
Sampling Distributions and

Simulation

OPRE 6301



Basic Concepts. . .

We are often interested in calculating some properties,

i.e., parameters, of a population. For very large popu-

lations, the exact calculation of a parameter is typically

prohibitive.

A more economical/sensible approach is to take a ran-

dom sample from the population of interest, calculate a

statistic related to the parameter of interest, and then

make an inference about the parameter based on the value

of the statistic. This is called statistical inference.

Any statistic is a random variable. The distribution of

a statistic is a sampling distribution. The sampling

distribution helps us understand how close is a statistic

to its corresponding population parameter.

Typical parameters of interest include:

• Mean

• Proportion

• Variance
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Sample Mean. . .

The standard statistic that is used to infer about the

population mean is the sample mean.

Rolling a Die. . .

Suppose a fair die is rolled an infinite number of times.

“Imagine” a population that is consisted of such sequences

of outcomes.

Let X be the outcome of a single roll. Then, the proba-

bility mass function of X is:

X = x P (x)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6
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Rolling the die once can be viewed as one “draw” from

an infinite population with mean µ = E(X) = 3.5 and

variance σ2 = V (X) = 2.92. Let us pretend that we do

not know the population mean and would like to estimate

that from a sample.

Each draw can be viewed as a sample of size 1. Suppose

we simply used the outcome of a single roll, i.e., a real-

ized value of X , as an estimate of µ. How good is this

estimate?

Our estimate could assume any of the values 1, 2, . . . , 6

with probability 1/6. If we used this approach repeat-

edly, then the average deviation of our estimates from µ

would be E(X − µ) = 0. This certainly is desirable, but

note that the variance of the deviation X − µ is σ2 and,

in particular, that this “gap” between our estimate and

µ is never less than 0.5!
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Can we improve this situation? The key concept is

that we need to increase the sample size.

Consider now a sample of size 2. Denote the outcomes of

two independent rolls by X1 and X2. Let the average of

the two outcomes be X̄ (“X bar”), i.e.,

X̄ =
X1 + X2

2
.

How good is X̄ as an estimate of µ?

Terminology: A method for estimating a parameter of

a population is called an estimator. Here, X̄ is an

estimator for µ and, for this reason, it is often denoted as

µ̂ (“µ hat”). Note that µ̂ is a function of the observations

X1 and X2.
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Let us look at the sampling distribution of X̄ . There are

36 possible pairs of (X1, X2): (1, 1), (1, 2), (1, 3), . . . ,

(6, 4), (6, 5), (6, 6). The corresponding values of X̄ for

these pairs are: 1, 1.5, 2, . . . , 5, 5.5, 6. Using the fact

that each pair has probability 1/36, we obtain (there are

only 11 possible values for X̄ , since some values, 3.5 for

example, occur in more than one way):

X̄ = x P (x) Pairs

1.0 1/36 (1,1)

1.5 2/36 (1,2), (2,1)

2.0 3/36 (1,3), (2,2), (3,1)

2.5 4/36 (1,4), (2,3), (3,2), (4,1)

3.0 5/36 (1,5), (2,4), (3,3), (4,2), (5,1)

3.5 6/36 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)

4.0 5/36 (2,6), (3,5), (4,4), (5,3), (6,2)

4.5 4/36 (3,6), (4,5), (5,4), (6,3)

5.0 3/36 (4,6), (5,5), (6,4)

5.5 2/36 (5,6), (6,5)

6.0 1/36 (6,6)

As you can see, the sampling distribution of X̄ is more

complicated. (Imagine doing this for n = 3, 4, . . . .)
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The sampling distribution of X̄ is charted below:

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Notice that this distribution is symmetric around 3.5 and

that it has less variability than that of X , which is also

charted below:

1 2 3 4 5 6
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Formally, we have

E(X̄) = E

(

X1 + X2

2

)

=
1

2
(E(X1) + E(X2))

= µ

and

V (X̄) = V

(

X1 + X2

2

)

=
1

4
(V (X1) + V (X2))

(X1 and X2 are independent)

=
σ2

2
.

Thus, the variance of our estimator has been reduced in

half, while the mean remained “centered.”
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Standard Estimator for Mean. . .

More generally, consider a sample of size n with outcomes

X1, X2, . . . , Xn from a population, where the Xis have

a common arbitrary distribution, and are independent.

(In our previous example, X happens to be discrete uni-

form over the values 1, 2, . . . , 6.)

Define again

X̄ =
1

n

n
∑

i=1

Xi . (1)

Then,

µX̄ ≡ E(X̄) = µ (2)

and

σ2

X̄ ≡ V (X̄) =
1

n
σ2 . (3)

The standard (best, in a certain sense) estimator for the

population mean µ is µX̄ . The standard deviation of X̄ ,

σX̄ , is called the standard error of the estimator.
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Observe that

— The sample mean µX̄ does not depend on the sample

size n.

— The variance V (X̄) does depend on n, and it shrinks

to zero as n → ∞. (Recall the effect of increasing n

in our example on discrimination.)

Moreover, it is most important to realize that the cal-

culations in (2) and (3) do not depend on the assumed

distribution of X , i.e., of the population.

Can we say the same about the sampling distribution

of X̄? We may be asking too much, but it turns out . . .
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Central Limit Theorem. . .

An interesting property of the normal distribution is that

if X1, X2, . . . are normally distributed, i.e., if the pop-

ulation from which successive samples are taken, has a

normal distribution, then X̄ is normally distributed (with

parameters given in (2) and (3) above) for all n.

What if the population (i.e., X) is not normallly dis-

tributed?

Central Limit Theorem: For any infinite popula-

tion with mean µ and variance σ2 , the sampling distribu-

tion of X̄ is well approximated by the normal distribution

with mean µ and variance σ2/n , provided that n is suf-

ficiently large.

This is the most fundamental result in statistics, because

it applies to any infinite population. To facilitate under-

standing, we will look at several simulation examples in

a separate Excel file (C9-01-Central Limit Theorem.xls).
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The definition of “sufficiently large” depends on the ex-

tent of nonnormality of X (e.g., heavily skewed, multi-

modal, . . . ). In general, the larger the sample size, the

more closely the sampling distribution of X̄ will resemble

a normal distribution. For most applications, a sample

size of 30 is considered large enough for using the normal

approximation.

For finite population, the standard error of X̄ should be

corrected to

σX̄ =
σ√
n

√

N − n

N − 1
,

where N is the size of the population. The term
√

N − n

N − 1

is called the finite population correction factor. For

large N , this factor, of course, approaches 1 and hence

can be ignored. The usual rule of thumb is to consider N

large enough if it is at least 20 times larger than n.
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Example 1: Soda in a Bottle

Suppose the amount of soda in each “32-ounce” bottle is

normally distributed with a mean of 32.2 ounces and

a standard deviation of 0.3 ounce.

If a customer buys one bottle, what is the probability

that the bottle will contain more than 32 ounces of

soda? Answer:

This can be viewed as a question on the distribution

of the population itself, i.e., of X (or of a sample of

size one). We wish to find P (X > 32), where X is

normally distributed with µ = 32.2 and σ = 0.3:

P (X > 32) = P

(

X − µ

σ
>

32 − 32.2

0.3

)

= P (Z > -0.67 )

= 1 − P (Z ≤ −0.67)

= 0.7468 ,

where the last equality comes from the Excel function

NORMSDIST().

Hence, there is about 75% chance for a single bottle

to contain more than 32 ounces of soda.
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Suppose now that a customer buys a box of four bottles,

what is the probability for the mean amount of soda

in these four bottles to be greater than 32 ounces?

Answer:

We are now interested in X̄ for a sample of size 4.

Since X is normally distributed, X̄ also is. We also

have µX̄ = µ = 32.2 and σX̄ = σ/
√

n = 0.3/
√

4 =

0.15. It follows that

P (X̄ > 32) = P

(

X̄ − µX̄

σX̄

>
32 − 32.2

0.15

)

= P (Z > -1.33 )

= 1 − P (Z ≤ −1.33)

= 0.9082 .

Thus, there is about 91% chance for the mean amount

of soda in four bottles to exceed 32 ounces.

The answer here, 91%, is greater than that in a sample

of size one. Is this expected? Note that the standard

deviation of the sample mean (σX̄) is smaller than

the standard deviation of the population (σ), as high-

lighted in yellow above. Pictorially, . . .
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Reducing Variability:

mean=32.2

Sample of Size One:

Sample of Size Four:
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Example 2: Average Salary

The Dean of a Business school claims that the average

salary of the school’s graduates one year after grad-

uation is $800 per week with a standard deviation of

$100.

A second-year student would like to check whether the

claim about the mean is correct. He carries out a

survey of 25 people who graduated one year ago. He

discovers the sample mean to be $750. Based on this

information, what can we say about the Dean’s claim?

Analysis: To answer this question, we will calculate the

probability for a sample of 25 graduates to have a

mean of $750 or less when the population mean is

$800 and the population standard deviation is $100,

i.e., the p-value for the given sample mean.

Although X is likely to be skewed, it seems reasonable

to assume that X̄ is normally distributed. The mean

of X̄ is µX̄ = 800 and the standard deviation of X̄ is

σX̄ = σ/
√

n = 100/
√

25 = 20.
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Therefore,

P (X̄ ≤ 750) = P

(

X̄ − µX̄

σX̄

≤
750 − 800

20

)

= P (Z ≤ −2.5)

= 0.0062 .

Since this p-value is extremely small (compared to

0.05 or 0.01), we conclude that the Dean’s claim is

not supported by data.
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Standardizing the Sample Mean. . .

A common practice is to convert calculations regarding

X̄ into one regarding the standardized variable Z:

Z =
X̄ − µX̄

σX̄

=
X̄ − µ

σ/
√

n
. (4)

Indeed, we had done this in the previous two examples;

and this unifies discussion and notation.

From the central limit theorem, Z as defined in (4) is, for

large n, normally distributed with mean 0 and variance 1.

That is, the distribution of Z can be well approximated

by the standard normal distribution.

Define zα/2 as the value such that

P (−zα/2 < Z ≤ zα/2) = 1 − α . (5)

The choice of α, the so-called significance level, is

usually taken as 0.05 or 0.01.
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The value zα/2 is called the two-tailed critical value at

level α, in contrast with the one-tailed zA, or zα in our

current notation, discussed earlier.

Using NORMSINV() (see C7-07-Normal.xls; “Heights”

example, last question), it is easily found that

— For α = 0.1, zα/2 = 1.645.

— For α = 0.05, zα/2 = 1.96.

— For α = 0.01, zα/2 = 2.576.

For α = 0.05, the most-common choice, this means:

-1.96 1.960

.025 .025

Z
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Upon substitution of (4), (5) becomes

P

(

−zα/2 <
X̄ − µ

σ/
√

n
≤ zα/2

)

= 1 − α ,

which is equivalent to:

P

(

µ − zα/2

σ√
n

< X̄ ≤ µ + zα/2

σ√
n

)

= 1 − α . (6)

This means that for a given α, the probability for the

sample mean X̄ to fall in the interval

(

µ − zα/2

σ√
n

, µ + zα/2

σ√
n

)

(7)

is 100(1−α)%. We will often use this form for statistical

inference, since it is easy to check if a given X̄ is contained

in the above interval. The end points

µ ± zα/2

σ√
n

are often called control limits ; they can be computed

without even taking any sample.
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Example 2: Average Salary — Continued

We can also check the Dean’s claim using a slightly dif-

ferent approach.

Let α = 0.05 (say) and define an observed X̄ as rare if

it falls outside the interval (7).

Analysis: With µ = 800, σ = 100, n = 25, our control

limits are

800 ± 1.96
100√

25
;

or, from 760.8 to 839.2. Since the observed X̄ = 750 is

outside these limits, the Dean’s claim is not justified.

Note that if we had observed an X̄ of 850 (50 above

the mean, as opposed to below), we would also have

rejected the Dean’s claim. This suggests that we could

also define a “two-sided” p-value as:

P (X̄ ≤ 750 or X̄ ≥ 850) .

This is just twice the original (one-sided) p-value, and

hence equals 2 · 0.0062 = 0.0124. Since this is less

than the given α = 0.05, we arrive, as expected, the

same conclusion.
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Sampling Distribution of a Proportion. . .

The central limit theorem also applies to “sample pro-

portions.” Let X be a binomial random variable with

parameters n and p. Since each trial results in either a

“success” or a “failure,” we can define for trial i a vari-

able Xi that equals 1 if we have a success and 0 otherwise.

Then, the proportion of trials that resulted in a success

is given by:

p̂ ≡
1

n

n
∑

i=1

Xi =
X

n
. (8)

In the “Discrimination” example (see C7-05-Binomial.xls),

n is the number of available positions and p is the proba-

bility for hiring a female for a position. Let Xi “indicate”

whether or not the ith hire is a female. Then, p̂ as defined

in (8) is the (random) proportion of hires that are female.
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Observe that the middle term in (8) is an average, or a

sample mean. Therefore, the central limit theorem im-

plies that the sampling distribution of p̂ is approximately

normal with mean

E(p̂) = p (9)

(note that E(Xi) = p) and variance

V (p̂) =
p(1 − p)

n
(10)

(note that V (Xi) = p(1 − p)).

This discussion, in fact, explains why, under suitable con-

ditions, the normal distribution can serve as a good ap-

proximation to the binomial; see C7-07-Normal.xls.

From (9) and (10), we see that p̂ can be standardized to

a Z variable:

Z =
p̂ − p

√

p(1 − p)/n
.
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Example: Discrimination — Continued

For n = 50, p = 0.3 and p̂ = 0.1 (10% of 50), we have

Z =
p̂ − p

√

p(1 − p)/n

=
0.1 − 0.3

√

0.3(1 − 0.3)/50
= −3.086 .

For α = 0.01, we have zα = 2.326 (NORMSINV(0.99);

note that this is a one-tailed critical value). Since

−3.086 is less than −2.326 (the normal density is

symmetric), we conclude that it is likely that dis-

crimination exists. Note that our calculations here

are based on a normal approximation to the exact

binomial probability in C7-05-Binomial.xls. Since the

approximation is good, the conclusions are consistent.
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Sampling Distribution of a Difference. . .

We are frequently interested in comparing two popula-

tions.

One possible scenario is that we have two independent

samples from each of two normal populations. In such

a case, the sampling distribution of the difference be-

tween the two sample means, denoted by X̄1 − X̄2, will

be normally distributed with mean

µX̄1−X̄2
= E(X̄1 − X̄2) = µ1 − µ2 (11)

and variance

σ2

X̄1−X̄2
= V (X̄1 − X̄2) =

σ2

1

n1

+
σ2

2

n2

. (12)

If the two populations are not both normally distributed,

then the above still applies, provided that the sample sizes

n1 and n2 are “large” (e.g., greater than 30).
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As usual, we can standardize the difference between the

two means:

Z =
(X̄1 − X̄2) − (µ1 − µ2)
√

σ2

1
/n1 + σ2

2
/n2

. (13)

Example: MBA Salaries

The starting salaries of MBA graduates from two univer-

sities are $62,000 and $60,000, with respective stan-

dard deviations $14,500 and $18,300. Assume that the

two populations of salaries are normally distributed.

Suppose n1 = 50 and n2 = 60 samples are taken from

these two universities. What is the probability for the

first sample mean X̄1 to exceed the second sample

mean X̄2?
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Analysis: We wish to find P (X̄1 − X̄2 > 0), which can

be computed via Z as:

P

(

Z >
0 − (62000 − 60000)

√

145002/50 + 183002/60

)

= P (Z > −0.64)

= 1 − P (Z ≤ −0.64)

= 1 − 0.261

= 0.739 .

Thus, there is about a 74% chance for the sample

mean starting salary of the first university to exceed

that of the second university.
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