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Sampling Theory:  What is a sampling distribution? 

 

In order to understand the sampling theory, one has first of all to 

know what a sampling distribution is all about.   

 

As we are well aware of, any number of samples can be drawn from a 

population. To be representative of the population, the sampling 

process must be completely random. The data collected in samples 

after controlled experiments are statistically analyzed to infer what 

there should be in the population with certain degree of confidence.  

Hence, we often say we make estimates of population characteristics 

and not calculate them.   

 

By convention, a parameter is a numerical characteristic of a 

population or a process, whilst a statistic is a numerical characteristic 

that is computed from a sample of observations (or variables, 

statistically speaking). In order to distinguish the data of population 

and of samples, parameters often are denoted by Greek letters such as 

µ for the population mean and σ for the standard deviation. And, Latin 

letters are being used to denote sample variables, such as 
__

y  for 

sample mean and s for the sample standard deviation.  Sample 

statistics, in particular estimates of population parameters, also will 

generally be denoted by Latin letters.   

 

The term “distribution” is a tabular, graphical or theoretical description 

of the possible values of a variable using some measure of how 

frequently they occur in a population, a process or a sample. In a 

sample or a population, the frequency (number of occurrence) could 

be measured by counts or percentages, but often when dealing with 

populations, the frequency is measured in terms of a probability 

model specifying the likelihood of occurrence of these values.  

Therefore, we have come across probability distributions like normal 

distribution, uniform distribution, triangular distribution, Poisson 

distribution, and so on.  
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While parameters are fixed constants representing an entire 

population or data values, sample statistics are so-called “random” 

variables. Their numerical values depend on which particular 

observations made from the population are included in the sample.   

 

This leads us to an interesting feature about a statistic which is called 

sampling distribution, i.e. sampling statistic which can take us on a 

number of possible values according to a probability model, 

determined by the probability model for the original population and by 

the sampling procedure.  

 

We normally use histograms to illustrate the distribution of a set of 

data.  They are particularly useful when large numbers of data are to 

be processed.  Basically histograms are constructed by dividing the 

number of observations in each regular interval, and constructing a 

bar chart of the counts. When the data size collected is large, it is 

advantageous to construct relative frequency histogram in terms of 

say, proportion (counts/sample size) or the percentages of relative 

proportion. When the sample data grow to a very large number, we can 

then plot a good approximate smooth curve over these vertical bars.  

 

For a normal distribution model, one of its features is that average 

from simple random samples of size n also follow a normal probability 

model with the same population model but with a standard deviation 

that is reduced by a factor of n  from that of the original population.  

Thus, averages of random samples of size 4, for example, have 

standard deviations that are half that of the original population.  

 

The Central Limit Theorem, which is also known as sampling 

distribution of sample means, says that “if independent observations 

y1, y2, y3, …, yn follow a normal probability distribution with mean µ and 

standard deviation σ, then the distribution of all possible sample 

means, n
yyyy
__

3

__

2

__

1

__

,...,,, of size n from this population is also normal 

with population mean µ but with a standard error (standard deviation) 

of n/σ .”. 
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Over here, the term standard error is used to distinguish the standard 

deviation of a sample statistic from that of an individual observation, 

just as the term sampling distribution is used to distinguish the 

distribution of the statistic from that of the individual observation. 

Indeed, the standard error of a statistic is the standard deviation of its 

sampling distribution.  

 

For example, the standard error of a sample mean of n independent 

observation is given by:   

n
y

/__ σσ =       … Eq [1] 

It follows that this standard error can be small if either the population 

standard deviation σ is small or the sample size n is large. Thus, both 

the standard deviation of the measurements and the sample size 

contribute to the standard error, and so to the precision, of the sample 

mean.  

 

If 
__

y is the overall mean of the sample means, n
yyyy
__

3

__

2

__

1

__

,...,,,  , the 

distribution of sample means of these independent observations from 

a normal distribution can be standardized as below: 

     
σ

µ

σ

µ ny
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/

____

−
=

−
=      … Eq [2] 

and follows a standard normal distribution. 

 

In fact, the equation [2] comes from the familiar normal distribution 

related equation:  

     
n

zy
σ

µ ±=
__

           … Eq [3] 

 

If, on the other hand, we have y as a single response variable following 

a normal distribution with population mean µ and standard deviation 

σ, the variate  

       
σ

µ−
=

y
z        … Eq [4] 
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also follows a standard normal distribution, that is z is normally 

distributed with mean 0 and standard deviation 1.  

 

Figure 1 below shows a histogram containing of 500 data with a fitted 

curve on a normalized or standardized normal distribution, generated 

by the R programming: 

 
When we have a large number of sample size n, the portion of 

equation [3] shown in equation [5] forms the confidence interval or 

level of the sample mean result:  

      
n

z
σ

±       … Eq [5] 

For practical purposes, we are not be able to really analyze such a vast 

number of samples to satisfy the equation [5]. Instead, we can turn to 

the Student’s t-distribution formula (see equation [6]) using the 

sample standard deviation s for smaller number of n which is normally 

less than 30:  

       
n

s
tn 1−±      … Eq [6] 

A question has been asked:  Can we then carry out a sampling plan by 

taking a good number of sample size n for analysis and use either the 

confidence level in equation [5] or [6] as the sampling uncertainty?  
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Many learned organizations however, think otherwise.   

 

This sampling confidence interval or limit cannot be assumed to be  

equivalent to sampling uncertainty. A 95% confidence interval does not 

necessarily mean that for a given interval, there is a 95% probability 

that the true value or the population parameter that we are looking for 

lies within this interval. This is because repeated analysis of a series of 

samples may or may not cover the targeted or true value of the 

population, as no accuracy and trueness are considered. But, an 

estimated measurement uncertainty, by definition, suggests that there 

is a 95% probability that the range of uncertainty covers the true value 

or the targeted population parameter.  

 

Eurachem1 and Nordtest2 have produced technical guides on 

measurement uncertainty estimation from sampling.  One of the 

evaluation methods given is to draw a series of duplicate samples from 

the population, carry out duplicate measurements on each of these 

samples, and use the traditional analysis of variance (ANOVA) to 

estimate both the sampling uncertainty and analysis uncertainty before 

combining them as the overall measurement uncertainty.  By this 

manner, the variance of between-sampling and that of between-

analysis are duly studied with outliers, if any, excluded in the 

statistical analysis.     
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