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ABSTRACT

State-of-the-art ensemble prediction systems usually provide ensembles with only 20–250 members for esti-

mating the uncertainty of the forecast and its spatial and spatiotemporal covariance. Given that the degrees of

freedom of atmosphericmodels are several magnitudes higher, the estimates are therefore substantially affected

by sampling errors. For error covariances, spurious correlations lead to random sampling errors, but also a

systematic overestimation of the correlation. A common approach to mitigate the impact of sampling errors for

data assimilation is to localize correlations. However, this is a challenging task given that physical correlations in

the atmosphere can extend over long distances. Besides data assimilation, sampling errors pose an issue for the

investigation of spatiotemporal correlations using ensemble sensitivity analysis. Our study evaluates a statistical

approach for correcting sampling errors. The applied sampling error correction is a lookup table–based approach

and therefore computationally very efficient. We show that this approach substantially improves both the es-

timates of spatial correlations for data assimilation aswell as spatiotemporal correlations for ensemble sensitivity

analysis. The evaluation is performed using the first convective-scale 1000-member ensemble simulation for

central Europe. Correlations of the 1000-member ensemble forecast serve as truth to assess the performance of

the sampling error correction for smaller subsets of the full ensemble. The sampling error correction strongly

reduced both random and systematic errors for all evaluated variables, ensemble sizes, and lead times.

1. Introduction

The evolution of numerical weather prediction (NWP)

and the exploration of the chaotic behavior of weather in

the 1960s (Lorenz 1963) are the starting points of present-

day ensemble prediction. The European Centre for

Medium-RangeWeather Forecasts (ECMWF) and the

National Centers for Environmental Prediction (NCEP)

produced their first operational ensemble forecasts in

the early 1990s. Nowadays, most operational weather

services maintain ensemble systems to gain probabilis-

tic information using various ensemble configurations.

The applied ensemble size to some extent depends on

the primary purpose of the ensemble [e.g., estimating

forecast uncertainty (variances) or estimating error

covariances for data assimilation (DA)], but also on theCorresponding author: Tobias Necker, tobias.necker@univie.ac.at
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available computing power. Therefore, the number

of ensemble members is a trade-off between the re-

quired ensemble size and computational resources.

Operational ensemble sizes range from about 20 up to

250 members (Houtekamer et al. 2014; Caron and

Buehner 2018; Gustafsson et al. 2018), which is very

small compared to the number of degrees of freedom

in the model. All state-of-the-art ensemble applica-

tions, therefore, have to deal with sampling errors.

In DA, ensemble Kalman filter algorithms (Evensen

1994) or hybrid variational/ensemble approaches rely on

accurate estimates of error correlations and covariances.

To reduce the effect of spurious correlations, localiza-

tion techniques are usually applied (Houtekamer and

Mitchell 1998; van Leeuwen 1999; Houtekamer and

Mitchell 2001). Localization is a physically motivated

approach, which cuts off or damps spatial correlations

after a certain distance. However, the choice of locali-

zation length scale is an intrinsically difficult task given

that physical correlations in the atmosphere can extend

horizontally over thousands of kilometers and vertically

throughout the troposphere and even into the strato-

sphere. Particularly, vertical localization is a challenging

issue for ensemble DA (Lei et al. 2018) as several ob-

servation types (e.g., passive satellite observations) pro-

vide vertically integrated information of the atmosphere.

Our study evaluates the sampling error correction

(SEC) introduced by Anderson (2012) using the first

convective-scale 1000-member ensemble simulation for

an area in central Europe. The SEC statistically corrects

for the overestimation of correlations due to under-

sampling and was designed to reduce the need for lo-

calization in ensemble Kalman filter DA. The approach

comes down to a lookup table calculated using the

Monte Carlo technique. The SEC is explicitly applied

to spatial correlations to evaluate its potential for en-

semble data assimilation. In this context, the SEC is

compared to a standard distance-based localization

using a Gaspari–Cohn function (Gaspari and Cohn

1999). Furthermore, the SEC is applied to spatiotem-

poral correlations to evaluate its potential for ensem-

ble sensitivity analysis (ESA).

ESAwas first introduced by Ancell and Hakim (2007)

and is an efficient method to explore probabilistic da-

tasets by investigating linear relations between a fore-

cast metric and initial quantities. ESA has been applied

for various synoptic-scale case studies (e.g., Hakim and

Torn 2008; Torn and Hakim 2009; Torn 2010; Hanley

et al. 2013; Barrett et al. 2015). Recently, Bednarczyk

and Ancell (2015), Wile et al. (2015), and Limpert and

Houston (2018) showed that ESA also seems to provide

reasonable results for the analysis of convective-scale

simulations. However, these studies could not quantify

potential errors due to spurious correlations as no larger

ensemble was available for comparison. Several previ-

ous studies attempted to account for undersampling by

applying a confidence test that excludes insignificant

correlations (Torn and Hakim 2008). However, this

approach may also exclude small physical correlations,

which can lead to systematic effects and is therefore not

ideal for quantitative analysis of sensitivities. Our study

compares the SEC to results using a confidence test.

Another approach to reduce sampling errors per-

forming ESA is to apply a standard distance-based

localization (Gaspari and Cohn 1999). Hacker and Lei

(2015) mitigate sampling errors by using a hierarchical

ensemble filter to estimate an appropriate weighting

factor for the regression coefficient as proposed by

Anderson (2007).

Accurate probabilistic forecasts are especially required

in convective-scale forecasting, which aims at predicting

local weather phenomena and the occurrence of extreme

weather events that are often related to atmospheric

convection (Miyoshi et al. 2016a; Gustafsson et al. 2018).

For this purpose, many weather centers now deploy

convection-permitting NWP and ensemble prediction

systems with a grid spacing of a few kilometers (Bouttier

et al. 2016; Hagelin et al. 2017; Gustafsson et al. 2018).

The chaotic nature of convection, however, leads to

significantly lower predictability and distinctly different

error characteristics compared to global large-scale

weather forecasts (Hohenegger and Schaer 2007).

Consequently, it is difficult to sample forecast errors and

their covariances with low-dimensional ensemble systems.

Our study uses a unique convection-permitting

1000-member ensemble simulation with a horizontal grid

spacing of 3km centered over Germany, which provides

reliable estimates of correlations. Necker et al. (2020,

hereafter N20) evaluated the general performance of

the 1000-member ensemble, compared the simulation

to the convective-scale regional ensemble system of

Deutscher Wetterdienst, and demonstrated that corre-

lations obtained from ESA can be used to estimate the

potential impact of different observable quantities on

primary forecast quantities such as precipitation. For

this reason, precipitation is considered as the forecast

response function calculating spatiotemporal correla-

tions. The 1000-member ensemble is considered as truth

to quantify sampling errors for different ensemble

sizes and to evaluate approaches that can be used to

mitigate sampling errors. Several previous studies

similarly used a large ensemble for studying sampling

errors of smaller subsets (Hamill et al. 2001; Bannister

et al. 2017).

This paper is outlined as follows: section 2 introduces

ensemble sensitivity analysis and methods that are
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considered to account for sampling errors. Section 3

summarizes the setup and properties of the 1000-member

simulation. Section 4 presents a qualitative and quan-

titative analysis of correlations obtained for different

ensemble sizes and evaluates the SEC using spatial and

spatiotemporal correlations. The evaluation includes

a comparison of the SEC to a confidence test and to a

standard distance-based localization approach. Conclusions

are provided in section 5.

2. Methods

a. Sampling error correction (SEC)

Let r̂ denote the sample correlation between quantities

x and J. Then

r̂5
cov

m
(J, x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
m
(J)var

m
(x)

p , (1)

where x and J are vectors containing m ensemble esti-

mates of x and J, respectively; covm denotes the sample

covariance; and varm denotes the sample variance.

Following Anderson (2012) the sampling error cor-

rected correlation, r̂sec given r̂ is subject to the ensemble

size m and an appropriate prior distribution of the true

correlation coefficient r. The SEC statistically corrects

for the overestimation of correlations caused by sam-

pling errors. Its offline computation is based on Monte

Carlo simulations that approximate the likelihood of r̂.

The final result is a separate lookup table for each pair of

ensemble size and prior distribution, comprising 200 bins

ranging from 21 to 1 that maps a sample correlation

r̂ to its corresponding sampling error corrected corre-

lation r̂sec. In this paper, we use the uniform distribution

U(21, 1) as the default prior distribution. Additionally,

the impact of more informative prior distributions on

the performance of the SEC is evaluated in section 5e.

Figure 1 shows the sampling error corrected correlation

r̂sec as a function of the sample correlation r̂ for different

ensemble sizes and a uniform prior. For example, ap-

plying the SEC using a 40-member ensemble, a sample

correlation of 0.5 is corrected to approximately 0.42. This

study mainly uses the SEC table provided by the Data

Assimilation Research Testbed (DART; Anderson

et al. 2009) that is based on a uniform prior. In the

following, we assume that sampling errors in the

1000-member ensemble are negligible and the large

ensemble therefore can be seen as ‘‘truth’’ to assess

the performance of the SEC.

b. Application to ensemble sensitivity analysis (ESA)

Following Ancell and Hakim (2007), the sensitivity S

of a forecast metric J with respect to a state variable x

can be approximated using spatiotemporal correlations

from the ensemble:

S5
›J

›x
’
cov

m
(J, x)

var
m
(x)

5 r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

m
(J)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

m
(x)

p . (2)

The sampling error corrected sensitivity Ssec can then be

obtained using a lookup table by substituting r̂ with the

sampling error corrected correlation r̂sec:

S
sec

5 r̂
sec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

m
(J)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

m
(x)

p . (3)

In this paper, we use hourly precipitation averaged

over a box of 40 3 40 grid points as forecast metric J.

The state variable x can be any quantity of interest.

A common approach to suppress spurious correla-

tions is based on a confidence test. Torn and Hakim

(2008) first introduced the confidence test in combina-

tion with ESA. Their study examined if a state variable x

is able to produce a statistically significant change in the

forecast metric J:

����covm(J, x)var
m
(x)

����. d
s
, (4)

where ds is the confidence interval on the linear regression

coefficient. The approach aims to exclude statistically in-

significant sensitivities by rejecting the null hypothesis that

there is no correlation between the forecast metric and

the state variable with predefined confidence. In this

FIG. 1. Absolute sampling error corrected correlation jr̂secj as a
function of absolute sample correlation jr̂j using different ensemble

sizes and a uniform prior.
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manuscript, we apply a Student’s t test with a 95%

confidence level (T95). The 1000-member ensemble is

used to compare the performance of the SEC with that

of the T95. Insignificant correlations are not considered

and excluded from the analysis.

c. Application to ensemble and hybrid data
assimilation

NWP data assimilation schemes combine observations

with a short-termmodel forecast to achieve an optimal

estimate of the atmospheric state. How the spatially

sparse observational information is distributed in space

is determined by sample correlations that are obtained

from the ensemble. However, the ensemble size is usually

too small to sample all possible states. Consequently,

spurious correlations caused by undersampling strongly

degrade the initial conditions. In this context, the sam-

pling error correction of Anderson (2012, 2016) provides

an alternative to constant covariance localization length

scales that are usually applied. For this purpose, we use

the 1000-member ensemble to evaluate the effect of

the sampling error correction applied to spatial cor-

relations for different variables and ensemble sizes in

section 5. Furthermore, the SEC is compared to a

standard distance-based localization using a Gaspari–

Cohn function (LOC) (Gaspari and Cohn 1999). In this

study, localization scales are fixed horizontally to 100 km

and vertically to ln(p) 5 0.3 based on the 1000-member

ensemble DA setup (N20) and previous convective-scale

DA studies (Lange and Janjić 2016; Necker et al. 2018).

While the SEC is a simple statistical correctionmethod, it

should be noted that its application for data assimilation

is only straight forward in ensemble and hybrid data as-

similation schemes that calculate covariances explicitly.

3. Experiments

a. 1000-member ensemble simulation

The initial conditions (IC) for the simulation are ob-

tained from a 1000-member ensemble DA experiment

with a horizontal grid spacing of 15 km that has been

spun up for one week. Boundary conditions (BC) were

generated from theNCEP 20-memberGlobal Ensemble

Forecast System (GEFS, NCEP). The GEFS ensemble

is used 50 times and combined with 1000 additional

random perturbations. Atmospheric states for the

computation of random perturbations were obtained

from the Climate Forecast System Reanalysis (CFSR)

dataset (Saha et al. 2010) in the period between 2006

and 2009. All simulations use the Scalable Computing

for Advanced Library and Environment Regional Model

(SCALE-RM) (Nishizawa et al. 2015; Sato et al. 2015)

and have been computed on the K-Computer in Kobe,

Japan (Miyoshi et al. 2016b). SCALE-RM is set up in two

different domains both centered over Germany (Fig. 2a).

The data assimilation cycling (CY) is done in the outer

domain, which has 1003 100 grid points, 31 vertical levels

and a grid spacing of 15km. The applied data assimilation

method is a localized ensemble transform Kalman filter

(LETKF) (Hunt et al. 2007) that assimilates conventional

observations in a 3-hourly cycling using the SCALE-

LETKF system (Miyoshi et al. 2016b; Lien et al. 2017).

The convective-scale forecasts (FC) are performed in the

inner domain. This domain has 350 3 250 grid points

with 30 vertical levels and a grid spacing of 3 km. The

convective-scale analysis ensembles are generated by

downscaling. The 3-km forecasts are driven by 15km

mesh size forecasts carried out in the outer cycling domain.

In total, we computed 10 different 14-h 1000-member en-

semble forecasts initialized every 12h from 0000 UTC

29 May to 1200 UTC 2 June 2016. Further details on the

1000-member ensemble simulation are provided in N20.

b. Synoptic overview

During the 5-day period from 29 May to 3 June

2016, Europe was influenced by an atmospheric blocking

FIG. 2. Synoptic overview using ECMWF IFS analysis.

(a) Temperature at 500 hPa (shaded, K) as well as borders of

the cycling domain (CY; white dotted), the forecast domain

(FC; white dashed), and the ESA domain (ESA; white solid).

(b) Geopotential height at 500 hPa (shaded, dam) and sea level

pressure (white contour, hPa) at 0000 UTC 29 May 2016.
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situation over theAtlantic (Piper et al. 2016). During the

blocking, an upper-level trough developed leading to a

cutoff low over central Europe. On 29 May this low

pressure system was located over France moving east-

ward toward Germany (Fig. 2b) including advection of

warm and moist air masses from southern Europe to-

ward central Europe (Fig. 2a). As a consequence, all

evaluated days are characterized by synoptic instabil-

ities that featured strong convective lifting causing ex-

treme weather events accompanied by flash floods,

landslides, hail, and tornadoes. The entire period re-

vealed weak pressure gradients and low wind speeds

in the midtroposphere and consequently exceptionally

strong precipitation rates in some regions.

For the visual analysis in section 4, we present sensi-

tivities calculated for a nocturnal precipitation event

that occurred on 29 May 2016. During that time, the

upper-level trough approached Germany leading to

advection of positive vorticity as well as warm and moist

air masses at midtropospheric levels. This exceptional

period with several high-impact weather events has also

been the subject of several other studies (Rasp et al. 2018;

Necker et al. 2018; Keil et al. 2019; Bachmann et al. 2019).

c. Ensemble sensitivity analysis setup

Our study evaluates spatiotemporal correlations in

the context of ESA. Correlations are calculated using

hourly precipitation as forecast response function. The

precipitation metric is averaged over boxes of 40 3
40 grid points (see the box in Fig. 3a) to account for the

model resolvable scale of precipitation. The 1-h forecast

is used as the initial state for the ensemble sensitiv-

ity calculation to avoid potential spinup effects within the

first hour of the model integration (N20). Furthermore, a

slightly reduced domain is used for the ESA calculations

that extend over an area of 2003 200 grid points located

in the center of the forecast domain ESA (Fig. 2a) to

exclude potential nesting effects. All results are com-

pared using four different ensemble sizes (40, 80, 200,

and 1000 members) and various atmospheric variables.

Smaller ensembles are generated by subsampling from

the 1000-member ensemble such that the GEFS mem-

bers are equally represented within the subsets. This

means that the 40-member subset contains eachmember

of the GEFS BC two times. The 80-member subset

consists of the 40-member subset plus 40 additional

members, and the 200-member subset combines the

80-member subset plus 120 additional members.

4. Spatiotemporal correlations

This section evaluates the SEC for spatiotemporal cor-

relations and compares its effect to that of a confidence

test, which has often been applied to reduce sampling

errors in previous studies.

a. Example of correlation fields

We start with a qualitative analysis of spatiotemporal

correlation for the first forecast initialized at 0000 UTC

29 May 2016. Figure 4 displays sensitivities of the 3-h

precipitation forecast (Fig. 3a) to the initial 2-m tem-

perature field calculated for different ensemble sizes and

with different sampling error approaches. The differ-

ences compared to the 1000-member ensemble corre-

lation (Fig. 4a) illustrate the effect of sampling errors.

The 1000-member ensemble shows strong negative

correlations of precipitation to the initial 2-m tempera-

tures in a region southwest of the response function.

These negative correlations are related to evaporative

cooling caused by precipitation resulting in colder surface

temperatures in this area. Clustering the 100 members

with the strongest and weakest precipitation inside the

FIG. 3. (a) 1000-member ensemble mean precipitation and

streamlines of 500-hPa wind (0400 UTC 29 May 2016). (b) Initial

2-m temperature anomaly calculated comparing the ensemble

mean 2-m temperature of the 100 members with strongest and

100 members with weakest precipitation inside the forecast re-

sponse function (0100 UTC 29 May 2016).
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response function reveals a temperature anomaly in the

initial surface temperature field (Fig. 3b) thatmatches the

area of negative sensitivities. The southwesterly tail of

negative correlations roughly marks the track of the pre-

cipitating systems during the night (Fig. 3a). This corre-

sponds to the southwesterly wind indicated by streamlines

in Fig. 3a. The region with positive correlations southeast

of the response function is related to a westward shift of

precipitation in some of the ensemble members. This

effect is stronger for shorter lead times (not shown).

In contrast, the 40-member ensemble correlation

field (Fig. 4b) exhibits various spurious correlations

FIG. 4. Correlation of the 3-h precipitation forecast to the initial 2-m temperature field at 0100 UTC 29 May

2016 for different ensemble configurations: (a) 1000 members, (b) 40 members, (c) 80 members, (d) 200 members,

(e) 40 members with SEC, and (f) 40 members with T95.
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in the south and west of the domain. Furthermore, the

small ensemble systematically overestimates the ampli-

tude of sensitivities in several locations. Increasing the

ensemble size to 80 or 200 ensemblemember (Figs. 4c,d)

systematically reduces the number of spurious correla-

tions at larger distances from the precipitation event.

However, some small positive spurious correlations are

still visible for the 200-member ensemble.

Figure 4e shows the 40-member ensemble correlation

field corrected with the SEC. The SEC is able to reduce

several spurious correlations and also corrects the am-

plitude of the strongest negative correlations. However,

it also affects the tail southwest of the area of maximum

correlation. Applying the confidence test (T95) to the

40-member ensemble correlation field (Fig. 4f) removes

all correlations approximately smaller than 60.25 and

returns an incomplete correlation field. Compared to

the SEC, the confidence test eliminates nearly all positive

correlations and also removes the entire tail. Nevertheless,

some spurious correlations at the French–German border

remain as those exhibit comparably large correlation

values. Furthermore, the T95 does not correct the am-

plitude of the strongest correlation. Results for other

variables are overall similar (not shown).

b. Correlation distribution

Figure 5 shows four different correlation frequency

distributions. The histograms are calculated using cor-

relations from all 10 available 3-h lead-time forecasts and

2-m temperature as the target state variable. The dis-

tribution of the 40-member ensemble nearly resamples

the shape of a normal distribution peaking slightly

shifted toward negative values. The 1000-member en-

semble distribution peaks at a similar position but

showing an approximately three times higher amplitude

combined with a smaller width. Applying the SEC to the

40-member ensemble correlations improves the distri-

bution substantially. The width and the amplitude of the

peak are now similar to the 1000-member ensemble but

slightly shifted toward zero. The shift of the peak orig-

inates from the assumed uniform prior U(21, 1) and

could be reduced by using a more informed prior as-

sumption when calculating the systematic error correc-

tion offline. This does especially make sense for highly

positively or negatively correlated fields. Both, a clima-

tological prior (Anderson 2016) or a prior obtained

from a larger ensemble can be used to generate a more

specified table (see section 5e).

Filtering all unreliable 40-member ensemble correla-

tions using the confidence test (T95) changes the dis-

tribution fundamentally. The confidence test removes

all sensitivities smaller than approximately 60.25 and

therefore discards the majority of correlations. Comparing

both approaches, the SEC substantially improves the dis-

tribution whereas the application of the T95 leads to an

unrealistic distribution of correlations. The effect is similar

for correlation distributions of other variables (not shown).

c. Sampling error as function of correlation value

Figure 6 presents the mean absolute correlation

error as a function of the 40-member (left column) and

1000-member ensemble correlation (right column).

The sampling error of 2-m temperature (Fig. 6a) eval-

uated as a function of the 40-member ensemble corre-

lation is smallest for small correlation values and largest

for large correlations. The SEC systematically reduces

the sampling error independent of the strength of the

correlation. The improvements achieved by the SEC

correspond to the impact that can be expected according

to the correction curve (see Fig. 1). The performance of

the SEC is similar for other variables (Figs. 6c,e).

The 40-member ensemble sampling error for 2-m

temperature (Fig. 6b) plotted as a function of the

1000-member ensemble correlation is smallest for large

negative correlation values and largest for strong posi-

tive correlations. Applying the SEC largely reduces the

error for small correlation values but slightly degrades

the performance for large positive correlations. However,

results for large correlation values should be treated with

caution as there are only a few data points (see frequency

distribution in Fig. 5). The absolute error obtained for

correlations of precipitation with 500-hPa temperature

(Fig. 6d) looks similar as for surface temperature. Again,

the SEC mainly improves small correlation values,

whereas for 500-hPa zonal wind (Fig. 6f) improve-

ments are visible for the entire range of correlation

values. For very small correlation values, the SEC almost

FIG. 5. Frequency distributions for correlations of the 3-h pre-

cipitation forecast to the initial 2-m temperature field using all

10 forecasts. 1000-member ensemble correlations (bold solid gray)

and 40-member ensemble (solid black) including SEC (green

dashed) or T95 (red dashed).

MARCH 2020 NECKER ET AL . 1235



halves the sampling error compared to the 1000-member

ensemble correlation. However, one should keep inmind

the relatively small sample of evaluated large correlation

values of the 1000-member ensemble.

In summary, the SEC based on a uniform prior has

its strongest effect on small correlation values, which

seems reasonable considering the correction function

displayed in Fig. 1. For larger correlation values, the

effect of the SEC gets smaller and differs depending on

the considered variable.

d. Sensitivity to ensemble size

Figure 7a presents the time-averaged root-mean-

square error (RMSE) of correlations as a function of

ensemble size and investigates the same correlations

as shown in the previous two sections (precipitation

correlated with 2-m temperature). Here, the RMSE

of a 40-member ensemble is given by

RMSE
40
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

n51

(r̂
40, n

2 r
n
)2

s
,

where we assume r5 r̂1000 and N is the number of grid

points in the domain. The RMSE is calculated using

correlations obtained for the full 1000-member ensem-

ble for verification. The RMSE of the 40-member en-

semble is approximately 0.16. Doubling the sample size

up to 80 members reduces the RMSE by about 30%

whereas increasing the sample size by the factor of 5 up

to 200 members lowers the RMSE by more than 50%.

FIG. 6. Mean absolute error of the 40-member sample correlation (solid black) and sampling error corrected

correlation (gray dashed) as a function of the (a),(c),(e) 40-member and (b),(d),(f) 1000-member ensemble

correlation. Correlations of the 3h precipitation forecast to initial (a),(b) 2-m temperature; (c),(d) 500-hPa tem-

perature; and (e),(f) 500-hPa zonal wind using all 10 forecasts.
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For small ensemble samples, the SEC strongly improves

the performance. Applying the SEC to the 40-member

ensemble subset even achieves slightly better results

than doubling the ensemble size. The reduction of

RMSE due to the SEC decreases with increasing en-

semble size. Nevertheless, the 200-member RMSE is

still reduced by about 15% by the SEC.

Figure 7b shows the corresponding time-averaged

difference of the mean absolute correlation (BIAS)

compared to the 1000-member ensemble for all six

configurations. Here,

BIAS
40
5

1

N

 
�
N

n51

jr̂
40,n
j2 �

N

n51

jr
n
j
!
.

Similar to the RMSE, the BIAS decreases with in-

creasing ensemble size and applying the SEC largely

reduces theBIAS. For nearly all subsets, theBIAS almost

vanishes. For larger subsets, the SECalso reduces the bias

causing a change in sign. Nevertheless, the improvements

due to the SEC are substantial and visible for all vari-

ables. Different prior assumptions used for computing the

SEC table could presumably improve the results further.

e. Sensitivity to variable

Figure 8a presents the RMSE for 40-member corre-

lations of precipitation to various initial quantities. The

black and gray bars displayed for 2-m temperature co-

incide with the markers of the 40-member ensemble

shown in Fig. 7a. The RMSE for all variables ranges

from approximately 0.13 to 0.18. As discussed for 2-m

temperature, correcting the correlations using the SEC

substantially reduces the RMSE independent of the

chosen variable. The improvements range from about

20% to 30% and are smallest for sea level pressure (PS).

Examining the BIAS (Fig. 8b), sea level pressure is

the only variable that exhibits a change in sign of the

bias. This is likely related to the structure of the corre-

lation field, which is homogeneously distributed over

the entire domain as sea level pressure exhibits a fairly

smooth large-scale field consisting ofmainly small negative

FIG. 7. Time-averaged (a) root-mean-square error and (b)magnitude

bias of correlations with and without SEC compared to 1000

members evaluated for different ensemble subsets. Spatiotemporal

correlations of precipitation to 2-m temperature.

FIG. 8. Time-averaged (a) root-mean-square error and (b)magnitude

bias of 40-member precipitation correlation to various variables

with and without SEC. A list of variable abbreviations is provided

in the appendix of this manuscript.
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correlations. The SEC systematically reduces the BIAS

for all variables and works most efficiently for zonal

wind. Examining the impact of the SEC on the 80 and

200-member ensemble correlations (not shown), the sys-

tematic reduction of the BIAS relatively increases

with increasing ensemble size leading to changes in sign

as discussed for 2-m temperature (Fig. 7b). Nevertheless,

the reduction of BIAS is substantial for all investigated

ensembles sizes and variables.

Further sensitivity studies have been conducted that

are not shown in this manuscript. These experiments

targeted the sensitivity of the SEC to the precipitation

metric kernel size, the choice of the ensemble subset as

well as the dependence on forecast lead time. However,

these sensitivity studies are not discussed here as these

experiments did not reveal any fundamentally different

results.

5. Spatial correlations

This section investigates the impact of the SEC on

spatial correlations that are crucial for ensemble or hy-

brid DA. Results are shown for the correlation of tem-

perature to various model variables. Spatial correlations

are calculated using 1-h forecasts, which is similar to

taking the first guess during hourly cycling. The perfor-

mance of the SEC is compared to a standard distance-

based localization approach (LOC). Furthermore, the

sensitivity of the SEC to different prior assumptions is

examined.

a. Example of spatial correlations

Figure 9a displays horizontal cross correlations of

500-hPa temperature at a single grid point to 500-hPa

specific humidity at every grid point in the domain. The

correlation pattern is a dipole showing a negative cor-

relation in the vicinity and a positive correlation to the

north of the response function. Except for the dipole, no

other considerable correlations are visible. Examining

the 40-member correlations (Fig. 9b), various spurious

correlations show up all over the domain, similar as

discussed for spatiotemporal correlation in section 4a.

To some degree, the dipole is still indicated by the

strongest correlations. Applying the SEC (Fig. 9c) re-

duces the number of spurious correlations strongly and

reveals the dipole more distinctly. Overall, the SEC can

reduce the sampling error for the majority of grid points

(Fig. 9d) showing slightly increased errors only in

FIG. 9. Cross correlation of 500-hPa temperature at a single grid point (black marker) to 500-hPa specific hu-

midity in the ESA domain at 0100 UTC 29 May 2016 for (a) 1000 members, (b) 40 members, and (c) 40 members

including SEC as well as (d) changes in correlation field due to the SEC (green—error reduction).
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some small areas. The improvements are consistent

for spatial correlations to other variables (not shown)

and agree with the results obtained for spatiotem-

poral correlations considering a precipitation-based

response function.

b. Horizontal correlation

Below, horizontal correlations are averaged using the

10 available 1-h 1000-member forecasts. Each ensemble

forecast is evaluated with nine gridpoint size metrics

that are evenly distributed in the domain with a distance

of 50 grid points (150 km) to neighboring metrics and

boundaries. In total, 90 correlation fields are examined

for each variable pair. The mean absolute correlation

(MAC) and error (MAE) for a given spatial distance are

defined as

MAC
m
5

1

N
�
N

n51

jr̂nmj

and

MAE
m
5

1

N
�
N

n51

jr̂nm 2 rnj ,

where again we assume r5 r̂n1000. The correlations are

binned into annuli, each with a width of 13 km; N spec-

ifies the number of grid points in each annulus.

Figure 10a shows the mean absolute correlation of

2-m temperature to 2-m temperatures and Fig. 10b

the corresponding error with and without SEC or LOC.

The 1000-member ensemble exhibits a correlation of

nearly 1 in the close vicinity of the response function

dropping to a value of about 0.4 at a distance of 100 km.

Up to 100 km, the 40-member ensemble correlation

coincides with the 1000-member ensemble correlation.

Farther away, the 40-member ensemble systematically

overestimates the mean absolute correlation due to

spurious correlations. The mean absolute correlation

error (Fig. 10b) strongly increases up to a distance of

100 km, which roughly matches the radius of horizon-

tal localization applied in regional DA systems. For

distances larger than 100 km, the sampling error keeps

increasing, but slower compared to the vicinity of the

response function. Applying the SEC increases the error

close to the response function slightly, but strongly reduces

the error at larger distances. Similar changes are visible for

the mean correlation. Especially for distances larger than

150km, the sampling error corrected 40-member mean ab-

solute correlation almost coincides with the 1000-member

correlation.

The mean absolute cross correlation of 2-m temper-

ature to 10-m zonal wind (Fig. 10c) and 2-m temperature

to near-surface humidity (Fig. 10e) show similar results.

Both variables exhibit the strongest correlation in the

near vicinity dropping to a constant value of approx-

imately 0.2 at a distance of 150 km. The mean absolute

errors (Figs. 10d,f) slightly change with distance showing

a similar absolute value for large distances as found in

Fig. 10b. However, the relative error is larger consid-

ering the weak mean absolute correlation for these

pairs. Applying the SEC substantially improves both

the mean and error of the spatial cross correlations.

The SEC performs best for distances larger than

100 km reducing the error of the humidity cross cor-

relation by up to 40%.

The correlation of 2-m temperature to sea level pres-

sure (Fig. 10g) is weaker compared to spatial correlations

discussed previously. Mean absolute correlation and

error (Fig. 10h) hardly change with distance. Due to

sampling errors, the 40-membermean correlation is twice

as large as the 1000-member mean correlation. The SEC

substantially improves the 40-member mean correlation,

which is now close to the 1000-membermean correlation.

The absolute error decreases by approximately 20%.

Applying a distance-based localization (LOC), the

mean absolute correlation drops to zero at a distance of

200 km for all variable combinations (Figs. 10a,c,e,g).

For short distances, the LOC overestimates the mean

absolute correlation for the majority of variables while

it systematically underestimates the mean absolute

correlation for large distances. Using different locali-

zation scales for different variables could improve the

performance of the LOC. Overall, the SEC is able to

match the 1000-membermean absolute correlation best.

For correlations of 2-m temperature to 2-m temperatures,

the LOC increases the error for distances shorter than

200km (Fig. 10b). For cross correlation to other variables,

no degradation by the LOC is found (Figs. 10d,f,h). For

most variables, the SEC performs best on short distances

while the LOC seems to outperform the SEC for dis-

tances larger than 250 km.

Figure 11 shows the mean absolute correlation and er-

ror as a function of horizontal distance using correlations

of 500-hPa temperature to different upper-tropospheric

variables. Both the 1000 and 40-member ensemble corre-

lation decline consistently examining spatial correlations

of 500-hPa temperature (Fig. 11a). Themagnitude of the

correlation is larger than for all other discussed quanti-

ties. Furthermore, the 40-member mean absolute cor-

relation error is smaller, grows less rapidly and does

not appear saturated at a horizontal distance of 500 km

(Fig. 11b). In contrast to other variables, applying the

SEC degrades the performance for the entire spatial

range. The mean absolute correlation is now under-

estimated, and the error increases correspondingly.
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FIG. 10. Mean absolute (left) correlation and (right) error as function of spatial distance

(km) for different ensembles with and without SEC or LOC. Correlation of 2-m temper-

ature to (a),(b) 2-m temperature, (c),(d) 10-m zonal wind, (e),(f) 925-hPa specific humidity

and (g),(h) sea level pressure.
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FIG. 11. As in Fig. 10, but spatial correlation of 500-hPa temperature to (a),(b) 500-hPa

temperature, (c),(d) 500-hPa specific humidity, (e),(f) 500-hPa hydrometeors, and (g),(h)

500-hPa zonal wind.

MARCH 2020 NECKER ET AL . 1241



The negative impact of the SEC is caused by an insuf-

ficient prior assumption, which affects the behavior of

the SEC. In this case, a uniformly distributed prior ap-

pears to be unsuitable. The impact of different priors

is discussed in more detail in section 5e.

Figures 11c and 11d analyze horizontal cross correla-

tions of 500-hPa temperature to 500-hPa specific hu-

midity. Again, the mean absolute correlation decreases

with increasing distance. The SEC reduces both mean

and error showing an improved performance far from

the response function. Cross correlations of 500-hPa

temperature to 500-hPa hydrometeors (Fig. 11e) are

weaker compared to cross correlations of temperature

and humidity. As before, the SEC reduces the error

(Fig. 11f) while it slightly overadjusts the mean absolute

correlation. The results for cross correlations of 500-hPa

temperature to 500-hPa zonal wind (Figs. 11g,h) are

similar as discussed for cross correlations of 2-m tem-

perature to sea level pressure (Fig. 10) although the

mean absolute cross correlations and errors are slightly

larger in this case.

The LOC substantially degrades correlations of

500-hPa temperature to 500-hPa temperature (Figs. 11a,b).

For tropospheric temperature, a considerably larger lo-

calization scale is required compared to other variable

pairs. Again, the SEC performs best evaluating the

mean absolute correlation independent of the variable

(Figs. 11a,c,e,g). For cross correlations of 500-hPa tem-

perature to other variables the LOC performs best for

distances larger than 100km (Figs. 11d,f,h).

Overall, the SEC reduces the sampling error for the

majority of horizontal (cross) correlations using a uniformly

distributed prior as applied in this case. Furthermore, the

SEC shows a large impact on cross correlations and

distances larger than 100 km. Only strongly positively

correlated variables revealed ambiguous results. Yet,

this can be addressed by a different prior assumption

or the exclusion of these variables from the correction.

The LOC performs best on distances larger than about

250 km. On short distances, the SEC outperforms the

LOC. Given this, a combination of both approaches

seems to be most promising.

c. Vertical correlation

Vertical correlations are evaluated using a single

1000-member ensemble forecast on 1300 UTC 30 May

2016 and in total 40 000 vertical profiles. For vertical

correlations, we focus on spatial correlations of 500-hPa

temperature to 20 different pressure levels and four

different variables. Figure 12 shows 1000-member

ensemble mean correlation and the RMSE of verti-

cal temperature correlations comparing the 40- and

1000-member ensemble for different configurations.

The RMSE of the temperature correlated with itself

is zero at the 500-hPa response level (Fig. 12a) as both 40

and 1000members exhibit a correlation of 1. The RMSE

of the 40-member ensemble correlation increases to a

value of 0.15 at a vertical distance of 100hPa and seems

to be saturated for distances larger than 150hPa. The

error applying the SEC increases slower and saturates

earlier reducing the relative error far from the response

level up to 30%. Only at 350 hPa, the SEC increases the

RMSE as the 40-member ensemble subset on average

slightly underestimates the true correlation (not shown).

For vertical correlations, the SEC performs better than

the LOC in the vicinity of the response level while the

LOC seems to bemore beneficial with increasing distance.

Figure 12b shows the RMSE for vertical cross corre-

lations of temperature at 500hPa to specific humidity in

the entire tropospheric column. Compared to the pre-

vious example, the RMSE for the 40-member ensemble

does not exhibit a local minimum at 500hPa and hardly

changes with height. Applying the SEC reduces the

RMSE at all levels, but the reduction is smallest at the

500-hPa response level. The RMSE reduction increases

up to a vertical distance of 150hPa and again hardly

changes far from the response level. Evaluating vertical

cross correlations of temperature to hydrometeors (Fig. 12c)

or zonal wind (Fig. 12d) the effect of the SEC is inde-

pendent of the vertical distance and the SEC sub-

stantially reduces the RMSE at all levels by about 30%.

In general, the impact of the SEC is largest for vertical

cross correlations and far from the response level. As for

horizontal correlations, the SEC outperforms the LOC

on short distances while the LOC appears to be more

beneficial with increasing distance (in case of no strong

long-range correlations). The error is roughly symmetric

comparing results above and below the response level.

On average, the SEC efficiently reduces the overestima-

tion of the true correlation due to spurious correlations.

We hypothesize that the SEC becomes advantageous if

correlations extend over the full vertical profile of the

atmosphere (e.g., for passive satellite observations). In

such situations, localization techniques are potentially

dangerous as they damp or eliminate correlations after

a certain distance. The same applies to cloud infor-

mation, which can affect the surface as well as the entire

tropospheric column by modified radiative processes.

d. Sampling error correction as function of
correlation value

Figure 13 displays the 2D correlation frequency dis-

tribution comparing the 1000-member ensemble spatial

correlations with corresponding spatial correlations

obtained for different ensemble subsets. Each analysis

includes approximately 38 million spatial correlations
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of temperatures at 500 hPa to various other variables.

Each frequency distribution exhibits a maximum at

small correlation values. Positive correlations range

from 0 up to 1, while the largest negative 1000-member

correlation is approximately 20.5. For the 40-member

ensemble (Fig. 13a), the maximum around zero is

elongated in the horizontal direction indicating the

overestimation of small correlations due to spurious

correlations. Applying the SEC reduces this overesti-

mation systematically and changes the pattern of the

frequency distribution (Fig. 13b). The distribution

peaking around zero is now narrow and extends ver-

tically. The Pearson correlation coefficient between

both correlation samples is displayed in the corner of

FIG. 12. Root-mean-square error of the 40-member correlation compared to the 1000-member correlation with

(red, dotted) and without (blue, dashed) SEC and for a distance-based localization (LOC). Correlation of 500-hPa

temperature to (a) temperature, (b) specific humidity, (c) hydrometeors, and (d) zonal wind at different height

levels. RMSE averaged over 40 000 vertical profiles. Note: The black solid line displays the mean absolute cor-

relation for 1000 members.
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each subfigure to facilitate the comparison. Plotting

the linear regression line (dashed line) reveals the

impact of the SEC as it improves both the slope and

the intersection as the SEC reduces the magnitude

bias. Overall, the SEC improves the performance

of the 40-member ensemble by about 5% using the

Pearson correlation as a measure.

Figure 13c shows the frequency distribution compar-

ing 200 with 1000 members. Using 200 members sub-

stantially reduces sampling errors for the entire range of

correlation values. Increasing the ensemble size by a

factor of 5 especially improves the estimation of small

correlation values. The 200-member ensemble exhibits

a maximum offset of approximately 0.4, which is sub-

stantially less than found for 40 members. Applying the

SEC (Fig. 13d) again improves the frequency distribution

systematically. The absolute impact is smaller compared

to 40 members, but the improvements are particularly

visible for small correlations as well as in the slope of the

linear regression line.

Considering that the SEC showed ambiguous results

for some highly correlated variables (section 5b), it is

important to assess if the SEC systematically fails for

large correlation values. Figure 14a shows the change in

the absolute correlation error caused by the SEC as a

function of the 40-member absolute correlation value.

The frequency distribution again reveals the greatest

improvements for small correlation values. Both, nega-

tive and positive impacts mainly exhibit the strength

of the maximum possible adjustment that is indicated

by the dashed line and derived from the correcting

function. Examining the average improvement, the

SEC systematically improves the results independent

of the amplitude of the 40-member correlation value.

Overall, the SEC improves about three-quarter of the

correlations.

Figure 14b shows the same data as before but now

distributed as a function of the 1000-member absolute

correlation value. Again, the main improvements are

observed for small correlation values, and the overall

impact is beneficial. However, the impact of the SEC

seems to be detrimental for 1000-member correlation

values larger than 0.25. Similar behavior is seen for

vertical correlations (not shown). However, as the true

FIG. 13. Two-dimensional frequency distribution comparing correlations of the 1000-member ensemble and

different subsets: (a) 40members, (b) 40members with SEC, (c) 200members, and (d) 200members with SEC. The

analysis includes about 38 million spatial correlations of temperature at 500 hPa to temperature, specific humidity,

hydrometeors, zonal wind, sea level pressure, and precipitation. Slope of the linear regression fit (dashed line).
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correlation is usually unknown, it is difficult to use this

behavior to improve such cases. Overall, results sug-

gest that based on the available information from the

small ensemble (Fig. 14a) the SEC should be applied

to all correlations.

e. Comparison of different priors

As discussed in section 5b, the uniform prior appears

to be unsuitable for variables exhibiting strong positive

correlations. Already Anderson (2012) suggested using a

more informative prior to improve the performance

of the SEC in such cases. Recently, Anderson (2016)

examined the impact of a climatological prior. This

subsection evaluates the impact of different priors

on the performance of the SEC. Here, we compare

the impact of three different more informative priors:

First, a perfect prior based on the 1000-member en-

semble (p1000). Second, a climatological prior that is

obtained using the 40-member ensemble correla-

tions (p0040). Third, a distance-dependent prior

based on 40-member sample correlations of short-

range correlations (,100).

Figure 15b displays the sampling error corrected

correlation r̂sec as a function of the sample correlation

r̂ for the four different priors. Note that the assumed

priors do not cover the whole range [21, 1] (see Fig. 15a),

which affects the (nonnegligible) sample space of r̂. One

can see that especially for smaller positive sample

correlations, the correction is sensitive to the prior.

Figure 15c shows the error of r̂sec for the different

priors as a function of distance (same as Fig. 11b).

Using the ‘‘true’’ prior (p1000) clearly outperforms

both the corrected sample correlations obtained with a

uniform prior (uniform) and the uncorrected sample

correlations (40) for distances larger than 150 km.

However, this true prior is in practice rarely available.

We therefore also constructed a prior from the sample

correlations (p0040), which performs slightly worse than

p1000, but still significantly outperforms both uniform

and 40 for larger distances.

For distances smaller than 150km, neither p1000 nor

p0040 are able to reduce the sampling errors. This mo-

tivates the use of a separate prior for correlations corre-

sponding to a distance smaller than a certain threshold.

Figure 15c suggests this threshold should be 100km.

However, the information displayed in Fig. 15b is gen-

erally not available and therefore we suggest setting the

threshold equal to the localization radius, which in this

case is also 100km. The resulting corrected sample cor-

relations (,100) have a smaller error than those corre-

sponding to p1000 and p0040 for distances smaller than

approximately 150 km. A clear advantage with respect

to the uncorrected sample correlations (40) is present

for distances between 80 and 180 km.

The results discussed in this subsection motivate the

use of distance-based priors. Given knowledge on the

prior distributions, a different SEC table could be

computed with an additional dimension for horizontal

or vertical distance.

6. Conclusions

The sampling error correction (SEC) described by

Anderson (2012) is evaluated applying the first convective-

scale 1000-member ensemble simulation over central

Europe. This unique dataset consists of 10 available

1000-member ensemble forecasts with 3-km mesh size

and has been computed using the Japanese SCALE-RM

model and a LETKF-based DA system (N20). The SEC

FIG. 14. Frequency distribution of error reduction de applying

the SEC to a 40-member ensemble as a function of the absolute

value of the (a) 40-member or (b) 1000-member correlation. The

solid black line shows the average change and the dashed line

sketches the maximum expected adjustment, which is restricted by

the correction function. The analysis considers the same correla-

tions as in Fig. 13. The SEC improves de for 72.3% of the corre-

lations [de5 j(r̂40 2 r)j2 j(r̂401SEC 2 r)j, where r5 r̂1000].
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is a simple lookup table–based approach, which is cal-

culated using a Monte Carlo technique. If the lookup

table is already computed for a target ensemble size and

prior distribution, no additional information is needed

to correct for sampling errors. Our study evaluates the

SEC for spatiotemporal correlations that are important

for ensemble sensitivity analysis (ESA; Ancell and

Hakim 2007) and for spatial correlations that are crucial

for ensemble and hybrid DA systems. For the applica-

tion to ESA, the SEC is compared to a confidence test

(T95; Torn and Hakim 2008). A confidence test is a

commonly used approach to exclude spurious corre-

lations in ESA. In the context of DA, the SEC is

compared to a standard distance-based localization

with a Gaspari–Cohn function (LOC; Gaspari and

Cohn 1999). In addition, the impact of different prior

assumptions on the SEC is examined. The 1000-member

ensemble correlations are taken as a reference to assess

the performance in all experiments. Furthermore, dif-

ferent subsets of the 1000-member ensemble are used

to quantify sampling errors in a convective-scale NWP

modeling system.

Examples of correlation fields demonstrate that the

1000-member ensemble provides physically meaningful

correlations that are hardly affected by sampling errors

while smaller subsets reveal spurious correlations. The

40-member ensemble subset is able to qualitatively in-

dicate regions of maximum correlation in short-range

convective-scale forecasts. However, small ensembles

overestimate the magnitude of the majority of correla-

tions due to spurious correlations. Increasing the ensemble

size up to 80 or 200 members substantially reduces spuri-

ous correlations. This agrees with the results of Wile et al.

(2015) who performed ESA on 4-km resolution using a

96-member ensemble and different subsets.

A confidence test can eliminate some spurious cor-

relations by rejecting small insignificant correlations.

However, it also eliminates small true correlations. This

behavior is especially visible examining the frequency

distribution of correlation values. While this is useful

for a qualitative analysis of spatiotemporal correlations,

the associated removal of weak correlations can lead to

systematic errors and is therefore not optimal for a

quantitative analysis. In contrast to the t test, the SEC

is able to reduce spurious correlations while still allow-

ing for small correlations. The SEC corrects spurious cor-

relations independently of the strength of the correlation

FIG. 15. (a) Different normalized priors and (b) the resulting

sampling error correction. (c) Mean absolute error as function

of spatial distance (km) for different priors and correlations of

500-hPa temperature to 500-hPa temperature (same as Fig. 11b).

Black5 uniform prior, blue5 40-member ensemble climatological

 
prior, green 5 1000-member ensemble prior, red 5 40-member

ensemble distance dependent prior, and black dashed 5
reference/no SEC.
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and by this substantially improves the frequency distri-

bution. Similar to the confidence test, the SEC has its

largest impact on small correlations. Overall, the SEC

is appropriate for both the qualitative and quantitative

interpretation of correlations. The SEC is beneficial for

all evaluated ensemble sizes and variable combinations.

The mean absolute correlation bias, as well as the RMSE

of correlations, are substantially reduced independent of

the ensemble size. For spatiotemporal correlations, the

40-member ensemble applying SECeven outperforms the

80 member ensemble as the RMSE is reduced by up to

30% and the magnitude bias almost vanishes.

Spatial correlations are calculated to investigate sam-

pling errors in ensemble DA. In the vertical, the SEC

systematically reduces the RMSE in the entire tropo-

spheric column independent of height. The reduction is

largest far from the response level, the impact slightly

decreases for distances smaller than 150 hPa and is

smallest close to the response level. Compared to the

Gaspari–Cohn localization the SEC works best in the vi-

cinity of the response level. For the presented examples the

localization performs better with increasing distance.

However, it should be noted that the SEC allows for

correlations far from the response level in contrast to op-

erational localization techniques, which damp or exclude

long-range correlations. This is potentially crucial for the

assimilation of nonlocal observations (e.g., cloud, satellite

radiance, or pressure) in a data assimilation scheme with

observation-space localization such as an LETKF.

Horizontally, the SEC efficiently improves the esti-

mation of the mean absolute correlation and mitigates

the overestimation of the absolute correlation using

small ensembles. Furthermore, it reduces the mean ab-

solute error for most variable pairs and performs best

on large distances. On short distances, the SEC per-

forms better than a standard distance-based localiza-

tion (LOC). However, the uniform prior U(21, 1),

which is assumed in the calculation of the default SEC

table, appears unsuitable for highly correlated vari-

ables. For instance, horizontal correlations of tem-

peratures in the troposphere are already sufficiently

well estimated by a very small ensemble sample and

therefore hardly affected by sampling errors. This issue

can be addressed by using an informative prior as-

sumption of the correlation distribution. An improved

prior can be obtained from a forecast climatology or

from a large ensemble sample (e.g., the 1000-member

ensemble used in this study). In particular, a distance-

dependent prior can further improve the performance of

the SEC. A combination of the SEC and standard local-

ization techniques should also be considered. As shown,

the SEC performs best on relatively short distances while

the LOC performs best for long-range correlations.

Sensitivity studies on the ensemble size with a uniform

prior show that sampling error corrected spatial corre-

lations using 200 members are already very close to

correlations obtained for 1000 members. For horizontal

correlations, the SEC increases the correlation between

the 40-member and 1000-member ensemble approxi-

mately by 5% and by 1% using 200 members, respec-

tively. Using 200 members to estimate error covariances

in convective-scale DA seems to be a reasonable choice

thinking of the achieved accuracy and the computational

cost compared to 1000 members.

Overall, the results strongly encourage to use the

evaluated sampling correction for ensemble data as-

similation systems and ensemble sensitivity analysis.

Similarly, it could be applied in the framework of

calculating ensemble forecast sensitivity to observation

impact (Kalnay et al. 2012; Sommer and Weissmann

2014, 2016; Buehner et al. 2018). As the method is al-

ready implemented in DART, its application is techni-

cally simple. Further improvements could be achieved

by usingmore informed prior assumptions, which should

and will be the subject of future studies.

Acknowledgments. The authors want to thank the

RIKENDAgroup for their support with theK-computer

system as well as Leonhard Scheck, Stefan Geiss, and

Juan Ruiz for their contributions. We are also grateful

to the reviewers for their suggestions, which helped to

improve the manuscript. The open source project and

Python package ‘‘xarray’’ (Hoyer and Hamman 2017)

has been used to process data computing the correla-

tions. Furthermore, we appreciate that Greg Hakim

and Julia Keller provided their code for ensemble

sensitivity analysis. This study was carried out in the

Hans-Ertel-Centre for Weather Research (Weissmann

et al. 2014; Simmer et al. 2016). This German research

network of universities, research institutes, and DWD is

funded by the BMVI (Federal Ministry of Transport,

Building, and Urban Development). This research used

computational resources of the K computer provided

by the RIKEN Center for Computational Science

through the HPCI System Research project (Project

ID:ra000015, ra001011). Finally, this study was partly

funded by the Transregional Collaborative Research

Center SFB/TRR 165 ‘‘Waves to Weather’’ funded by

the German Science Foundation (DFG).

APPENDIX

List of Variable Abbreviations

TOT_PREC Hourly accumulated precipitation

T_2M 2-m temperature
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U_10M 10-m zonal wind

PS Sea level pressure

DBZ_CMAX Column maximum radar reflectivity

T_500 500-hPa temperature

U_500 500-hPa zonal wind

W_500 500-hPa vertical wind

QV_500 500-hPa specific humidity

HY_500 500-hPa hydrometeors

DBZ_500 500-hPa radar reflectivity
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