The sample mean typically varies
from sample to sample, the population mean is always the same for a given population.

Notationally different but related symbols are used. For the mean, it is traditional to use
a p (mu) for the population mean and “x bar”, %, for the sample mean. For the standard
deviation, a ¢ (sigma) represents the parameter and an s the statistic. For a proportion, p
is used for the parameter and a hat, as in p, indicates a sample statistic.

Although random, the sample mean can be used to give information about the population
mean. If we know the distribution of the possible values of the sample mean, then we can
infer from that a value of the population mean.

2 simulation

By taking samples and computing the sample statistic many times we can get an under-
standing of the sampling distribution of the statistic. When we do this, we are performing
a simulation. Although, many properties of sampling distributions can be derived mathe-
matically, it is also possible to get much insight about the population by doing a computer
simulation.

2.1 one sample at a time
The basic ingredients of a simulation are
e to take a sample from the population
e to find the value of the statistic from the sample
e to repeat enough times to get an idea of the sampling distribution
Taking a random sample from a finite population may be done using the sample ()

function. For instance, in a popular opinion poll the goal is to find the unknown proportion
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of the population who are “for” some proposition, or question. Suppose the population is
clear about their position and would answer either “yes” or “no” if asked. We can then code
the population using a 1 for those who would answer “yes” and 0 for those who would answer
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“no”. For example, if population of 10,000 is split 60-40 in favor, the population could be
realized on the computer with

> the.pop = rep(c(0, 1), c(4000, 6000))

(The rep() command repeats the values in the first argument as specified by the second
argument. In this case 4,000 0’s and then 6,000 1’s.)
A random sample with replacement (of size 10) can be found as follows

> the.sample = sample(the.pop, 10, replace = TRUE)
> the.sample

[11 0010001001

The sample mean and median would then be

> mean (the.sample)
[1] 0.3
> median(the.sample)

(1] 0

O
Question 1: Define the variable the.pop, as above, and find a sample of size 10. For
your sample, find the mean, median, standard deviation, and IQR.

O
Question 2: From the population specified by the.pop find a sample of size 100. For
your sample, find the mean, median, standard deviation, and IQR.

O . . . .
Question 3: Could you have switched your answers to the two previous questions and
not have been able to tell? Discuss

% Question 4: For many real-world data sets, for example tax returns or cash register
receipts, the first digit is more often a 1, than a 2, which in turn is more often than a 3 etc.
Benford’s law gives a precise distribution for this population. Samples from this distribution
can be formed by assigning probabilities to the possible digits:

>n =10
> sample(1:9, size = n, replace = TRUE, prob = log(1 + 1/(1:9)))

[1] 6452511316

Take a sample of size 100 from this population and find the sample mean. Is it close to
57
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3 Sampling distributions

A single value of a statistic can be used for statistical inference, but only if you have an idea
of the sampling distribution of the statistic. Assuming we don’t know this by some other
means, we can run a simulation to investigate it.

For instance, Figure [1| shows the density of a bimodal population. Thirty five random
samples of size 10 are shown as gray diamonds. For each sample, the sample mean is plotted
as a black triangle at the bottom of the graph. For these sample means a scaled density
estimate is shown. By looking at many samples we can see clearly that the sample mean has
a distribution that is different in shape and scale from the population mean. Is the center
similar?

Many samples and their means

Figure 1: An illustration of many samples taken from the bimodal distribution. Each row
of diamonds is a new sample. The triangles at the bottom are the sample means, and the
smaller density is a density estimate for the sample means shrunk to fit the diagram.

3.1 for loops

The key to simulating a sampling distribution is efficiently repeating the sampling procedure.
A [for )| loop is, perhaps, the most familiar way to repeat something on a computer. For
instance, the following will define a variable to store our results, res, and then do the
sampling m=100 times for a sample of size n=10.

> res = c()
>m =25
>n =10
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for (i in 1:m) {
x = sample(the.pop, n, replace = TRUE)
res[i] = mean(x)

}

plot(density(res))

V + 4+ + Vv

The first three lines defines some terms so that you can tell where they go in the rest of
the command. The second line starts the for () loop. The basic template for a [for () loop
is

for (i in vec) {
run these commands

}

(It can be more general though.) The for () loop runs the commands in the braces as many
times are there are items in the data vector vec. Each time, the value of i changes to the
next value of vec. For the example, vec is 1:m or the integers starting at 1 and ending at
the value of m. For each of these values, a sample is taken, its mean computed and then
assigned to the ith value of res for later usage. In this case, the later usage is a density plot
resulting in Figure

density(x = res)
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Figure 2: Sampling distribution of p for 60-40 population and n = 10

For reference, the for ()| loop could have been written in one line (thereby eliminating
the need for the braces) with

> for (i in 1:m) res[i] = mean(sample(the.pop, n, replace = TRUE))
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& Question 5: For the same finite population stored in the.pop, perform a simulation
with n = 10 and m = 250. Make a density plot.

Then repeat using n = 25. Add a density plot of the new sample to the old one with the
command

> lines(density(res))

Compare the two distributions in the resulting plot. Do they have the same center? The
same spread? The same shape?

3.2 Automating the task

This project comes with a function to help visualize simulations. To install it, enter the
following command.

> source("http://www.math.csi.cuny.edu/st/R/showSamplingDist.R")

This function will illustrate samples for various sizes from a specified, finite population.
Different statistics may be used. []
For example, to see it work issue these commands (first installing a data set on eruptions

at Old Faithful)

> data(faithful)
> the.pop = faithful$eruptions
> showSamplingDist (the.pop)

For various values of n, a random sample is repeatedly taken and the sample mean is found.
A density of the repeated sample means is drawn. To keep track of the different values of n,
different colors are used in the graphic.

O . o

= (Question 6: Describe in words what happens to the graphs as the value of n gets
larger. Focus on the concepts of center, spread, and shape.

O . . .

= (Question 7: The value of n may be specified using the argument the.steps=, for
instance

> showSamplingDist (the.pop, the.steps = c(2, 10, 25, 50, 100))

Make the graphic with the step sizes c(4,16,64,256). When you quadruple the size of
n what happens to the spread?

Question 8: Does the final shape of the sampling distribution depend on the shape of
the population? Let’s investigate for the mean. Do simulations for these two populations:
one population of 20,000 evenly split on a proposal, and another of 20,000 with 19,000 for
and 1,000 against.

nformation about the arguments for showSamplingDist () is available by calling it with no argu-
ments. To save typing, you can rename this function by assigning it to f, say, with the command
f=showSamplingDist.
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Run the simulations and describe how the shape of the sampling distribution for the
largest value of n is similar for the two and how they are different, if they are.

O . . . .
Question 9: You may do the simulation for other statistics than the sample mean.
For instance, the sample median will be found for each sample in the simulation with

> showSamplingDist (the.pop, statistic = "median")

Does the same shape happen for the sample median as it does for the sample mean?

= (Question 10: Perform a simulation using the standard deviation for the statistic.
Again, describe the sampling distribution of the sample standard deviation as n gets larger.

Oh . . :
= (Juestion 11: Based on the above simulations, make a statement about the center,
spread, and shape of the sampling distribution as n gets large.

4 Continuous populations

There are a number of continuous distributions that have built-in functions in R for generat-
ing random samples. Common distributions are the normal distribution, the t-distribution,
the chi-squared distribution, the exponential distribution, and the uniform distribution. To
use these functions you combine the letter r and the family name, which is norm, t, chisq,
exp, and unif for the distributions just named. Each distribution has a number of parame-
ters that may need specification.

For example, to draw 5 samples from the normal distribution with mean 400 and standard
deviation 20 we have

> rnorm(5, mean = 400, sd = 20)
[1] 407.6369 391.9475 396.7773 385.9727 389.9691

(The arguments set the population mean and standard deviation.)
To draw 7 samples from the exponential distribution with rate 10 (the reciprocal of the
mean) we have

> rexp(7, rate = 10)

[1] 0.001321255 0.015970486 0.087305793 0.027520181 0.023886927 0.005108830
[7] 0.420901795

In order to use showSamplingDist() with a continuous population we can take a big
sample, say of size 1,000 from the continuous population and use this as a finite population
with similar properties. For instance

> the.pop = runif (1000, min = 0, max = 10)
> showSamplingDist (the.pop)
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O . . o .
= (Question 12: Look at the sampling distribution of the mean for each of the following
finite populations which illustrate a continuous parent population:

1. rnorm(1000, mean=400, sd=20)
2. rt (1000, df=3)
3. rexp(1000, rate=1/20)

How are the sampling distributions similar? How are they different, if at all?
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