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Simulation plays important role in many problems of our daily life. There has been increasing 
interest in the use of simulation to teach the concept of sampling distribution. In this paper we try 
to show the sampling distribution of some important statistic we often found in statistical 
methods by taking 10,000 simulations. The simulation is presented using R-programming 
language to help students to understand the concept of sampling distribution. This paper helps 
students to understand the concept of central limit theorem, law of large number and simulation 
of distribution of some important statistic we often encounter in statistical methods. This paper 
is about one sample and two sample inference. The paper shows the convergence of t-distribution 
to standard normal distribution. The sum of the square of deviations of items from population 
mean and sample mean follow chi-square distribution with different degrees of freedom. The ratio 
of two sample variance follow F-distribution.  It is interesting that in linear regression the sampling 
distribution of the estimated parameters are normally distributed. 
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INTRODUCTION 
 

Simulation plays important role in many problems of our 
daily life. By simulation we can do a lot and it is the heart 
of statistics. When some experiments are conducted, its 
validity can be checked by using simulation. Sometimes 
empirical solutions are unattainable in such case we solve 
by using simulations. This paper discusses how computer 
simulations are employed for sampling distribution and to 
make inference. The objective of this paper is to show how 
to make inference for one sample and two sample data. It 
provides researchers and students with brief description of 
commonly used statistical distributions using simulation 
The paper tries to prove the distribution of some important 
statistic by using computer simulation. As computers 
become more readily available to educators, there is wide 
speculation that teaching inference via dynamic, visual 
simulations may make statistical inference more 
accessible to introductory students (Moore, 1997). 
 
In statistical method we teach students about sampling 
distribution of statistic, as a matter of fact sampling 
distribution is necessary for statistical inference. Using 
simulation to teach the sampling distribution of the mean 
is widely recommended but rarely evaluated (Ann E. 
Watkins et al, 2014). Students find the concept of sampling 
distribution difficult to grasp. Students find the concept of 
sampling distribution, specifically, the sampling distribution 

of the mean and central limit theorem, difficult to 
understand (Ann E. Watkins et al, 2014). When we Come 
to regression students find more difficult the concept of 
sampling distribution. This paper presents simulation 
studies focused on the difficulties students experience 
when learning about sampling distribution. It gives good 
understanding for students, researchers and teachers 
about sampling distribution and central limit theorem using 
simulation. 
 
In this paper it is tried to explain the simulation of sampling 
distributions of some important statistic we often encounter 
in statistical methods. One way to use simulations is to 
allow students to experiment with a simulation and to 
discover the important principles on their own (David M. 
Lane 2015).  To compute population parameters, the 
entire population needs to be known. However, in many 
cases it is difficult to find the entire population items. In this 
case inference can be drawn based on sample statistic. 
 
Simulation in this paper is such that drawing samples in an 
experiment over and over again it tends to reveals certain 
pattern. We try to check the validity of central limit theorem 
and law of large numbers. Moreover, in this paper it is 
attempted to see some important sample statistic 
distributions using simulation. 
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This paper has provided a tool for sampling distribution 
and simulation in R programing. It gives a good 
understanding for students in simulation and R syntax 
code. Copy the code and paste in to R will run the program. 
Sometimes simulation is impressive due to its result.  for 
example, the distribution of the sample variance is different 
when the population mean is unknown. And the 
distribution of the sample mean is different when the 
population variance is unknown. It is shown that the 
convergence of student t-distribution, central limit theorem, 
law of large numbers, and sampling distribution in 
regression. 
 
Statistic and Simulation 
 
A statistic is a function of sampling units draw from a 
population. Any function of random variables of sampling 
units is also a random variable used to estimate the 
corresponding population parameter. Let u denote statistic 

then it is a function of items in the sample. That is  𝑢 =
𝑔(𝑥1, 𝑥2, . . . 𝑥𝑛). Sampling distribution of a statistic is the 
probability distribution of the sample statistic based on all 
possible simple random samples from the population. 
Through the use of simulation, we want to demonstrate the 
properties of sampling distributions of some statistic such 
as the mean, variance and regression parameters. 
Simulation in this paper is such that takes n samples and 
compute statistic u and repeat N times.  The simulation 
procedure follows the following steps. 
 
i. Draw n samples from a population of mean 𝜇 and 

variance 𝜎2 
ii. Compute statistic u 
 

For example,�̄�𝑛 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 and 𝑠𝑛

2 =
∑ (𝑥𝑖−�̄�𝑛)2𝑛

𝑖=1

𝑛−1
 

iii. Repeat i and ii N times, where N is the number of times 
a sample is drawn. 

iv. Compute the expected value 
 

For example, 𝐸(�̄�𝑛) =
∑ �̄�𝑛,𝑖

𝑁
𝑖=1

𝑁
 and 

𝑉𝑎𝑟(�̄�𝑛) =
∑ (�̄�𝑛,𝑖−𝐸(�̄�𝑛))2𝑁

𝑖=1

𝑁−1
=

𝜎2

𝑛𝑁
  

 

where 𝜎2is population variance 
 
Let𝑋1, 𝑋2, . . . 𝑋𝑛are independently, identically, and normally 

distributed with mean 𝜇 and finite variance 𝜎2 then 
inference about population mean can be made as follows: 
 
1. If the population variance 𝜎2 is known the 
sampling distribution of the sample mean is obtained 
through normal distribution for any sample size. 𝑍 =
�̄�𝑛−𝜇

𝜎/√𝑛
~𝑁(0,  1) This is called standard normal distribution 

denoted by Z (Paul L.,2015) 

 
Figure1: Depicts the density of N=10,000 simulations from 

normal distribution of mean 𝜇 = 8 and variance 𝜎2 = 36 

and statistic Z is computed. Each time a sample of n=5 and 
n=20 items are drawn. The R code is given below. 
f=function(N,n){    ;m=matrix(0,N);v=m;z=m 
for(i in 1:N){;x=rnorm(n,8,6);m[i]=mean(x);v[i]=var(x) 
z[i]=(m[i]-8)/6*sqrt(n)};return(z)} 
Z=f(10000,20) 
plot(density(Z),xlim=c(-
5,5),ylim=c(0,0.5),xlab="Z",lwd=1,col="blue",lty=1,main="
") 
lines(sort(Z),dnorm(sort(Z)),col="green",lwd=2,lty=2) 
Z=f(10000,5) 
lines(sort(Z),dnorm(sort(Z)),col="red",lwd=3,lty=3) 
legend(1.6,0.4,c("simulationn=20","simulation 
n=5","normaldist"),col=c("blue","green","red"),lwd=c("1","2
","2"),lty=c(1,2,3)) 
 

 
Figure 1: Simulation approaches to standard normal 
distribution 
 
If the population variance is known the sampling 
distribution of Z defined above is standard normal 
distribution for any sample size. The simulation does not 
depend on sample size n. only the variance of the sample 
mean decreases as sample size n increases 

because 𝑉𝑎𝑟(�̄�𝑛) =
𝜎2

𝑛𝑁
 

 
2. The other case is if the population variance 𝜎2 is 

unknown we use student t-distribution. t-distribution arises 
when the estimate of the mean of a normally distributed 
population in a situation where the sample size is small 
and the population variance is unknown. 
It is developed by William Seally Gosset (1908). Its density 
of n degrees of freedom is  

𝑓(𝑡) =
𝛤 (

𝑛 + 1
2

)

𝛤 (
𝑛
2

)
×

1

√𝑛𝜋
× (1 +

𝑡2

𝑛
)

−  
𝑛+1

2

 

Let 𝑋1, 𝑋2, . . . 𝑋𝑛are independently, identically and normally 

distributed with mean 𝜇 and variance 𝜎2 then the sample 

mean inference can be made through 𝑇 =
�̄�−𝜇

𝑆/√𝑛
~𝑡(𝑛 − 1) 

this follows student t distribution (Paul L. 2015). 
 

Figure2: Shows the density of N=10000 simulations from 
normal distribution by taking a random sample of n=5 
items and statistic T is computed. The figure shows the 
statistic T follows student t- distribution and it compares t-
distribution with standard normal distribution. The R code 
for the simulation is given as: 
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f=function(N,n){ 
m=matrix(0,N);v=m;t=m 
for(i in 1:N){ 
x=rnorm(n,8,6);m[i]=mean(x) 
v[i]=var(x);t[i]=(m[i]-8)/sd(x)*sqrt(n)} 
return(t)} 
t=f(10000,5) 
plot(density(t),xlim=c(-
5,5),ylim=c(0,0.5),col="green",lty=1,xlab="t") 
lines(sort(t),dt(sort(t),1),col="blue",lwd=2,lty=2) 
lines(sort(t),dt(sort(t),4),col="black",lwd=2,lty=3) 
lines(sort(t),dnorm(sort(t)),col="red",lwd=2,lty=4) 
legend(1.7,0.4,c("simulation","t-dist(1)", 
"t-dist(4)","normal 
dis"),col=c("green","blue","black","red"),lwd=c("1","2","2","
2"),lty=c(1,2,3,4)) 
 

 
Figure 2: studentized simulation 
 
When the population variance is unknown the statistics T 
is students t-distribution with n-1 degrees of freedom. 
However, as the degree of freedom of students t-
distribution increses it goes to standard normal distribution 
as shown in figure2. Mathematically the following equation 
verifies it. 

lim
𝑛→∞

 
𝛤(

𝑛+1

2
)

𝛤(
𝑛

2
)

×
1

√𝑛𝜋
× (1 +

𝑡2

𝑛
)

−  
𝑛+1

2
=

1

√2𝜋
𝑒−  

1

2
𝑡2

  

this is standard normal distribution 

If the population variance is unknown and the sample size 
is large (most texts take n>30) the sampling distribution of 
T is approximately standard normal distribution. As 
degrees of freedom increase making inference on t-
distribution is the same as making inference using 
standard normal distribution 

Law of large number 

 
Increasing sample size increases precession. That is the 
estimate close to population parameter with decreasing 
variability. This is called law of large number (Casella G. et 

al 2001).  𝑙𝑖𝑚𝑛→∞ 𝑃 (|�̄�𝑛 − 𝜇| = 0) = 1. This theorem is 
shown in Figure3 using simulation. 
Figure 3: Shows sample size versus sample mean. When 
the sample size increases the variability of the sample 
mean decreases. We draw samples from normal 
distribution of mean 8 and standard deviation 6. The 
expectation of the sample mean is equal to the population 
mean. The R code is given as: 

f=function(N){ 
m=matrix(0,N);L=m;U=m 
for(i in 1:N){x=rnorm(i,8,6) 
m[i]=mean(x) 
L[i]=8-1.96*6/sqrt(i) 
U[i]=8+1.96*6/sqrt(i)} 
m=data.frame(m,L,U) 
return(m)} 
m=f(1000) 
plot(m[,1],ty="l",col="blue",xlab="sample 
size",ylab="sample mean") 
lines(m[,2],ty="l",col="black") 
lines(m[,3],ty="l",col="black") 
lines(c(0,1000),c(8,8),lty=1,lwd=2,col="red") 
 

 
Figure 3: The sample mean decreases variability when 
the sample size increases. 
 
For any sample size the expectation of the sample mean 
is equal to the population mean. However incresing 
sample size decrease variablity. For finite population the 
sampling distribution of the sample mean is exactly equal 
to the population mean if all NCn samples are used. When 
the population is large it is not possible to take all sampling 
combinations. In any case increasing sample size the 
mean of the sample mean is more closer to population 
mean. (David M. Lane, 2015) found that the difference 
between the simulated sampling distribution mean and the 
population mean decreased as a function of sample size. 
From simulation we found that the mean of the simulation 
mean is population mean and the standard deviation of the 

simulation mean is 
𝜎2

𝑛𝑁
. As sample size increases the 

sample statistic become less variable and more closely 
estimate the corresponding population parameter 
(Jennifer Noll et al., 2014). 
 
Central limit theorem 
 
Now we will see the distribution of the sample mean when 
the underlying distribution is not normal. In many cases the 
population is not normal. Since the central limit theorem is 
only be stated and not proved evidence of its operation will 
need to be given to the students. 
 
If we have large sample size coming from mean 𝜇 and 

variance 𝜎2then the sampling distribution of quantity 𝑍 =
�̄�−𝜇

𝜎/√𝑛
 is standard normal distribution without considering the  



Sampling Distribution and Simulation in R 

Reshid TM            157 

original distribution of random variable𝑋1, 𝑋2, . . . 𝑋𝑛. A 
shape that is normal if the population is normal, for other 
populations with finite mean and variance, the shape 
becomes more normal as n increases (Monica E. 
Brussolo,2018). 
 

We try to see the central limit theorem by taking simulation 
of different non normal distributions. We mentioning some 
examples such as drawing n samples from binomial, 
exponential and gamma distributions. Let us draw non 
normal sample and standardize it. Let us take symmetrical 
distribution say binomial n’=50 and p=0.5 and another 

highly skewed pattern say exponential 𝜆 = 50 and gamma 
distribution shape parameter 𝛼 = 30 and scale 

parameter𝛽 = 0.5. The samples are drawn from binomial, 
exponential and gamma distributions. 
 

Figure 4 shows the density of N=10000 simulations of a 
sample n=100 for each of binomial, exponential and 
gamma distribution and statistic Z is computed. 
f=function(N){ 
z=matrix(0,N) 
for(i in 1:N){ 
b=rbinom(100,50,0.5) 
z[i]=(mean(b)-25)/(sqrt(12.5/100))} 
return(z)} 
z=f(10000) 
plot(density(z),xlim=c(min(z),max(z)),ylim=c(0,0.5),lty=1, 
lwd=1,col="black",xlab="Z",main="") 
lines(sort(z),dnorm(sort(z)),col="red",lty=2,lwd=3) 
f=function(N){ 
z=matrix(0,N) 
for(i in 1:N){ 
b=rexp(100,50) 
z[i]=(mean(b)-0.02)/(sqrt(0.0004/100))} 
return(z)} 
z=f(10000) 
lines(density(z),xlim=c(min(z),max(z)),ylim=c(0,0.5),lty=2,lwd
=2,col="green",xlab="Z") 
f=function(N,n,a,b){ 
g=matrix(0,N) 
for(i in 1:N){ 
g[i]=(mean(rgamma(n,a,b))-a*1/b)/sqrt(a*1/b^2/n)} 
return(g)} 
g=f(10000,100,30,0.5) 
lines(density(g),col="purple",xlab="Z",lty=3,lwd=3) 
legend(1.4,0.45,c("bin simulation","exp simulation","gamma 
simulation","stnd.norm"),lwd=c(1,2,3,3),lty=c(1,2,3,2),col= 
c("black","green","purple","red")) 
 

 
Figure 4: Standardized binomial, exponential and gamma 
approaches to standard normal distribution. 

For large simulation, in this case N=10000 for all 
distributions Z turn to standard normal distribution 
approximately. If our sample size is sufficiently large the 
sampling distribution goes to standard normal distribution 
without considering the distribution of the original pattern. 
Another important statistic we often found in statistical 
method is the sample variance. The inference made about 
population variance is through chi-square distribution. Chi-
square distribution is one of the most widely used 
probability distribution in inferential statistics, notably in 
hypothesis testing and construction of confidence 
intervals. Chi-square distribution is used in goodness of fit 
test, test of independency, likelihood ratio test, log rank 
test and Cochran Mantle Haenszel test. 
 

Let 𝑧1, 𝑧2, . . . 𝑧𝑛 are independent standard normal 
distributions then the sum of their square is chi square 
distribution with n degrees of freedom. Supose 
𝑋1, 𝑋2, . . . 𝑋𝑛are identically, independently normally 
distributed we need to make inference on population 

variance, 𝜎2. Therefore, we have a quantity  

𝑄 = ∑ (
𝑥𝑖−�̄�

𝜎
)𝑛

𝑖=1

2

=
(𝑛−1)𝑠2

𝜎2  follows chi square distribution 

with n-1 degrees of freedom (R. Lyman Ott et al, 2010). 
 

Figure 5: shows the density of large simulation  N=10,000 
items  from normal distribution, for a random sample n=10, 
the sampling distribution of 𝑄is exactly chi-square distribution. 

The R code is given  below 
f=function(N,n){ 
C=matrix(0,N) 
for(i in 1:N){ 
x=rnorm(n,8,6) 
C[i]=sum((x-mean(x))^2)/36} 
return(C)} 
C=f(10000,10) 
plot(density(C),xlim=c(min(C),max(C)),ylim=c(0,0.12),xlab="
chi-sq",lwd=1,col="blue",lty=1) 
lines(sort(C),dchisq(sort(C),9),col="red",lwd=2,lty=2) 
lines(sort(C),dchisq(sort(C),10),col="purple",lwd=2,lty=2) 
legend(17,0.12,c("simulation","chi-sq 9 df","chi sq 10 
df"),col=c("blue","red","purple"),lwd=c("1","2","2"),lty=c(1,2,2)
) 
 

 
Figure 5: simulation of chi-square distribution 
 

As we can see from Figure 5 when the population mean is 
unknown the sampling distribution of the sample variance 
loses one degrees of freedom( it is n-1). In the above 
equation, Q, if the sample mean is substituted by known 
population mean the probability distribution is chi-square 
distribution with a different degrees of freedom. 
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Let 𝑋1, 𝑋2, . . . 𝑋𝑛are identically, independently normally 
distributed we need to make inference on population 

variance, 𝜎2. Therefore, we have a quantity 𝑄 =

∑ (
𝑥𝑖−𝜇

𝜎
)𝑛

𝑖=1

2

 follows chi square distribution with n degrees 

of freedom (R. Lyman Ott et al, 2010) 

Figure 6: shows the density of N=10,000 simulation for a 
random sample of n=10 selected from normal distribution 

with known mean 𝜇 = 8and the statistic Q is calculated. As 
we can see from the figure Q  is chi-square distribution with 
n degrees of freedom. The R code is 
f=function(N,n){ 
C=matrix(0,N) 
for(i in 1:N){ 
x=rnorm(n,8,6) 
C[i]=sum((x-8)^2)/36} 
return(C)} 
C=f(10000,10) 
plot(density(C),xlim=c(min(C),max(C)),ylim=c(0,0.12),xlab
="chi-sq",lwd=1,col="blue") 
lines(sort(C),dchisq(sort(C),10),col="red",lwd=2,lty=2) 
lines(sort(C),dchisq(sort(C),9),col="purple",lwd=2,lty=2) 
legend(17,0.1,c("simulation","chisq 10 df","chi-sq 9 
df"),col=c("blue","red","purple"),lwd=c("1","2","2"),lty=c(1,
2,2)) 
 

 
Figure 6: simulation of chi-square distribution 
 
As we can see from Figure 6 the sampling distribution of 
Q is chi square distribution with n degrees of freedom. 
 
Two sample inference 
 
Sometimes we need to make inference on two populations 
based on sample. When sample is taken from two groups 
the process of inference about population mean difference 
is very similar to one sample inference. Let 𝑋1, 𝑋2, . . . 𝑋𝑛 iid 

normal with mean 𝜇1and variance 𝜎1
2 and 𝑌1, 𝑌2, . . . 𝑌𝑛 are 

iid normal with mean 𝜇2and variance 𝜎2
2 then we need to 

make inference on 𝜇1 − 𝜇2 
 

The distribution of the statistic 
(�̄�−�̄�)−𝛥

√𝑉𝑎𝑟(�̄�−�̄�)
 where 𝛥 = 𝜇1 − 𝜇2, 

is depends on whether the population variance is known 

or unknown (R. Lyman Ott et al, 2010). If the two 

population has common known variance 𝜎2 then the 

statistic 𝑍 =
(�̄�−�̄�)−𝛥

𝜎√
1

𝑛1
+

1

𝑛2

 is standard normal distribution. 

Figure 7: shows the density of 10,000 simulations from two 
populations of equal mean and equal known variance. We 
compute statistic Z for random sample of 𝑛1 = 10 and 𝑛2 =
12, the simulation probability density is the same as 
standard normal distribution approximately. The following 
is the R code of the simulation. 
f=function(N,n1,n2){ 
z=matrix(0,N) 
for(i in 1:N){ 
z[i]=(mean(rnorm(n1,8,6))-
mean(rnorm(n2,8,6)))/(6*sqrt(1/n1+1/n2))} 
return(z)} 
z=f(10000,20,12) 
plot(density(z),col="red",lwd=1,lty=1,xlab="Z") 
lines(sort(z),dnorm(sort(z)),col="green",lwd=3,lty=3) 
legend(1.7,0.3,c("simulation","normal 
dist"),col=c("red","green"),lwd=c("1","2"),lty=c(1,3)) 

 
Figure 7: shows simulation density approximately 
standard normal distribution 
 

If the two populations have the same variance 𝜎2 and if it 
is known the statistic Z is standard normal distribution. 

Then (1 − 𝛼)100% CI for 𝜇1 − 𝜇2 is  X̄-Ȳ ± 𝑍𝛼/2𝜎√
1

𝑛1
+

1

𝑛2
 

If the population variance 𝜎2 is unknown   we estimate 𝜎2 
from sample called pooled variance (Lyman et al. 2010). 

𝑠𝑝
2 =

(𝑛1−1)𝑠1
2+(𝑛2−1)𝑠2

2

𝑛1+𝑛2−2
      and   we compute statistic𝑇 =

(�̄�−�̄�)−𝛥

𝑠𝑝√
1

𝑛1
+

1

𝑛2

 which follows students t- distribution with 𝑛1 +

𝑛2 − 2 degrees of freedom. 
Figure 8: shows the density of 10,000 simulations from two 

normal populations of the same mean and size 𝑛1 = 10 

and 𝑛2 = 12 with equal but unknown variance. We 
compute statistic T, the simulation probability density is the 
same as students t- distribution with 𝑛1 + 𝑛2 − 2 degrees 
of freedom. The following is the R syntax code that 
produce the simulation. 
f=function(N,n1,n2){ 
t=matrix(0,N) 
for(i in 1:N){ 
t[i]=(mean(rnorm(n1,8,6))-
mean(rnorm(n2,8,6)))/(6*sqrt(1/n1+1/n2))} 
return(z)} 
t=f(10000,10,12) 
plot(density(t),col="red",lwd=1,lty=1,xlab="T") 
lines(sort(t),dt(sort(z),(20)),col="green",lwd=2,lty=2) 
legend(1.2,0.36,c("simulation",expression(t-
dist(20~df))),col=c("red","green"),lwd=c("1","2"),lty=c(1,2)) 
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Figure 8: simulation of t-distribution for two population. 
 

We have shown that when the variance of the two 
populations is equal and unknown, the density of the 
simulation is the same as student t- distribution with 𝑛1 +
𝑛2 − 2 degrees of freedom (R. Lyman Ott et al, 2010). 

Then (1 − 𝛼)100% CI for 𝜇1 − 𝜇2 is             

 X̄-Ȳ ± 𝑡𝛼/2
(𝑛1+𝑛2−2)𝑠𝑝√

1

𝑛1

+
1

𝑛2

 

Note: if 𝑛1 + 𝑛2 − 2 > 30  making inference on both Z and 
t-distribution is the same. 
If the two populations have different and known variance 
inference is made using standard normal distribution. 
Interval estimation for mean difference 𝜇1 − 𝜇2 when 𝜎1

2 ≠
𝜎2

2 We make the assumptions of both populations are 
normally distributed and The samples are independent 

𝜎2
�̄�−�̄� =  

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
 and the statistic 𝑍 =

(�̄�−�̄�)−𝛥

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 is standard 

normal distribution. 
 

Then (1 − 𝛼)100% CI for 𝜇1 − 𝜇2 is                         

ȳ1-ȳ2 ± 𝑍𝛼/2√
𝜎1

2

𝑛1

+
𝜎2

2

𝑛2

 

If the population variances 𝜎1
2  and    𝜎2

2 are unknown and 
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and then the statistic     
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Where 𝑣 =
(𝑛1−1)(𝑛2−1)
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et al. 2010). 
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  note   𝑐1 + 𝑐2 = 1 

 

Figure 9: shows the density of simulation from two 
populations of the same mean and unequal variance. We 
take a random sample of 𝑛1 = 10 and 𝑛2 = 12 for unknown 
variance. The R code is 
f=function(N,n1,n2){ 
t=matrix(0,N) 
for(i in 1:N){ 

x1=rnorm(n1,8,6) 
x2=rnorm(n2,8,4) 
t[i]=(mean(x1)-mean(x2))/(sqrt(var(x1)/n1+var(x2)/n2))} 
return(z)} 
t=f(10000,10,12) 
plot(density(t),col="red",lwd=1,lty=1,xlab="t") 
n1=10;n2=12 
c1=36/(10)/(36/10+16/12) 
c2=1-c1 
df=(n1-1)*(n2-1)/((n1-1)*c1^2+(n2-1)*c2^2) 
lines(sort(t),dt(sort(z),(df)),col="green",lwd=2,lty=2) 
legend(1.2,0.36,c("simulation","t-
dist(17.7df)"),col=c("red","green"),lwd=c("1","2")) 
 

 
Figure 9: the density of simulations compared with t-
distribution 
 

Figure 9 shows the density of 10,000 simulations is 
approximately the same as students t-distribution with v 

degrees of freedom (R. Lyman Ott et al, 2010). 

Then (1 − 𝛼)100% CI for 𝜇1 − 𝜇2 is                      

 X̄-Ȳ ± 𝑡(𝑣)
𝛼/2√

𝑠1
2

𝑛1

+
𝑠2

2

𝑛2

 

Note: if v>30 then t(v)~Z therefore making inference on 
both is the same. 
 

Paired sample 
 

When we have paired samples say 𝑋 and 𝑌  we need to 
make inference on their difference mean. We will first find 
the difference d for each data pair. 𝑑𝑖 = 𝑋𝑖-Y𝑖 

The mean of the differences is     �̄� =
∑ di

𝑛
 and 𝑠𝑑 = √

∑(𝑑𝑖−�̄�)2

𝑛−1
  

The distribution of 𝑇 =
�̄�−𝛥

𝑠𝑑/√𝑛
~𝑡(𝑛−1) 

Figure 10: the density of N=10000 simulation density for 
sample size n=10 from two normal population is identical 
to student’s t-distribution 
The following R syntax code can do the simulation 
f=function(n){ 
t=matrix(0,n) 
for(i in 1:n){ 
x=rnorm(10,12,6) 
y=rnorm(10,12,8) 
d=x-y 
t[i]=mean(d)/sd(d)*sqrt(10)} 
return(t)} 
t=f(10000) 
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plot(density(t),xlim=c(min(t),max(t)),col="blue",lty=1,lwd=
1,xlab="t",ylab="density",main="") 
 
 
 

lines(sort(t),dt(sort(t),9),col="red",lty=2,lwd=3) 
legend(2,0.3,c("simulation","t-
dist(9)"),col=c("blue","red"),lty=c(1,2),lwd=c(1,3)) 
 

 
Figure 10: Simulation for paired sample t-distribution 
 
The simulation density is identical to t -distribution with n-
1 degrees of freedom. 
Then (1 − 𝛼)100% CI for 𝜇1 − 𝜇2 is 

 d̄ ± 𝑡𝛼/2
(𝑛−1)𝑠𝑑/√𝑛 

If we have large sample size the statistics T turns to 
standard normal distribution. 
 
Now we will begin to make inference on variance of two 
population. The process of inference for two population 
variances is through F-distribution, also known as 
Snedecor distribution, named after Ronald Fisher and 
George W. Snedecor. 
 

Let 𝑋1, 𝑋2, . . . 𝑋𝑛1
be a simple random sample from a normal 

distribution of mean 𝜇1and variance 𝜎1
2and let 𝑌1, 𝑌2, . . . 𝑌𝑛2

 

be a simple random sample from a normal distribution of 

mean 𝜇2and variance 𝜎2
2 and suppose that 

𝑋1, 𝑋2, . . . 𝑋𝑛1
and 𝑌1, 𝑌2, . . . 𝑌𝑛2

 are independent samples 

then the sampling distribution  𝐹 =
𝜎2

2𝑆1
2

𝜎1
2𝑆2

2 is F-distribution 

of degrees of freedom 𝑛1 − 1 and 𝑛2 − 1 
 
Figure 11:  presents the simulation density compared with 
F-distribution. We take two populations of the first 

population of 𝜇1 = 8and  variance 𝜎1
2 = 36 and sample 

𝑛1 = 10 and second population 𝜇2 = 12 variance 𝜎2
2 = 49 

and sample 𝑛2 = 14. Then the sampling distribution of F is 
computed. The simulation density of F is identical to 
Fishers distribution with 9 and 13 degrees of freedom. 
 
The following is the R code of the simulation.   
f=function(N,n1,n2){ 
F=matrix(0,N);for(i in 1:N){ 
F[i]=var(rnorm(n1,8,6))*49/36/var(rnorm(n2,12,7))} 
return(F)};F=f(10000,10,14) 
plot(density(F),xlim=c(min(F),max(F)),ylim=c(0,1),xlab="F
",lwd=1,col="blue",main="") 
lines(sort(F),df(sort(F),9,13),col="red",lwd=2,lty=2) 
legend(4,0.4,c("simulation","F-dis(9,13) 
df"),col=c("blue","red"),lwd=c("1","2"),lty=c(1,2)) 

 

 
Figure 11: Simulation of F distribution 
 
From the figure we can see that the ratio of two variances 
is F-distribution with 𝑛1 − 1 and 𝑛2 − 1 
Another important statistic is the correlation. Let X and Y 
are two random variables the correlation between these 

variables is defined as 𝜌 =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)√𝑉𝑎𝑟(𝑌)
 

 
The estimate of 𝜌from the sample is r defined as   

𝑟 =
∑ 𝑥𝑖𝑦𝑖 − 𝑛�̄��̄�𝑛

𝑖=1

√∑ 𝑥𝑖
2 − 𝑛�̄�2𝑛

𝑖=1 √∑ 𝑦𝑖
2 − 𝑛�̄�2𝑛

𝑖=1

 

Let 𝑋1, 𝑋2, . . . 𝑋𝑛1
be a simple random sample from a normal 

distribution of mean 𝜇1and variance 𝜎1
2and let 𝑌1, 𝑌2, . . . 𝑌𝑛2

 

be a simple random sample from a normal distribution of 

mean 𝜇2and variance 𝜎2
2 and suppose that 

𝑋1, 𝑋2, . . . 𝑋𝑛1
and 𝑌1, 𝑌2, . . . 𝑌𝑛2

 are independent samples 

then the sampling distribution  𝑇 =
𝑟√𝑛−2

√1−𝑟2
 is students t-

distribution with n-2 degrees of freedom  (R. Lyman Ott et 

al, 2010). 

 
Figure 12 shows simulation density of T for a random 
sample of 𝑛 = 10 from two normal populations are taken. 
The sampling distribution of T is students t-distribution with 
8 degrees of freedom.  We use the following R code 
f=function(N,n){ 
t=matrix(0,N);for(i in 1:N){;x=rnorm(n,8,6); y=rnorm(n,7,4) 
r=cor(x,y);t[i]=r*sqrt(n-2)/sqrt(1-r^2)} 
return(t)};t=f(10000,10) 
plot(density(t),xlim=c(min(t),max(t)),ylim=c(0,0.6),xlab="T
",lwd=1,col="blue",main="") 
lines(sort(t),dt(sort(t),8),col="red",lwd=2,lty=2) 
legend(1.5,0.4,c("simulation","t-dis(8) 
df"),col=c("blue","red"),lwd=c("1","2"),lty=c(1,2)) 
 

 
Figure 12: simulation of t-distribution 
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From Figure 12 we can see that the sampling distribution 
of T is students t-distribution with n-2 degrees of freedom. 
 
Inference on regression 
 
In this section we will simulate the simple lnear regression 
model in order to verify the probabilistic  behaviour of the 
resulting least square statistic.  Let 𝑋1, 𝑋2, . . . 𝑋𝑛are 

independent(explanatory) variables and 𝑌1, 𝑌2, . . . 𝑌𝑛be 
dependent(response) variables and let 
(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . (𝑋𝑛, 𝑌𝑛) be simple random samples, 

then we want arelation 𝑌 = 𝑋𝛽 + 𝜀 here 𝛽 is unknown 

unless the population is taken. So we want to estimate 𝛽 

from the sample. The estimated �̂� = (𝑋′𝑋)−1𝑋′𝑌 our 
objective here is that we want to show the sampling 

distribution of �̂�~𝑁(𝛽, (𝑋′𝑋)−1𝜎2) when 𝜎2 is known and 

the distribution is different when 𝜎2is unknown(Sanford  

W,2005). The distribution of studentized �̂� is student t-

distribution 
 
For simple regression 𝛽 = (𝛽0, 𝛽1)′  and  

�̂�0~𝑁 (𝛽0, 𝜎2 [
1

𝑛
+

�̄�2

∑(𝑥𝑖−�̄�)2]),  �̂�1~𝑁 (𝛽1,
𝜎2

∑(𝑥𝑖−�̄�)2) 

 
Let us go to the simulation. Assume we have N’=40 
observations the data and the R code are given in 
Appendix.  The least square estimates and their variance 
is given in Table 1. 
 
Table 1: The least square estimates of simple linear 
regression parameters. 

Parameter estimated variance 

𝛽0 2.965 2.30645 

𝛽1 1.054 0.01684804 

But these quantities are unknown for us.  What we have is 
only sample. 
 
Let us take sample size say n=20 and let us see the 

distribution of �̂� . the R code for this simulation is given in 
appendix. We take N=10000 simulations. 

𝐸(�̂�0) =
∑ 𝛽0𝑖

𝑁
= 2.96799 and 

𝑉𝑎𝑟(�̂�0) =
∑(𝛽0𝑖 − 𝐸(�̂�0𝑖))2

𝑁 − 1
= 2.3163576 

𝐸(�̂�1) =
∑ 𝛽1𝑖

𝑁
=  1.054187 and 

𝑉𝑎𝑟(�̂�1) =
∑(𝛽1𝑖 − 𝐸(�̂�1𝑖

))2

𝑁 − 1
= 0.0160689  

These values are approximatelly the same as the 
population parameters we found in the table. Then the 

distribution of the statistic 
�̂�−𝛽

√𝑉𝑎𝑟(�̂�)

 depends on whether the 

variance 𝜎2is known or unknown. 

 
Figure 13: shows the density of 10000 simulation for a 

random sample of n=20 items when 𝜎2.is unknown. 
 

Figure 13 the studentized �̂�is ~𝑡(𝑛 − 2) 

When 𝜎2 is unknown the statistic  

𝑇 =
�̂�−𝛽

√𝑉𝑎𝑟(�̂�)

 is student t-distribution with n-2 degrees of 

freedom. 

If the population variance 𝜎2 is known the statistic  

𝑍 =
�̂�−𝛽

√𝑉𝑎�̂�(�̂�)

 is standard normal distribution. 

 

 
Figure 14: shows the density of 10000 simulation for a 
random sample of n=20 items. 
If the population variance is known then the statistic Z is 
normal distribution. 

Figure 14 the standardized �̂�is ~𝑁(0,   1) 
 
Standardized estimate distribution is approximately 
standard normal distribution. 
 

The variance of the sampling distribution of �̂� converges 
to the population parameters we found in the table.  
 

 
Figure 15: the convergence of the variance of estimated 
coeffcients 
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The structure of the variance of �̂�1 is the same as the 

structure of the variance of �̂�0 
 

This is due to the fact that 𝑉𝑎𝑟(�̂�0) = constant +

constant × 𝑉𝑎𝑟(�̂�1) 
 
 
DISCUSSION 
 
Learning statistics are important for college students 
(Leslie C.). However, many students have difficulties 
understanding statistics concepts such as sampling 
distribution and confidence intervals (Leslie C). Students 
in introductory statistics class often struggle to understand 
the fundamental concepts of sampling distribution, central 
limit theorem, confidence interval and hypothesis testing 
(Leslie C, Moore D.S. 1997). Sampling distribution is the 
gateway to statistical inference(Leslie C). This paper is 
about one sample and two sample inference using 
computer simulation. It is demonstrated that the simulation 
of the sampling distribution of some basic statistics we 
often find in introductory statistics using R programing 
language (Leslie C, Moore D.S. 1997). R is increasingly 
being used as a tool for statistics education (Leslie C). We 
use several typical examples to illustrate how to conduct 
computer simulation using R. Simulation with the help of 
computer can be very effective tool in getting a good grasp 
of sampling distribution(Leslie C). The use of computer 
simulation in the teaching of introductory statistics can help 
undergraduate students understand difficult or abstract 
statistics concepts (Moore D.S. 1997). Simulation is 
essential to gain a good understanding about the concept 
of sampling distribution for students in statistics 
class(Leslie C). The tool of computer simulation is an 
essential part of understanding statistics (Moore D.S. 
1997). 
 
 
CONCLUSION 
 
In this paper, we try to verify the sampling distribution of 
sample statistic that we found in statistical methods. we try 
to see central limit theorem and law of large number by 
mentioning counter example. Normality assumption is the 
basis for all distributions. For large sample size the 
distribution of the sample mean is normally distributed 
without considering the distribution of the original variable. 
The mean of normally distributed pattern is normal with 
decreasing variance as a function of sample size. In a 
situation where small sample size and unknown variance 
we use student t-distribution. However, as the degree of 
freedom increases t-distribution turns to normal 
distribution. The ratio of sample variance to population 
variance multiplied by degrees of freedom is chi-sqare 
distribution with n-1 degrees of freedom. F- distribution 
arises when we are interested in the ratio of two variances. 
In regression if the population variance is unknown the 
estimates follow t-distribution. 
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Appendix: The R code for Regression part 
 
####REGRESSION 
x=c(13.1259289863519, 9.97280258173123, 3.60393659118563, 9.76076080370694, 
13.4466646108776, 18.6615084544756, 7.07075995905325, 10.734301129356, 
11.0934200785123, 6.00321174040437, 5.06187068019062, 8.30410914169624, 
15.6528919194825, 19.340568847023, 17.6761783366092, 15.3968393956311, 
8.13349168887362, 2.47491842834279, 13.7670393986627, 12.9030547216535, 
9.61479113763198, 11.0504995626397, 8.52958074864, 6.73342874459922, 
14.1264660977758, 18.4355074968189, 16.915554122068, 11.0317060784437, 
4.52571967476979, 8.37619267497212, 4.15179930301383, 13.6165081835352, 
15.2277578259818, 5.87729318765923, 8.9937518001534, 6.91483139339834, 
4.37928855139762, 13.8287743031979, 8.48079221323133, 17.2897333060391) 
y=c(18.3284716199676, 11.9983356793452, 3.19005389478917, 17.9857143032932, 
17.5261241893626, 24.2918720781243, 10.5747370562273, 6.15778938503531, 
9.64142880997099, 14.0942357409376, 6.40587956995636, 11.9280460218608, 
14.980217684097, 21.1935663470971, 23.6971419993407, 22.438711803928, 
10.7544176247085, 12.7370736926116, 17.9085304531413, 12.7612311923915, 
14.6016582112767, 14.2730117991017, 11.4572381322187, 11.6969638058108, 
11.0486753962352, 21.0292074375214, 24.6398452952169, 11.1345173872645, 
3.26861680487316, 10.6531134626035, 6.25943117619691, 17.994832240113, 
23.4506507135199, 17.3030244749145, 14.8902683145381, 11.5692487487054, 
6.80099139708624, 21.4242608411097, 4.92690380123521, 24.9058315809615) 
mm=lm(y~x);summary(mm)#####  REGRESSION 
f=function(n){ 
b0=matrix(0,n);b1=b0;v0=b0;v1=b0;vb0=b0;vb1=b0 
for(i in 1:n){ 
s=sample(1:40,20);Y=y[s];X=x[s] 
m=lm(Y~X) 
b0[i]=m$coeff[1];b1[i]=m$coeff[2];  r=residuals(m) 
vb0[i]=(1/20+(mean(X))^2/sum((X-mean(X))^2))*var(r)*19/18 
vb1[i]=1/sum((X-mean(X))^2)*var(r)*19/18 
v0[i]=var(b0[1:i]); v1[i]=var(b1[1:i])} 
b=data.frame(b0,b1,vb0,vb1,v0,v1) 
return(b)};   b=f(10000) 
mean(b[,1]);mean(b[,2]);mean(b[,3]);mean(b[,4]);mean(b[2:10000,5]);mean(b[2:10000,6]) 
t0=(b[,1]- 2.965)/sqrt(b[,5]);t0=t0[2:10000] 
z0=(b[,1]-mean(b[,1]))/sqrt(2.916358) 
t1=(b[,2]-mean(b[,2]))/sqrt(b[,6]);t1=t1[2:10000] 
z1=(b[,2]-mean(b[,2]))/0.1298 
########## sigma is unknown 
plot(density(t0),xlim=c(min(t0),max(t0)),ylim=c(0,0.7),lty=2,lwd=3,col="green",main=expression(density~of~studentized(hat(bet
a[0]))),xlab=expression(studentized(hat(beta[0]))));#sigma is unknown 
lines(sort(t0),dt(sort(t0),8),col="black",lwd=1) 
legend(-2,0.6,c("simulation","t-dis(18)"),col=c("green","black","yellow"),lwd=c(2,1,2),lty=c(2,1,1)) 
plot(density(t1),xlim=c(min(t1),max(t1)),ylim=c(0,0.6),lty=2,lwd=3,col="green",main=expression(density~of~studentized(hat(bet
a[1]))),xlab=expression(studentized(hat(beta[1]))));#sigma is unknown 
lines(sort(t1),dt(sort(t1),18),col="black",lwd=1) 
legend(-2,0.6,c("simulation","t-dis(18)"),col=c("green","black","yellow"),lwd=c(3,1,2),lty=c(2,1,1)) 
########## sigma is known 
plot(density(z0),xlim=c(min(z0),max(z0)),ylim=c(0,0.7),lty=2,lwd=3,col="blue",main=expression(density~of~standardized(hat(b
eta[0]))),xlab=expression(standardized(hat(beta[0]))));#sigma is known 
lines(sort(z0),dnorm(sort(z0)),col="black",lwd=1) 
legend(-2,0.7,c("simulation","stand.normal"),col=c("blue","black"),lwd=c(3,1),lty=c(2,1)) 
plot(density(z1),xlim=c(min(z1),max(z1)),ylim=c(0,0.7),lty=2,lwd=2,col="blue",main=expression(density~of~standardized(hat(b
eta[1]))),xlab=expression(standardized(beta[1]))) #sigma is known 
lines(sort(z1),dnorm(sort(z1)),col="black",lwd=1) 
legend(-2.5,0.7,c("simulation","stand.normal"),col=c("blue","black","green"),lwd=c(2,1,1),lty=c(2,1,1)) 
plot(b[,5],ty="l",col="blue",lty=1,ylim=c(2.5,3.5),ylab=expression(var~of~(beta[0]))) 
lines(c(0,10000),c(2.9106,2.9106),lwd=1,col="red") 
plot(b[,6],ty="l",col="blue",lty=1,ylim=c(0.015,0.025),ylab=expression(var~of~(beta[1]))) 
lines(c(0,10000),c(0.018952,0.018952),lwd=1,col="red") 


