
Sampling Distributions

Motivation: Suppose we want to estimate the mean of some population, the current average
salary µ of 2010 Rose graduates, for example. We get an IID sample by getting a small simple
random sample of 2010 alumni. We compute the sample x̄ and use this as our estimate of
the unkown value of µ. How close will x̄ be to µ? In order to answer this question we need
the sampling distribution of x̄. First, a couple of definitions:

Parameter: a parameter is a numerical constant associated with a population or process.
The mean salary µ of 2010 Rose grads is a parameter.

Statistic: a function of the sample. Let {x1, x2, . . . , xn} denote our simple random sample
of alumni salaries. Then x̄ is a statistic since

x̄ =
1

n

n∑

i=1

xi

= f(x1, x2, . . . , xn)

Sampling Distribution of a Statistic: The sampling distribution of a statistic is just
its distribution. Since a statistic is a function of the sample, and the sample is comprised
of random variables, the statistic is a random variable. Although not practical, if we were
to get multiple random samples of alumni, x̄ would vary from sample to sample, randomly
assuming different values.

Exercise 1: Suppose we toss a coin 10 times. We estimate the probability of heads,
p = P (H) by the sample proportion p̂, the proportion of heads in our 10 tosses. Answer
the following:

1. What is the parameter in this scenario?

2. What is the statistic?

3. Describe, as well as you can, the sampling distribution of the statistic.

Sampling Distribution of x̄

Overview: Now we will derive the sampling distribution of the sample mean for IID samples.
The key to doing this to recognize that the sample mean is a linear combination of the
sample values, i.e.

x̄ = c1X1 + c2X2 + · · · + cnXn

where c1, c2, . . . , cn are constants.

Exercise 2: What are the values of c1, c2, . . . , cn above?



Properties of Linear Combination of RV’s: Let L be a linear combination of the RV’s
X1, X2, . . . , Xn:

L = c1X1 + c2X2 + · · · cnXn

Note that L is an RV. The following results allow us to determine important properties of
L from knowledge of the RV’s X1, X2, . . . , Xn.

1. The mean of L, µL:

µL = c1µX1
+ c2µX2

+ · · · + cnµXn

2. The variance of L, σ2
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3. Normality of L: If X1, X2, . . . , Xn are normal, then L is exactly normal.

Sampling Distribution of x̄: If the sample {X1, X2, . . . , Xn} is IID then

1. µx̄ = µ where µ is the mean of the population or process being sampled.

2. σx̄ = σ/
√

n where σ is the standard deviation of the population or process.

3. x̄ is exactly normal if the population or process is normal.

4. Central Limit Theorem: x̄ is approximately normal if the population or process is
not normal but the sample size n is large. Typically n ≥ 30 is large enough for x̄
to be very nearly normal.

Proof: Properties 1-3 follow from the properties of linear combinations above and the fact
that

x̄ =
1

n
X1 +

1

n
X2 + · · · + 1

n
Xn

i.e., c1 = c2 = · · · = cn = 1/n. The proof of the Central Limit Theorem requires probability
methods beyond the scope of this course.

Exercise 3: Explore the properties of x̄’s sampling distribution by using the following
applet:

http://onlinestatbook.com/stat_sim/sampling_dist/

Exercise 4: What do the above facts about the sampling distribution of x̄ imply about its
usefulness as an estimator of an unknown population or process mean µ?

Exercise 5: Suppose, unknown to use, the salaries of 2010 Rose grads are normally dis-
tributed with a mean salary of µ = $60000 and standard deviation of σ = $5000. Do the
following:

1. If we get a IID sample of size 25, what’s the probability that x̄, our estimate of µ, will
be within $1000 of µ?

2. If we want to increase the above probability, what should we do?


