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Sampling distributions 
 
1. Statistical inference based on sampling distributions 
 
The process of statistical inference  
 
The frequentist approach to statistical inference involves: 

1. formulating a null hypothesis about a characteristic1 of members of a population,  
2. measuring that characteristic in a sample of the population,  
3. selecting a test statistic to test that null hypothesis, and 
4. assessing whether the calculated value of the test statistic is so large that it provides 

sufficient evidence to reject the null hypothesis.  
 
1. The null hypothesis 
 
The practice of science involves asserting and testing hypotheses that are capable of being 
proven false. The null hypothesis typically corresponds to a position of no association 
between measured characteristics or no effect of an intervention. The null hypothesis is paired 
with an alternative hypothesis that asserts a particular relationship exists between measured 
characteristics2 or that the intervention has a particular effect.3  
 
2. The sample 
 
Sampling is used because usually it is infeasible or too costly to measure the characteristic(s) 
The of every member of the population. For statistical inference to be possible, the sample 
must be drawn at random or randomly allocated between the arms of a trial. 
 
3. The test statistic 
 
The test statistic for a null hypothesis is a summary value derived from the sample data. It 
could be the sample total or mean or proportion, or the difference between the sample totals or 
means or proportions of two or more groups. It could be a count or ratio of counts, a 
correlation coefficient, or a regression coefficient. 
 
4. Assessment of the calculated value of the test statistic  
 
In parametric statistics, the calculated value of the test statistic (the signal) is compared to 
all possible values of the test statistic (the interference).4 It is assumed that noise (errors from 
the other sources of sample selection, measurement and confounding) has been eliminated 
during the earlier stages of study design, conduct and analysis. 
 
This requires a quantitative measure of interference, which in turn requires an evaluation of 
all other possible values of the test statistic. 

                                                 
1 Examples are weight, smoking status, colour, diagnosis with melanoma, response to an intervention. 
2 That blood pressure increases with body mass index, for example. 
3 Of reducing cholesterol, for example 
4 In some applications, engineers evaluate whether the power of the signal (the useful information from the 
source device) is large relative to the power of interference (the multitude of other signals from the same 
source). In other applications, they evaluate whether the power of the signal is large relative to the power of 
noise (the useless information from other sources that exists in the absence of the signal). 
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The sampling distribution of a test statistic 
 
Example of a test statistic 
 
Suppose in a study of systolic blood pressure (SBP) that the mean SBP of the one group of 

1 100n   subjects is 1 134x   mm and the mean SBP of a second group of 2 100n   subjects 

is 2 126x  . The purpose is to test whether the populations from which each sample group is 

drawn have identical SBP on average. For the null hypothesis, the difference of sample means 

1 2 134 126 8x x     is an appropriate test statistic.  

 
Is a difference of 1 2 8x x  mm large enough to warrant rejection of the null hypothesis? 

 
Assessment of the interference 
 
The sampling distribution shows the spread of the values of the test statistic when the study 
is repeated under identical conditions (using the same method of sampling with the same 
sample size, the same measurement procedures, and the same analytical techniques).  
 
The only aspect of the study that can vary when it is repeated under identical conditions is the 
sample used. Sampling variation arises because each sample is different in membership (but 
not in size). Hence the test statistic will have a different value each time the study is repeated. 
 
Suppose that the sampling distribution 
of the difference of sample means of 
SBP in samples of size 100n   drawn 
from each population is as shown at 
right. The figure shows the relative 
frequency of each possible difference 
of sample means grouped in ranges of 
1 mm Hg. Around 10% of the 
differences of sample means lie 
between –0.05 and 0.5, around 8% lie 
between –1.5 and –0.5 mm, around 
another 8% lie between 0.5 and 1.5, 
and so on. The distribution is centred 
at 0, the hypothesised value, but it 
need not be. 
 
How is the information of the sampling distribution used? 
 
The sampling distribution can be used for statistical inference and to calculate p-values and 
confidence intervals.  
 
For example, by carefully inspecting the sampling distribution, it is possible to determine that: 

1. 11.0% of sample means are  7.5mm, so 0 110.p   (one-tailed test); 

2. Another 11.1% of sample means are  –7.5mm, so 0 221.p   (two-tailed test).  
 
Similarly we could calculate 95% confidence intervals for the difference of population means. 
Careful inspection reveals them to be approximately 15 mm,  
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The standard error 
 
An alternative would be to summarise the spread of the sampling distribution in terms of its 
standard deviation (SD). The SD of the sampling distribution is referred to as the standard 
error (SE) of sampling. It measures the error in the sample mean that arises because not all 
members of the population are included in the sample. If all members had been included in 
the sample, the sample mean would be identical to the population mean – there is no error.  
 
Obtaining information about the sampling distribution 
 
Information about the sampling distribution can be obtained in at least four ways: 

1. by complete enumeration of all possible values of the test statistic (rarely feasible); 
2. by repeated sampling from the population (rarely feasible); 
3. by re-sampling from the sample data, and 
4. by assuming that it is well-approximated by a known distribution (eg normal, 

binomial, Poisson).  
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2. Complete enumeration of the sampling distribution of the sample mean 
 
The set of all possible values of the sample mean x  in samples of size n  is its sampling 
distribution in samples of size n . Usually it is too vast to be enumerated fully. For example, 
in selecting samples of size 100n   from a population of 10000N  , there are 

2416 5208 10.N    different samples that can be drawn.  
 
There is a different sampling distribution for each possible sample size 1 2 1, , ...n N  . Each 
sampling distribution has its own mean5 and SD. 
 
Example of a sampling distribution determined by complete enumeration 
 
Consider estimating the mean height of persons in a population of 5N   people in samples of 
size 2n   members. The heights (in cms) of the members of the population are: 
 

162, 168, 174, 192, 204 
 
The set of all possible samples of size 2n   are shown below: 

 

 Possible samples of size 2n    

{162,168} 
{162,174} 

{162,192} 
{162,204} 

{168,174} 
{168,192} 

{168,204} 
{174,192} 

{174,204} 
{192,204} 

 
By calculating the mean of each possible sample, we find that the sampling distribution of the 
sample mean in samples of size 2n   is: 
 

 Possible values of the sample mean in samples of size 2n    

Very low Low Little low About right Little high High Very high 

 
 

165 

 
168 
171 

 
 

177 

 
 

180 

183 
183 
186 

 
 

189 

 
 

198 

 
In this case, the sampling distribution has been fully enumerated, and the mean of the 
sampling distribution of sample means is an exact estimate of the population mean  . It is: 

165 168 171 177 180 183 183 186 189 198
180 cm

10
ˆ

        
   

The SD of the sampling distribution of samples of size 2n   is the standard error (SE) of 
sampling with samples of size 2n  : 

         2 2 2 2
165 180 168 180 171 180 198 180

SE 9 6 cm
10

...
.x

       
   

                                                 
5 The mean of the sampling distribution of sample means is the mean of sample means! 
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Another example of a sampling distribution determined by complete enumeration 

 
There is a different sampling distribution for each sample size. Suppose the study involves 
selecting samples of size 3n   from the example population. The possible samples are: 

 

 Possible samples of size 3n    

{162,168,174}
{162,168,192} 

{162,168,204}
{162,174,192} 

{162,174,204}
{162,192,204} 

{168,174,192} 
{168,174,204} 

{168,192,204}
{174,192,204} 

 
The sampling distribution of the sample mean of height in samples of size 3n   has the 
elements: 
 

 Possible values of the sample mean in samples of size 3n    

Very low Too low Little low About right Little high Too high Very high 

  
 
 
168 

 
 
174 
176 

178 
178 
180 
182 

 
 
186 
188 

 
 
 
190 

 

 
Note that this sampling distribution is more symmetric and “bell-shaped” than that for 
samples of size 2n  . Its mean is: 

168 174 176 178 178 180 182 186 188 190
180 cm

10
ˆ

        
   

The SD of the sampling distribution of samples of size 3n   is the standard error (SE) of 
sampling with samples of size 3n  : 

         2 2 2 2
168 180 174 180 176 180 190 180

SE 6 4 cm
10

...
.x

       
   

Note that the standard error is lower in samples of size 3n   than in samples of size 2n  . 
 
These results highlight three properties of the sampling distribution of the sample mean: 
1. the sample mean is an unbiased estimator of the population (on average, the sample mean 

is correct – the mean of the sample means will closely approximate the population mean); 
2. the standard error of sampling becomes smaller as the sample size increases (as more of 

the population is included in the sample). 
3. the sampling distribution of the sample mean becomes more like a “normal” distribution 

as the sample size increases. 
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3. Approximation of the sampling distribution by repeated sampling 
 
Consider the population of second-year medical students at the University of Tasmania in 
year 2000. Each member had the number of common melanocytic naevi (pigmented moles) of 
at least 2mm in diameter on their left arms counted by an experienced study nurse.  
 
The figure at top left depicts the population distribution of the naevi counts. Each column 
corresponds to a naevi count, and the height of the each column represents the number of 
members of the population who had that naevi count in 2000. Repeatedly drawing samples of 
size 5, 20 and 30 persons and calculating the sample mean in each (with each sample mean 
rounded to the nearest integer) gave rise to the three sampling distributions depicted. 
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The population distribution was grossly asymmetric, but the sampling distributions are 
reasonably symmetric and become more symmetric and bell-shaped as the sample size 
increases. 
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4. Approximation of the sampling distribution by re-sampling 
 
Re-sampling 
 
In statistics, re-sampling from a sample of data is used for a variety of purposes: 

1. estimating the standard error of a test statistic using subsets of available data 
(jackknifing) or drawing randomly with replacement from the data (bootstrapping) 
to obtain the entire sampling distribution; 

2. exchanging labels on data points when performing permutation tests (also called exact 
tests); 

3. validating models by using random subsets (cross-validation). 
  
Jackknifing 
 
This involved repeatedly computing the test statistic in a subset of the sample data formed by 
deleting one or more observations at a time. From this set of replicates of the statistic, an 
estimate of the bias (if any) and sampling variance of the test statistic – and thereby its 
standard error, which is the square root of the sampling variance – can be calculated. 
 
For many test statistics (including the sample mean, correlation coefficient and regression 
coefficient), the jackknife estimate of variance is consistent (tends almost surely to the true 
value as the sample size become larger). 
 
The jackknife, like the original bootstrap, is dependent on the independence of the data. 
Extensions of the jackknife to allow for dependence in the data have been proposed. 
 
Bootstrapping  
 
Bootstrapping is a statistical method for estimating the sampling distribution of a test statistic 
by random sampling with replacement from the sample data, most often with the purpose of 
deriving robust estimates of the standard error of a test statistic and confidence intervals for a 
population parameter such as a mean, proportion, correlation coefficient or regression 
coefficient. It may also be used for testing hypotheses in statistical inference. It is often used 
as a robust alternative to inference based on parametric assumptions when those assumptions 
are in doubt, or where the standard error is difficult or impossible to determine. 
 
The naevi example in the previous section was described as repeated sampling from the 
population of second year medical students at UTAS in 2000. If that population was instead 
regarded as a sample of medical students, the repeated sampling procedure would amount to 
re-sampling (bootstrapping) provided that the re-sampling was at random with replacement.. 
 
Comparison of jackknifing and bootstrapping. 
 
The jackknife, originally used for bias estimation, is a specialized method that provides 
estimates of the sampling variance of the test statistic. This can be enough for basic statistical 
inference (hypothesis testing, p-values, confidence intervals).  
 
The bootstrap, on the other hand, first estimates the whole distribution of the test statistic and 
then, if necessary, the sampling variance can be calculated from that. While powerful and 
easy, this can become highly computer intensive. 
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5. Approximation of the sampling distribution by a theoretical distribution 
 
In the previous methods, the sampling distribution was completely enumerated or 
approximated. This enabled tests of inference about a population parameter based on the 
particular value of a test statistic. The information contained in the sampling distribution 
made it possible to calculate the percentage of all possible values of the test statistic that are at 
least as large as the value observed. 
 
An alternative approach is to assume that the sampling distribution is well-approximated by a 
known theoretical distribution. That makes it possible to use mathematical formula 
appropriate to that distribution to estimate the standard error of many test statistics.  
 
Two very useful standard error formulae 
 
Two important standard errors are those for the sample mean and proportion. They are based 
on the assumption that their sampling distributions are normal in large samples, as will 
increasingly be the case in larger and larger samples if sampling is random.6. 
 
The standard error of the sample mean 
 
The standard error of the sample mean x  in a sample of size n  drawn from a population with 

mean   and variance 2
  is: 

 
2

SE x
n n

  
   

 
The standard error of the sample proportion  
 
Consider a characteristic that has nominal (unordered) attributes, such as eye colour, and 
suppose we are interesting in estimating the proportion X  of persons in the population who 

possess one particular attribute (eg blue eyes) of the characteristic (eye colour). 
 
The sample proportion p̂  is: 

number of subjects possessing the attribute

total number of subjects in the sample
p̂   

The sample proportion is closely related to the sample mean. It is the mean ( x ) of a binary 
(0/1) response variable X coded as 1 = blue eyes and 0 = eyes of any other colour. The SD 
formula for this binary variable reduces to  1ˆ ˆxs p p  . 

 
The standard error of the sample proportion p̂  in a sample of size n  drawn from a population 
with population proportion   is: 

   1
ˆSE p

n

 
  

That it has this form can be verified from the formula   XSE x
n


  for a binary variable.7 

                                                 
6 By the Central Limit Theorem, the sampling distribution of any test statistic that can be interpreted as a sum 
of random variables is approximately normal when the sample is large. The sample mean and sample proportion 
can be interpreted a sum of random variables, and hence their sampling distributions are approximately normal 
in large samples. 
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Two other standard error formulae 
 
A general formula for the variance of the difference between two random variables X  and Y  
is: 

       2 ,Var X Y Var X Var Y Cov X Y      

where  ,Cov X Y  denotes the covariance8 between X and Y , and X  and Y  denote the 

means of X  and Y  respectively. If X  and Y are independent variables,   0,Cov X Y   and: 

     Var X Y Var X Var Y    

 
The standard error of a difference between the means of independent groups 

Label the means of a 
characteristic in two independent 
population groups as 1  and 2 , 

and the group variances as 2
1  

and 2
2 . Samples of size 1n  and 

2n  are drawn, and sample means 

1x  and 2x  are calculated. The test statistic for testing the difference  1 2   between the 

population means is the difference  1 2x x  between the sample means. From the formula for 

the difference between independent random variables: 

     2 2
1 2 1 2SE x x SE x SE x          

and using the formula for the standard error of the sample mean: 

 
2 2

1 2
1 2

1 2

SE x x
n n

    
        

   
 

 
The standard error of a difference between proportions of independent groups 

Label the proportions of persons possessing 
an attribute in two independent population 
groups as 1  and 2 . Random samples of 

size 1n  and 2n  are drawn, and the sample 

proportions 1p̂  and 2p̂  are calculated. The 

test statistic for testing the difference 

 1 2   between the population proportions is the difference  1 2ˆ ˆp p  between the sample 

proportions. From the formula for the difference between independent random variables: 

     2 2
1 2 1 2ˆ ˆ ˆ ˆSE p p SE p SE p          

and using the formula for the standard error of a sample proportion: 

     1 1 2 2
1 2

1 2

1 1
ˆ ˆSE p p

n n

      
    

                                                                                                                                                         
7 It is a simplified form of the formula for  SE x  that is possible if each ix  is restricted to the values 0 or 1. 

8                  1 1 2 21
...

,

N
i i N Ni

X X Y Y X X Y Y X X Y Y X X Y Y
Cov X Y

N N
               

 


 

Population 
group 

Population 
mean 

Population 
variance 

Sample 
size 

Sample 
mean 

1 1  2
1  1n  1x  

2 2  2
2  2n  2x  

Population 
group 

Population 
proportion 

Sample 
size 

Sample 
proportion

1 1  1n  1p̂  

2 2  2n  2p̂  
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6. Large-sample properties of the sampling distribution of the sample mean 
 
The Central Limit Theorem 
  
The Central Limit Theorem can be used to justify assumptions about the sampling distribution 
of the sample mean.9 One result is as follows. Suppose nS  is a statistic that can be expressed 

as the sum of n  identically and independently distributed random variables 1 2, , ... nX X X  

each with mean X  and SD X . Then as n  tends towards infinity, the probability 

distribution of n X

X

S

n





 tends towards the normal distribution with zero mean and unit SD. 

 
The Normal distribution 
 
The normal distribution is continuous, bell-shaped and symmetric about its mean. It is 
important because the distribution of many measurements (cholesterol, blood pressure, height, 
weight, the logarithm of incubation periods of communicable diseases) have this shape. 
 

 
The normal distribution is characterised by its mean   and SD  . Published tables are 
available for the standard normal distribution with 0   and 1  . To use the tables to 

calculate probabilities for a random variable X  that is normally distributed with mean X  

and SD X , we calculate the “Z-score” of the particular value (say x ) of X : 

X

X

x
Z





  

The “Z-score” gives the number of SDs by which x  exceeds X , the mean of X . In a 

normal distribution: 
10% of values (5.0% in each tail) are more than 1.64 SDs from the mean 
  5% of values (2.5% in each tail) are more than 1.96 SDs from the mean 
  1% of values (0.5% in each tail) are more than 2.58 SDs from the mean. 

                                                 
9 The Central Limit Theorem (CLT) is not a single theorem. It is a collection of related theorems that establish 
conditions under which a sum of random variables will be distributed in accordance with a specific probability 
distribution (such as the normal).  
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7. The 95% confidence interval 
 
Recalling that 5% of values (2.5% in each tail) in a normal distribution fall more than 1.96 
SDs from the mean, and assuming that the sampling distribution of the sample mean is 
normally distributed10, a 95% confidence interval for the population mean X  is constructed 

as: 

   1 295% CI for X x Z SE x        

where  1 2Z   denotes the  100 1 2  percentile of the unit normal distribution. 

For 95% confidence limits,  1 0 05 2 1 96. .Z    so that the lower limit is  1 96.x SE x     and 

the upper limit is  1 96.x SE x    . We are 95% confident that X  lies within these limits. 

 
Similarly, a 95% confidence interval for the population proportion   is constructed as: 

 95% CI for 1 96ˆ ˆ.p SE p       

 
The choice of 95% for confidence intervals, rather than 90% or 99%, is arbitrary, but 
common.11 
 
Why are we 95% confident 
 
Suppose that we conduct a study in order to make inferences about the mean height of 
Australians. It involves choosing a random sample of Australians from the electoral roll, and 
measuring their height. 
 
We conduct the study and obtain a value of the sample mean, say 171x  cm. Proceeding as 
outlined above, we would calculate 95% confidence limits in make an inference about the 
likely value of the population mean. The 95% confidence interval would be centred at 

171x  cm. 
 
Suppose now that we repeated the study for some reason. We would obtain another value of 
the sample mean, say 168x  cm, and another 95% confidence interval that is now centred at 

168x  cm. It would be a little different from the previous one.   
 
There are two things to notice here. Firstly, the sample mean was different. Secondly, so too 
was the 95% confidence interval. 
 
In fact, by repeating this study thousands of times, we would obtain thousands of different 
95% confidence intervals.  
 
The basis of our 95% confidence in the results from any one study is that 95% of those 
confidence intervals would include the population mean. We interpret that to mean that 
there is a 95% probability that the 95% confidence limit we obtain on any single performance 
of the study will contain the population mean.  

                                                 
10 It will be if the sample is large enough (Central Limit Theorem), or if the variables that are summed to 
calculate the mean are normally distributed. 
11 The eminent British statistician, Sir Ronald Fisher, once remarked over coffee that a 1-in-20 occurrence was a 
rare event. That remark prompted the “p = 0.05 rule” of statistical significance and the choice of 95% confidence 
intervals. There is no scientific basis for it. 


