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Sampling errors in nested sampling parameter
estimation

Edward Higson∗,¶,‖ , Will Handley†,¶,‖ , Mike Hobson‡,¶ and Anthony Lasenby§,¶,‖

Abstract. Sampling errors in nested sampling parameter estimation differ from
those in Bayesian evidence calculation, but have been little studied in the litera-
ture. This paper provides the first explanation of the two main sources of sampling
errors in nested sampling parameter estimation, and presents a new diagrammatic
representation for the process. We find no current method can accurately measure
the parameter estimation errors of a single nested sampling run, and propose a
method for doing so using a new algorithm for dividing nested sampling runs. We
empirically verify our conclusions and the accuracy of our new method.

Keywords: nested sampling, parameter estimation.

1 Introduction

Nested sampling (Skilling, 2006) is a Monte Carlo method for Bayesian analysis which
simultaneously calculates both Bayesian evidences and posterior samples. The early
development of the algorithm was focused on evidence calculation, which is compu-
tationally expensive using variants of standard Markov chain Monte Carlo (MCMC)
sampling based on the Metropolis-Hastings algorithm (MacKay, 2003).

Contemporary implementations such as MultiNest (Feroz and Hobson, 2008; Feroz
et al., 2009, 2013) and PolyChord (Handley et al., 2015a,b) are now also extensively
used for parameter estimation from posterior samples (see for example Planck Col-
laboration, 2016). Nested sampling compares favourably to MCMC-based parameter
estimation for degenerate, multi-modal likelihoods as it has no “thermal” transition
probability and exponentially compresses the prior distribution to the posterior. How-
ever, despite its increasing popularity, the sampling errors in nested sampling parameter
estimation are poorly understood.

Correctly quantifying uncertainty is vital for identifying spurious results — in par-
ticular we find sampling errors often significantly affect estimates of credible intervals
on parameters. Conversely, finding such errors are very small may imply an unneces-
sarily large amount of computational resource is being used for the calculation. This
paper has two goals: to provide an explanation of the sources of these errors and an
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empirical technique for estimating them. One obvious method is to repeat the analysis
some nrepeats times, although this increases the computational cost by a corresponding
factor. Interestingly, we find no current method can accurately estimate these errors
on parameter estimates from a single analysis, and so we present a new method for
doing this. Our approach uses a new algorithm for dividing a single nested sampling
run into multiple valid nested sampling runs; these can then be recombined in different
combinations using resampling techniques such as the bootstrap. We test our results
and new method empirically.

The paper begins with background on sampling errors in parameter estimation from
posterior samples, then describes the nested sampling algorithm and how it is currently
used for parameter estimation in Section 2. We explain the two main sources of sam-
pling errors in nested sampling parameter estimation in Section 3, and present a new
diagrammatic representation of the process (illustrated in Figures 3(a) to 3(e)). Sec-
tion 4 describes our new method for measuring sampling errors from a single nested
sampling run, using our new algorithm for division of such runs.

We empirically test our method’s accuracy in Section 5 with the help of analyti-
cal cases in the manner described by Keeton (2011). Here one can obtain uncorrelated
samples from the prior space within some likelihood contour using standard techniques,
and we term the resulting procedure perfect nested sampling. Our approach accurately
quantifies uncertainties on parameter estimates from the stochasticity of the nested
sampling algorithm, but software used for practical problems may produce additional
errors from correlated samples within likelihood contours that are specific to a given im-
plementation. We discuss implementation-specific errors in Section 6, including testing
sampling error estimates from our method for PolyChord calculations. Our method
gives superior performance to the current approach and can be easily included in nested
sampling software; we are currently working on incorporating it into future versions of
PolyChord.

Background: sampling errors in parameter estimation

Sampling can be used to represent a posterior distribution P(θ) via a set of weighted
samples

S = {(θs, ps), s = 1, . . . , nsamp}, (1)

where each θs is drawn from the posterior distribution with probability proportional
to ps × P(θs), and

∑
s∈S ps = 1. Likelihoods L are often computationally expensive

functions, so the goal of parameter estimation is to sample the posterior distribution
P(θ) numerically with a limited number of likelihood calls.

Samples S may be used to compute numerical results. For example, the posterior
expectation of a function of the parameters f(θ) can be estimated as

E[f(θ)] =

∫
f(θ)P(θ) dθ ≈

∑
s∈S

psf(θs). (2)

In this case the sampling error is the difference between
∑
s∈S psf(θs) and the exact

value of E[f(θ)]. Often the posterior distributions of parameters θ are of interest, and
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are estimated numerically from the samples by dividing the parameter space into cells
or via kernel density estimation.

There have been many works on approximating MCMC sampling errors, including
investigation of quantiles and the amount of computation required to reach some level
of accuracy — see for example Doss et al. (2015); Flegal et al. (2008); Liu et al. (2016).
In particular Sequential Monte Carlo samplers (Del Moral et al., 2006) have similarities
with nested sampling, and their sampling errors are better understood. For some related
methods such as the Tootsie Pop algorithm (Huber and Schott, 2014) and accelerated
simulated annealing (Bezáková et al., 2008) the error distribution is known exactly,
although these techniques are less widely used. This paper introduces empirically tested
techniques for quantifying sampling errors from the nested sampling algorithm.

2 The nested sampling algorithm

Nested sampling (Skilling, 2006) is a numerical method computing Bayesian evidences

Z =

∫
L(θ)π(θ) dθ (3)

and samples from the posterior distribution

P(θ) =
L(θ)π(θ)

Z (4)

given some likelihood L(θ) and prior π(θ).

Initially n points, termed live points, are sampled randomly from the prior. At each
iteration i, the live point with the lowest likelihood Li is removed and replaced by a
new live point sampled from the prior subject to the constraint that it has a likelihood
higher than Li. Iterating until some termination condition is met generates a list of
discarded samples known as dead points, which are used to estimate the evidence and
make posterior inferences1. We refer to the completed nested sampling process as a run.

To compute the evidence, the many-dimensional integral (3) is reduced to a one-
dimensional integral in terms of the fractional prior volume within an iso-likelihood
contour. We define the fraction of the prior θ with likelihood L(θ) greater than some
value L∗ as X(L∗), where

X(L∗) ≡
∫
L(θ)>L∗

π(θ) dθ, (5)

and X ∈ [0, 1]. Provided the inverse L(X) ≡ X−1(L) exists2, the evidence (3) can be
expressed as

Z =

∫ 1

0

L(X) dX. (6)

1The remaining live points at termination can also be used if required, but termination conditions
can be chosen such that this makes a negligible difference to calculation results.

2A sufficient condition for L(X) ≡ X−1(L) to exist is for L to be continuous and π to have a
connected support. See Chopin and Robert (2010) and Feroz et al. (2013, Appendix C) for a more
detailed measure-theoretic discussion.
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0.0−H

run
terminates direction of iteration

mean step size ≈ 1/n

logX

L(X)X

L(X)

samples

Figure 1: A schematic representation of nested sampling with a constant number of
live points n. The curve L(X)X shows the relative posterior mass, the bulk of which
is contained in some small fraction exp(−H) of the prior and is only visible on a log
scale in X. The algorithm iterates inwards in X exponentially with stochastic shrinkage
ratios distributed according to (7).

Given a set of dead points with likelihoods Li, the corresponding prior volumes Xi

are unknown but are modelled statistically as Xi = tiXi−1, where X0 = 1 and each
shrinkage ratio ti is independently distributed as the largest of n random variables from
the interval [0, 1] (Skilling, 2006). Hence:

P (ti) = ntn−1
i , E[log ti] = − 1

n
, Var[log ti] =

1

n2
, (7)

and the algorithm samples within an exponentially shrinking part of the prior. This
exponential shrinkage is shown schematically in Figure 1.

2.1 Evidence estimation

Nested sampling therefore allows one to approximate the evidence (6) via a quadrature
sum over the dead points

Z(t) ≈
∑
i∈dead

Liwi(t), (8)

where t = {t1, t2, . . . , tndead
} are the unknown set of shrinkage ratios for the ndead

iterations of the nested sampling process, and each ti is an independent random variable
drawn from distribution (7). The shrinkage ratios define the prior volumes via Xi(t) =∏i
k=0 tk, and the wi are appropriately chosen quadrature weights roughly corresponding

to the volume of the “prior shell” to which a given dead point belongs. For example,
using the trapezium rule: wi(t) = 1

2 (Xi−1(t)−Xi+1(t)).

Given that the shrinkage ratios t are a priori unknown, we may quantify our knowl-
edge of Z by simulating sets of t according to (7), and working with the distribution
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of the resulting set of evidences {Z}t from (8) (Skilling, 2006). Typically one then
computes and reports a mean value and error for logZ from this distribution.

Several alternative methods for calculating evidence inferences are reported in the
literature. Skilling (2006) also proposes an error calculation based on relative entropy,
which demonstrates that the uncertainty of logZ is dominated by the Poisson variability
in the number of steps required to reach the bulk of the posterior mass. Keeton (2011)
uses distribution moments and running totals which are updated with each nested sam-
pling step. This method has been extended by Handley et al. (2015b) to allow the
splitting of multi-modal likelihoods into different clusters and the treatment of variable
numbers of live points. For a more detailed discussion of the convergence properties of
nested sampling evidences, see Chopin and Robert (2010).

Thus, the dominant sampling error in the evidence estimate (8) from perfect nested
sampling is from statistical variation in the unknown volumes of the prior “shells” wi(t)
that each point represents. The error from approximating the integral for Z with a sum
can be safely neglected unless n is very small3 (Skilling, 2006). There is also some
error from terminating the algorithm and truncating the sum, but this is can be made
negligible with appropriate termination conditions.

2.2 Parameter estimation

One may also perform posterior inference from nested sampling by using the dead points
to construct a set of posterior samples with weights proportional to their share of the
posterior mass (Skilling, 2006):

pi(t) =
wi(t)Li∑
i wi(t)Li

=
wi(t)Li
Z(t)

. (9)

As before, t is the set of prior shrinkage ratios and in the trapezium rule case wi(t) =
1
2 (Xi−1(t)−Xi+1(t)).

The weights defined by (9) present a departure from traditional sampling approaches
in that the wi(t) are random variables, with their stochasticity determined by (7).
When computing expectations (2) there is now an additional error associated with our
lack of knowledge of the precise values pi(t). Nested sampling software packages such
as MultiNest and PolyChord produce posterior files containing only the expected
values

E[pi(t)] =
e−i/nLi∑
j e−j/nLj

. (10)

To account for the stochasticity in the weights pi, Skilling (2006) suggests simulating
the prior volume shrinkage ratios t in the same manner as for evidence estimation, and
using these simulations to calculate a set of values for estimators such as (2). The
sampling error should then be estimated from the variation within this sample; we term

3The trapezium rule error is O(1/n2), and if required other methods such as Simpson integration
could be used.
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this the simulated weights method. We believe this procedure is the only estimate of
sampling errors in parameter estimation from a single nested sampling run proposed
in the literature. However it is in general an underestimate, as can be seen in the
numerical tests in Section 5. Section B of the supplementary material discusses this
underestimation of errors in detail.

We now describe why the simulated weights method does not capture all sources
of sampling errors, and in Section 4 we propose a new method for correctly computing
these errors.

3 Sources of sampling errors in nested sampling
parameter estimation

In order to understand why the simulated weights method underestimates sampling
errors, we require a result from Chopin and Robert (2010). They show that the expec-
tation integral (2) may be re-phrased in terms of the prior volume X via:

E[f(θ)] =

∫
f(θ)P(θ) dθ =

∫
f(θ)
L(θ)π(θ)

Z dθ =
1

Z

∫
f̃(X)L(X) dX, (11)

where f̃(X) is the prior expectation of f(θ) on some iso-likelihood contour L(θ) = L(X),

f̃(X) ≡ Eπ[f(θ)|L(θ) = L(X)]. (12)

The simulated weights approach amounts to discretising the integral (11) as

1

Z

∫
f̃(X)L(X) dX ≈ 1

Z
∑
i

f̃(Xi) Li
1

2
(Xi−1 −Xi+1), (13)

and, most importantly, further requiring that we may use f(θi) as a proxy for f̃(Xi) at
each point Xi, In some special cases f(θi) = f̃(Xi) for all θ and this approach is valid,
for example when f(θi) = f̃(Xi) ∝ − logLi (entropy computation), but in general it is
not. This can cause significant inaccuracies as iso-likelihood contours often span wide
ranges of different parameter values, as illustrated in Figure 2.

To summarise, the dominant sampling errors in estimating some parameter or func-
tion of parameters from perfect nested sampling typically come from two sources:

(i) approximating the unknown prior volumes wi(t) with their expectation E[wi(t)]
using (7);

(ii) approximating the mean value of a function of parameters over an entire iso-
likelihood contour f̃(Xi) with its value at a single point f(θi).

Errors from (i) are also present in evidence calculation; in the parameter estimation
case they are typically smaller as results depend only on the relative weights of the
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θ1
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Figure 2: Nested sam-
pling dead points and
iso-likelihood contours
for a two-dimensional
multi-modal likelihood
L(θ); darker shading shows
higher likelihoods. Iso-
likelihood contours can pass
through a wide range of
different parameter values.

samples. In contrast (ii) is only present in parameter estimation, where it is typically
a significant or dominant source of sampling errors. The relative contributions of (i)
and (ii) are empirically tested in Section A of the supplementary material, where they are
calculated for analytical cases by using exact values for weights wi(t) and by replacing
f(θi) with f̃(Xi). The simulated weights method underestimates sampling errors in
parameter estimation as it ignores errors from (ii).

We now introduce a new diagrammatic representation of nested sampling parameter
estimation to illustrate the two different sources of sampling errors.

3.1 Diagrammatic representation

Nested sampling transforms evidence calculations of any dimension into a 1-dimensional
problem4 in L(X) which can be entirely represented on a diagram like Figure 1. An
analogous diagram for parameter estimation must also illustrate sampling a single point
f(θi) on each iso-likelihood contour L(θ) = L(Xi) from the distribution P (f(θ)|Xi).

We propose a generalisation of Figure 1 for visualising parameter estimation prob-
lems, and present it in Figures 3(a) to 3(e). The top panel in each figure is similar to
Figure 1 and shows the relative posterior mass L(X)X at each value of logX. The lower
central panel shows the probability distribution P (f(θ)|X) and its mean f̃(X). The pos-
terior distribution is shown on the left — this is equal to the distributions P (f(θ)|X)
(the lower central panel) marginalised over X in proportion to the posterior weight at
each X (the top panel).

For these example plots we use d-dimensional spherical unit Gaussian likelihoods

L(θ) = (2π)
−d/2

e−|θ|
2/2 (14)

4For practical nested sampling problems implementation-specific errors can differ for two likelihoods
with the same L(X). For example if one likelihood has a much higher dimension and a much larger
number of modes than the other it may have larger errors from the implementation software.
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(a) f(θ) = θ1̂ with a 5-dimensional Gaussian likelihood (14) and a Gaussian prior (16).
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(b) f(θ) = θ1̂ with a 5-dimensional Cauchy likelihood (15) and a Gaussian prior (16).
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(c) f(θ) = θ1̂ with a 3-dimensional Gaussian likelihood (14) and a Gaussian prior (16).
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(d) f(θ) = θ1̂
2 with a 5-dimensional Gaussian likelihood (14) and a Gaussian prior (16).
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(e) f(θ) = |θ| (i.e. the radial distance from the likelihood’s maximum) with a 5-dimensional Gaussian
likelihood (14) and a Gaussian prior (16). In this case f(θi) = f̃(Xi) for all θ and sampling errors are
only from uncertainty in prior volume shrinkages and the trapezium rule approximation.

Figure 3: Nested sampling parameter estimation diagrams: in each case the top panel
shows the relative posterior mass at each value of logX (∝ L(X)X). The lower central
panel shows the distribution P (f(θ)|X) of values f(θ) on each iso-likelihood contour
L(θ) = L(X); the dashed line shows the expectation of this distribution which we
defined in (12) as f̃(X). The left panel shows the posterior distribution of f(θ), with
the dotted line showing its posterior expectation. The colour scale shows the fraction
of the cumulative probability distribution lying between some region and the median.
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and d-dimensional spherical unit Cauchy likelihoods

L(θ) =
Γ( 1+d

2 )

π(d+1)/2

(
1 + |θ|2

)−( d+1
2 )

, (15)

with d-dimensional co-centred spherical Gaussian priors

π(θ) = (2πσ2
π)
−d/2

e−|θ|
2/2σ2

π , σπ = 10. (16)

We denote the first component of the θ vector as θ1̂, although by symmetry the results

will be the same for any component. θ1̂ and θ2
1̂

are the first and second moments of the
posterior distribution of θ1̂.

The form of the distribution P (f(θ)|X) as X varies depends on the likelihood only
through the shape of the iso-likelihood contours L(θ) = L(X). Therefore the lower
central panel of the diagrams for some f(θ) is the same for any likelihoods with the
same contours — this can be seen in Figures 3(a) and 3(b), where the differences in
the posterior (left panel) are due only to the different posterior weights in logX (top
panel).

These diagrams can be constructed for any nested sampling calculation using the
posterior samples and kernel density estimation; this could provide insight into the
nature of the calculation and the relative contributions from the different sources of
sampling errors.

3.2 Transforming a parameter estimation problem into 2 dimensions

As illustrated by our diagrams, nested sampling parameter estimation is fundamentally
a 2-dimensional problem in L(X) and P (f(θ)|X). In fact a parameter estimation cal-
culation for some f(θ) given L(θ) is equivalent to a 2-dimensional problem for f∗(θ∗)
given L∗(θ∗) when

L∗(θ∗) = L(X), (17)

P (f∗(θ∗)|X) = P (f(θ)|X), (18)

for all X. Any transformation satisfying (17) and (18) will leave our proposed diagram
for the calculation unchanged. Parameter estimation can also be represented as a 1-
dimensional problem in L∗(θ∗) = L(X) combined with a univariate stochastic process
for each dead point i with the distribution P (f(θ)|Xi).

One way to express a general nested sampling calculation in 2 dimensions is to map
it onto the unit square θ∗ = (X,Y ) with uniform priors X,Y ∈ [0, 1] and a likelihood
L∗(θ∗) = L(X) which is independent of Y and satisfies (17). In this case X is as
before the remaining fractional prior volume and Y parameterises each iso-likelihood
contour. Using inverse transform sampling, for a general f(θ) a corresponding f∗(θ∗)
satisfying (18) is

f∗(θ∗) = f∗(X,Y ) = F−1(Y |X), (19)
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where F−1(Y |X) is the inverse of the cumulative distribution

F (Y |X) =

∫ Y

−∞
P (f(θ) = h|X) dh. (20)

As an example let us consider d-dimensional spherically symmetric likelihoods such
as (14) or (15) with co-centred spherically symmetric priors such as (16). Then X(θ) is
a function only of the radial distance from the centre |θ|, and the iso-likelihood contours
L(θ) = L(X) are hyperspherical shells of some radius |θX |. The probability distribution
of a single parameter θ1̂ (a single component of θ) on such an iso-likelihood contour is
then

P (θ1̂|X) =

 Γ( d2 )
|θX |Γ( 1

2 ) Γ( d−1
2 )

(
1− θ2

1̂

|θX |2

) d−3
2

if − |θX | < θ1̂ < |θX |,
0 otherwise.

(21)

θ1̂ can be sampled directly or used to calculate the inverse cumulative distribution
which together with knowledge of the function L(X) allows the parameter estimation
of a d-dimensional Gaussian to be transformed into a 2-dimensional problem on the unit
square.

Samples from (21) can be generated efficiently using the symmetry around θ1̂ = 0

and the change of variables Θ = θ2
1̂
/|θX |2 to give a Beta distribution

P (Θ|X) =


Γ( d2 )

Γ( 1
2 ) Γ( d−1

2 )
Θ−

1
2 (1−Θ)

d−3
2 if 0 < Θ < 1,

0 otherwise,
(22)

Θ ∼ Beta

(
1

2
,
d− 1

2

)
. (23)

This technique is used for the numerical tests in Section 5, and allows the efficient
sampling of high dimensional spherically symmetric distributions where only a few pa-
rameters are of interest without generating all the remaining uninteresting parameters.

4 Estimating sampling errors in nested sampling
parameter estimation

Following the discussion of sources of sampling errors in Section 3, we seek a method for
correctly calculating parameter estimation sampling errors from a single nested sampling
run. As no additional samples θi are available, a natural starting point is to utilise
resampling techniques such as the jackknife (Tukey, 1958), bootstrap (Efron, 1979) and
Bayesian bootstrap (Rubin, 1981), which estimate the uncertainty on inferences from a
set of samples by calculating the variation when samples are re-weighted.

However, as described in Section 2.2, the uncertainty in nested sampling weights
wi(t) produces additional sampling errors which are unique to the nested sampling
process. These are not accounted for by näıvely applying jackknives and bootstraps to
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posterior samples produced by nested sampling, and these approaches fail when tested
numerically. We instead require a method for dividing runs in a manner that preserves
the statistical properties of nested sampling. No such method exists in the literature,
so we present one in the remainder of this section.

4.1 Dividing runs into threads

Skilling (2006) describes how several nested sampling runs r = 1, 2, . . . with n(r) live
points may be combined simply by merging the dead points and sorting by likelihood
value. The combined sequence of dead points is equivalent to a single nested sampling
run with n =

∑
r n

(r) live points.

In fact, as we show now, the reverse procedure is also possible. A nested sampling
run with n points can be unwoven into a set of n valid nested sampling runs, each
with n(r) = 1. We term these single live point runs threads. During nested sampling,
each dead point i is replaced by a new point sampled uniformly within its iso-likelihood
contour L(θ) = Li. Starting from each initial live point that is generated, one may
follow this sequence of replacements down the set of dead points. This sub-sequence of
dead points is in fact a nested sampling run with n = 1. More formally:

Result: n threads.
Data: Dead points and the iterations at which they were sampled for a nested

sampling run with n live points.
Rank dead points by likelihood in ascending order;
while i ∈ n do

make a new stack i;
select one of the initial points sampled at the start of the run;
move the point out to the stack i;
while iteration < final iteration do

select point sampled at the iteration where previous point was replaced
(“died”);

move the point to the stack i;

end

end
Algorithm 1: Splitting a nested sampling run into threads.

A few points are worthy of note:

1. splitting a run by randomly selecting some fraction of the dead points will not
produce threads (i.e. single point nested sampling runs);

2. one may split a given nested sampling run into separate runs with n(r) 6= 1 by
first separating into threads, and then recombining threads as desired;

3. the algorithm can be easily adapted for varying numbers of live points by per-
mitting it to select multiple points on contours where n increases. This can result
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in constituent threads stopping or dividing into multiple threads part of the way
through the run;

4. typically there is only one point which was sampled uniformly from the prior
volume within each dead point i’s iso-likelihood contour L(θ) = Li — the point
which replaced i. A sufficient condition for a nested sampling run to only have
one unique division into threads is that L(X) is an injective function;

5. in order for the threads to be true nested sampling runs, care must be taken with
the termination conditions conditions used. See Section D of the supplementary
material for a full discussion.

Given that threads represent independent nested sampling runs, one may apply stan-
dard resampling techniques to the set of threads and approximate the entire sampling
error distribution without making assumptions about its form. This works as the logXi

values of the dead points i from some run with n live points form a Poisson process with
rate n, meaning the logXj values of the dead points j of a single thread are a Poisson
process of rate 1. For typical problems with computationally expensive likelihoods the
computational cost of even a large number of resampling replications is negligible.

Having introduced a framework for applying resampling to nested sampling param-
eter estimation we now present an example method using bootstrap resampling.

4.2 Bootstrap estimate of sampling errors

Given n observations x = (x1, . . . , xn), the bootstrap (Efron, 1979) creates new data sets
x∗b by drawing n samples from x with replacement. This corresponds to approximating
the probability distribution of a single data point x as

P (x) ≈ 1

n

n∑
i=1

δ(x− xi), (24)

where δ(x) is the Dirac delta function (Ivezić et al., 2014).

As the form of the distribution of sampling errors for a general nested sampling
parameter estimation problem is not known, we use the non-parametric bootstrap. In
this case the uncertainty on a quantity T (x) calculated from the data can be estimated
by calculating T (x∗b) for a number of resampled data sets b = 1, . . . , B. For example the
bootstrap estimate of the standard error on T (x) is

St.Dev.[T (x)] =

√√√√ 1

B − 1

B∑
b=1

(
T (x∗b)− T (x∗b)

)2

, where T (x∗b) =
1

B

B∑
b=1

T (x∗b). (25)

There are many methods for calculating approximate credible intervals on T (x)
from bootstrap replications {T (x∗b)} — see Efron and Tibshirani (1986) for a detailed
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discussion. A simple approach from Johnson (2001) is to estimate the boundaries of the
100α% and 100(1− α)% credible regions5 as

C.I.100α% (T (x)) = 2T (x)−G−1(1− α) (26)

C.I.100(1−α)% (T (x)) = 2T (x)−G−1(α), (27)

where G−1(x) is the inverse cumulative distribution of the bootstrap samples {T (x∗b)}.
B = 50 is typically sufficient for an estimate of the standard deviation of a parameter
estimate due to sampling errors, but depending on the method used credible intervals
on parameter estimates may require 1,000 bootstrap replications or more (Efron and
Tibshirani, 1986).

When the bootstrap is applied to nested sampling each observation xi is a thread,
and the number of observations is n. Calculating the quantity T (x) involves first com-
bining the set of threads x into a single run using Skilling (2006)’s method (described
in Section 4.1), then performing a standard nested sampling calculation including esti-
mating the weight of each point wi(t) statistically. Including the same thread multiple
times does not cause problems — repeated dead points θi = θi+1 are simply assigned
the weights wi(t) and wi+1(t) respectively.

The following algorithm provides a set of bootstrap replications and an estimate of
the standard deviation of sampling errors.

Result: Sampling errors and bootstrap replications for the nested sampling
calculation T (dead points,weights).

Data: List of dead points and the steps they were sampled at.
Divide dead points into a list of threads x using Algorithm 1;
while b ∈ B do

create a list of n threads x∗b by sampling x with replacement;
calculate T (x∗b) ≡ T (dead points∗b ,weights∗b);

end

calculate St.Dev.[T (x)] =

√
1

B−1

∑B
b=1

(
T (x∗b)− T (x∗b)

)2

.

Algorithm 2: Bootstrap sampling error calculation.

We find that bootstrap resampling gives better results than jackknife resampling,
which fails to calculate sampling errors on credible intervals of posterior distributions
of parameters such as C.I.84%(θ1̂). The Bayesian bootstrap was not used as it gives
each observation a non-integer weight, which requires modifying nested sampling’s use
of dead points to statistically estimate prior volume shrinkages.

Resampling techniques such as the bootstrap can generate many simulated runs
with the same number of live points n as the original run. In comparison sampling
error estimates from simply splitting a run into many smaller runs and assessing their
variation perform poorly, as shown in Section C of the supplementary material.

5If the distribution of bootstrap replications T (x∗b ) is skewed then the implied probability distri-
bution of T is skewed in the opposite direction, as can be seen from (26) and (27). See Loredo (2012,
Section 2) for a discussion.
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Figure 4: Relative posterior mass as a function of logX (∝ L(X)X) for Gaussian like-
lihoods (14) and Cauchy likelihoods (15) of different dimensions d with Gaussian pri-
ors (16). The lines are scaled so that the area under each of them is equal.

5 Numerical tests

Following Keeton (2011) we first test our new method using analytic cases where uncor-
related samples can be easily obtained from the prior within an iso-likelihood contour,
allowing us to perform perfect nested sampling. This ensures our results are not affected
by imperfect implementation of the nested sampling algorithm by a specific software.

As discussed in Section 3 perfect nested sampling parameter estimation problems
depend on the likelihood L(θ) and prior π(θ) only through the distribution of posterior
mass L(X) and the distribution of parameters on iso-likelihood contours P (f(θ)|X),
both of which are functions of both L(θ) and π(θ). We therefore empirically test our
method using a wide range of distributions of posterior mass, and examine several
functions of parameters f(θ) in each case. We construct such tests using Gaussian
likelihoods (14) and Cauchy likelihoods (15) of a variety of dimensions d, each with
a Gaussian prior (16). The different distributions of posterior mass for different d are
illustrated in Figure 4; the Cauchy distributions have extremely fat tails with significant
sample weights throughout the range of logX values explored.

We use the termination conditions described by Handley et al. (2015b, Section 3.4),
stopping when the estimated evidence contained in the live points is less than 10−4 times
the evidence contained in dead points (see Section D of the supplementary material
for a discussion of termination conditions for nested sampling parameter estimation).
Numerical calculations for high-dimensional cases are performed in two dimensions using
the technique described in Section 3.2.

As in Section 3 we denote the first component of the θ vector as θ1̂, although by

symmetry the results will be the same for any component. θ1̂ and θ2
1̂

are the first and

second moments of the posterior distribution of θ1̂, and the one-tailed Y% upper credible
interval C.I.Y%(θ1̂) is the value θ∗

1̂
for which P (θ1̂ < θ∗

1̂
|L, π) = Y/100.
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Figure 5: Sampling errors
in a perfect nested sam-
pling calculation for a 3-
dimensional Gaussian like-
lihood (14) and a uni-
form prior. The shading and
black lines show the ana-
lytic posterior distribution
and the 68% and 95% credi-
ble intervals. The red lines
show the calculated poste-
rior credible intervals for a
nested sampling run with
n = 100, and differ from the
analytic answer due to sam-
pling errors.
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5.1 3-dimensional Gaussian example

We first test our bootstrap approach to estimating sampling errors on a 3-dimensional
Gaussian likelihood (14) — Figure 5 illustrates sampling errors on posterior distributions
of parameters θ in this case. Unlike the simulated weights method, the mean estimates
of sampling errors from our method are very close to measurements of sampling errors
from repeated calculations — this shown in the second row of Table 1. Furthermore the
fractional variation of estimates from single runs around the mean estimate is similar
to that from the simulated weights method, as shown in the fourth and fifth rows,
indicating our method will give a reasonable estimate of sampling errors when only a
single nested sampling run is available.

The final two rows of Table 1 show the empirical coverage rates for bootstrap credible
intervals are very close to their nominal values. Figure 6 shows estimates of the full
sampling error distribution from a single run nested sampling run using the bootstrap
and simulated weights methods; the bootstrap results are much closer to the sampling
errors observed in repeated calculations, and give accurate estimates of the 1σ and 2σ
credible intervals.

Section E of the supplementary material shows similar numerical tests for a 3-
dimensional Cauchy likelihood (15). Even for this challenging, fat-tailed distribution
our method performs similarly to the Gaussian case, giving accurate mean error es-
timates and estimates of credible intervals with measured coverage similar to their
nominal coverage.
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θ1̂ θ2
1̂

C.I.84%(θ1̂)

Repeated runs St.Dev. 0.032(0.2) 0.050(0.4) 0.055(0.4)

Bootstrap St.Dev. / Repeats St.Dev. 1.003(7) 0.998(7) 1.008(8)

Simulated wi St.Dev. / Repeats St.Dev. 0.715(5) 0.882(6) 0.785(7)

Bootstrap St.Dev. estimate variation 7.5(1)% 8.6(1)% 17.7(3)%

Simulated wi estimate variation 6.0(1)% 7.3(1)% 19.7(3)%

Bootstrap C.I.95% 0.053(3) 1.080(5) 1.077(7)

Bootstrap Mean±1St.Dev. coverage 68.4% 68.2% 68.9%

Bootstrap C.I.95% coverage 95.0% 93.4% 93.1%

Table 1: Sampling errors for a 3-dimensional Gaussian likelihood (14), a Gaussian
prior (16) and n = 200. The first row shows the standard deviation of 10,000 nested
sampling calculations. The second and third rows show the mean of 2,000 error estimates
from the bootstrap and simulated weights methods respectively as a ratio to the error
observed from repeated calculations; 200 weight simulations and 200 bootstrap replica-
tions were used for each run. The fourth and fifth rows show the standard deviations of
sampling error estimates for both methods as a percentage of the mean estimate. The
sixth row shows the mean of 100 bootstrap estimates of the one-tailed 95% credible
interval on the calculation result given the sampling error, each using 1,000 bootstrap
replications. The final two rows show the empirical coverage of the bootstrap stan-
dard error and 95% credible interval from the 10,000 repeated calculations. Numbers in
brackets show the error on the final digit.

5.2 Sampling errors in different dimensions

We now verify the bootstrap method’s accuracy for Gaussian (14) and Cauchy (15)
likelihoods of between 2 and 50 dimensions. Figure 7 shows bootstrap sampling er-
ror estimates accurately match the errors measured from repeated calculations, even
for the challenging fat-tailed Cauchy distribution. In contrast the simulated weights
method consistently underestimates the sampling errors in parameter estimation, al-
though as expected it is accurate for errors on the evidence logZ. See Section B of the
supplementary material for a detailed discussion of the simulated weights method.

As the dimension d increases, Figure 7 shows parameter estimation errors decreasing
and the evidence errors increasing (with a constant number of live points n). This effect
is due to the posterior being contained in a smaller fraction of the prior volume in
higher dimensions. In the spherically symmetric cases considered, the range of logX
to be explored increases approximately linearly with the dimension d, as can be seen
in Figure 4. With a constant number of live points, the number of samples is therefore
also approximately proportional to d.

In parameter estimation from posterior samples only points’ relative weights matter,
so the increased number of samples in higher dimension problems typically increases
accuracy as can be seen in Figures 7(a) and 7(b). However for high dimensional Cauchy
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Figure 6: Estimated distributions of sampling errors for parameter estimation with a
3-dimensional Gaussian likelihood (14) for perfect nested sampling with n = 200. For
each estimator the first plot uses values from 5,000 nested sampling runs; the second
and third plot are calculated from a single nested sampling run and use 5,000 simulated
weights and bootstrap replications. The bootstrap distributions are calculated using (26)
and (27). The simulated weights and bootstrap values were adjusted by subtracting the
difference between their run’s expected value for each estimator and its analytical value
to line up the distributions. The colour scale shows the fraction of the cumulative
probability distribution lying between some region and the median.

likelihoods (15) the posterior mass is spread over a wide range of logX values, so errors
in the relative weights of points become large in high dimensions6.

For logZ the dominant error is in the absolute value of point weights, which is
approximately proportional to the square root of the number of steps required to reach
the posterior (Skilling, 2006). logZ errors are therefore approximately proportional to√
d when n is constant, as can be seen in Figure 7(c).

6 Application to existing nested sampling software

Nested sampling software such as MultiNest and PolyChord can be easily modified
to output information about the step at which dead points were sampled and give sam-
pling error estimates using bootstrap resampling of threads. We are currently working
on incorporating this into future releases of PolyChord.

6When the errors in points’ relative weights become dominant the simulated weights method cap-
tures the majority of the sampling error, as can be seen for high dimensional Cauchy distributions
in Figure 7(b)
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(a) Parameter estimation sampling errors for Gaussian likelihoods (14).
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(b) Parameter estimation sampling errors for Cauchy likelihoods (15).
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Figure 7: Sampling errors for likelihoods of different dimensions d; all use use d-
dimensional Gaussian priors (16) and n = 100. Solid lines show the standard deviation
of the results of 2,000 calculations. Dashed and dotted lines show the mean of 500 stan-
dard error estimates using the bootstrap and simulated weights methods respectively.
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Sampling error estimates from our approach will be accurate provided the software
is performing nested sampling approximately correctly. However such software can only
approximately sample randomly from the prior within iso-likelihood contours — this
may result in additional errors which are specific to a given implementation and which
may not be captured by general methods such as resampling threads. Tuning param-
eters such as “num repeats” (the number of slice samples taken between dead points)
in PolyChord allow reduced correlation between samples at a higher computational
cost. Testing sampling error estimates from our method against those from repeated cal-
culations can be used to detect implementation-specific errors and to select appropriate
values for tuning parameters.

In addition our algorithm for dividing nested sampling runs could be used to detect
implementation-specific errors by testing the difference in correlation between threads
from the same run and from different runs. In principle this could allow estimates of
sampling errors to be corrected for the effects of correlations between threads.

We now demonstrate our method’s application to nested sampling results produced
with PolyChord.

6.1 Sampling errors on data fitting with PolyChord

We fit a set of points D = {xi, yi} with normally distributed errors σy on the y values
using a sinusoid

y(x) = A sin(ωx+ φ). (28)

The likelihood is then

L(θ) =
∏
i

1√
2πσy2

e−(yi−y(x))2/2σ2
y , (29)

where θ = (A,ω, φ) and we use a uniform prior for A ∈ (0, 1), ω ∈ (0, 10) and φ ∈
(−π/2, π/2). Numerical tests use 40 data points sampled from y(x) = 1

2 sin(2πx) with
Gaussian noise of size σy = 0.2 added to the y values; y(x) and the data points are shown
in Figure 8 and the posterior distribution of y(x) given the data is shown in Figure 9.
Posterior distributions on A, ω and φ can be calculated with nested sampling — these
are illustrated in Figure 10 along with example sampling errors.

Table 2 shows sampling errors from PolyChord with num repeats = 15 — the
default value for a 3-dimensional problem. As in perfect nested sampling, our bootstrap
estimates of the standard error agree with the variation in results observed, and the
observed coverage of credible intervals is close to their nominal coverage. This implies
that num repeats = 15 is sufficient for PolyChord to perform parameter estimation
accurately in this case.

7 Conclusion

Sampling errors in nested sampling parameter estimation arise principally from two
sources: uncertain sample weights wi(t), and approximating the average of a function
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Figure 10: Posterior distri-
butions and sampling er-
rors from fitting a sinusoid
to data (29) using Poly-
Chord. The shading and
black lines show an accu-
rate calculation of poste-
rior distribution and the
68% and 95% credible inter-
vals from combining 1,000
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show the calculated poste-
rior credible intervals for a
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of parameters on each iso-likelihood contour f̃(Xi) with a single sample f(θi). The lat-

ter error is not present in evidence calculation and has been previously ignored. The

added stochasticity from sampling each iso-likelihood contour makes nested sampling

parameter estimation a 2-dimensional problem, with a dependence on both the distri-

bution of posterior mass L(X) and the distribution of parameter values P (f(θ)|X) on

each iso-likelihood contour. We proposed a new diagram for representing both aspects

of the calculation, and presented it in Figures 3(a) to 3(e).
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A ω C.I.84%(ω)

Repeated runs St.Dev. 0.247(6) · 10−2 0.012(0.3) 0.019(0.4)

Bootstrap St.Dev. / Repeats St.Dev. 0.98(2) 0.98(2) 0.97(2)

Simulated wi St.Dev. / Repeats St.Dev. 0.71(2) 0.71(2) 0.73(2)

Bootstrap St.Dev. estimate variation 8.8(2)% 9.3(2)% 19.1(4)%

Simulated wi estimate variation 6.4(1)% 6.6(1)% 21.5(5)%

Bootstrap C.I.95% 0.577(0.2) 6.370(0.8) 6.632(1)

Bootstrap Mean±1St.Dev. coverage 69.4% 69.3% 66.9%

Bootstrap C.I.95% coverage 93.4% 95.0% 95.1%

Table 2: Sampling errors for the sinusoid fitting likelihood (29) using PolyChord
with n = 100. The first row shows the standard deviation of 1,000 nested sampling
calculations. The second and third rows show the mean of 1,000 error estimates from the
bootstrap and simulated weights methods respectively as a ratio to the error observed
from repeated calculations; 200 weight simulations and 200 bootstrap replications were
used for each run. The fourth and fifth rows show the standard deviations of sampling
error estimates for both methods as a percentage of the mean estimate. The sixth row
shows the mean of 100 bootstrap estimates of the one-tailed 95% credible interval on
the calculation result, each using 1,000 bootstrap replications. The final two rows show
the empirical coverage of the bootstrap standard error and 95% credible interval from
the 1,000 repeated calculations. Numbers in brackets show the error on the final digit.

Estimating sampling errors is vital for interpreting the results of a nested sampling

calculation, as well as for allocating computational resources — for example by choos-

ing an appropriate number of live points. However the current approach (the simulated

weights method) underestimates sampling errors as it does not account for approxi-

mating f̃(Xi) with a single sample f(θi). We proposed a new method for estimating

sampling errors using our new algorithm (Algorithm 1) for dividing a nested sampling

run into single live point runs (“threads”), which can then be resampled with techniques

such as the bootstrap. This works as the logXi values of the dead points i from some

nested sampling run with n live points form a Poisson process with rate n, meaning the

logXj values of the dead points j of a single thread are a Poisson process of rate 1.

Our method shows accurate and robust estimation of sampling errors in parameter

estimation in empirical tests, and compares favourably to the other methods discussed.

The new method can be easily incorporated into existing nested sampling software, and

will be reliable provided the implementation is performing the nested sampling algo-

rithm accurately. We are currently working on including nested sampling run division

and sampling error estimates from our method in future versions of PolyChord.
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Supplementary material

A Relative contributions of different sources of
parameter estimation sampling errors

The relative contributions of sampling errors from unknown prior weights of points wi(t)
and from taking a single sample θi on each iso-likelihood contour (discussed in Section 3)
can be calculated by using exact values for weights wi(t) and replacing f(θi) with
f̃(Xi). For a Gaussian likelihood (14) and Gaussian prior (16) both wi(t) and f̃(Xi)
can be calculated analytically for each θi — sampling errors from calculations using this
additional information are shown in Figure 11 and Table 3.

When calculating logZ, as expected, using exact weights wi(t) reduces uncertainty
to the small trapezium rule error and using f̃(Xi) has no effect. However for param-
eter estimation significant error remains when using exact wi(t) values7. The relative
contribution to sampling errors from estimating weights statistically is greatest when
f̃(X) has a strong dependence on X over the interval in X containing the bulk of the
posterior mass. In contrast when f(θ) = θ1̂ then f̃(X) = 0 for all θ, and the analysis

using f̃(Xi) always gives the analytically correct answer of zero. In all cases, when both
exact wi(t) and samples from f̃(Xi) are used the sampling error is reduced to close to
zero.

B Analysis of the simulated weights method

The simulation method underestimates sampling errors in nested sampling parameter
estimation, as shown by the numerical tests in Tables 1 and 2 and Figure 7. This is
because it assumes that for each dead point f(θi) ≈ f̃(Xi), neglecting the sampling
errors from taking a single sample on each iso-likelihood contour which are described
in Section 3. However some of this error is captured because repeatedly simulating
points’ weights behaves like a resampling scheme, with similarities to the Bayesian
bootstrap (Rubin, 1981). Resampling estimates the uncertainty on inferences from a
set of samples by calculating its variation when data points are re-weighted, but the
simulated weights method does so in a way that systematically underestimates sampling
errors. This behavior has not been documented in the literature.

For example, consider the case f(θ) = θ1̂ with a Gaussian likelihood (14) and Gaus-

sian prior (16) — here f̃(X) = 0 for all X(θ). If f̃(Xi) is used instead of f(θi) there
is no sampling error on estimates of θ1̂ regardless of any uncertainty in the weights of
each point pi, as can be seen in Figure 11 and Table 3. However the simulated weights
method gives a non-zero estimate which on average differs from the sampling errors
measured by repeated calculations by a factor of very close to 2−

1
2 = 0.707, as shown

in the third row of Table 1.

7For f(θ) = θ1̂ the error increases when exact wi(t) values are used. This is because the true weights
are more variable than the expected ones and this reduces the information content (entropy) of the set
of samples.
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Figure 11: Sources of sampling error in perfect nested sampling with a 3-dimensional
Gaussian likelihood (14), a Gaussian prior (16) and n = 200. Each plot shows the
distribution of the results of 5,000 nested sampling calculations. For each estimator the
first bar is from standard nested sampling, the second bar uses analytically calculated
prior volumes for its sample weights wi(t) and the third bar uses f̃(Xi) instead of f(θ)
to calculate estimates. The fourth bar uses both analytical wi(t) and f̃(Xi) values —
the error in this case is very small and calculation results are all close to the analytic
answer. The colour scale shows the fraction of the cumulative probability distribution
lying between some region and the median.

St.Dev.[{logZ}] St.Dev.
[{
θ1̂

}]
St.Dev.

[{
θ2

1̂

}]
Normal runs 0.169(2) 0.033(3) 0.051(0.5)

Exact wi(t) 0.394(4) · 10−5 0.040(4) 0.040(0.4)

Sampling f̃(Xi) 0.169(2) 0.000(0) 0.038(0.4)

Exact wi(t) and f̃(Xi) 0.394(4) · 10−5 0.000(0) 0.330(3) · 10−5

Table 3: The standard deviations of the sampling error distributions in Figure 11; num-
bers in brackets show the error on the final digit. For f(θ) = θ1̂, f̃(X) = 0 for all X(θ)

and so when f̃(Xi) values are used every calculation gives θ1̂ = 0 without any sampling
error.
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Further numerical tests show that in special cases when f̃(X) is the same at all X
the ratio of sampling errors from the simulated weights method to the error observed in
repeated calculations has a value close to 2−

1
2 . We give an analytical explanation for this

result below. However we note that for practical problems f̃(X) is a priori unknown and
likely varies in X, meaning the true sampling error cannot be predicted by adjusting
estimates from the simulated weights method.

B.1 Sampling error estimates for special cases when f̃(X) is
constant for all X

Variance of sampling error distribution

Nested sampling calculates the expected value of a function of parameters as
∑
i pif(θi).

Here the sampling error is the difference between the exact value of E[f(θ)] from the
posterior, and is distributed as

sampling error ∼ P

(∑
s∈S

psf(θs)− E[f(θ)]

)
. (30)

The variance of this distribution provides a measure of the size of the sampling er-
ror. As the nested sampling estimator is unbiased, the variance of the sampling error
distribution is equal to the variance of the results of repeated calculations:

Var

[∑
i

pi(t)f(θi)

]
=
∑
i,j

Cov [pi(t)f(θi), pj(t)f(θj)] . (31)

Expanding and dropping the explicit dependence of pi and fi on t and θi for brevity
gives

Cov [pifi, pjfj ] = E[pi]E[pj ]Cov[fi, fj ] + E[pi]E[fj ]Cov[fi, pj ]+

E[fi]E[pj ]Cov[pi, fj ] + E[fi]E[fj ]Cov[pi, pj ]+

E[(∆pi)(∆pj)(∆fi)(∆fj)] + E[pi]E[(∆fi)(∆pj)(∆fj)]+

E[fi]E[(∆pi)(∆pj)(∆fj)] + E[pj ]E[(∆pi)(∆fi)(∆fj)]+

E[fj ]E[(∆pi)(∆fi)(∆pj)]− Cov[pi, fi]Cov[pj , fj ],

(32)

where ∆y ≡ y − E[y].

Each fi is an independent random variable from the distribution P (f(θ)|Xi), so
the expectation of products of ∆pi∆fj are zero for all i, j. Furthermore expectation of
products ∆fi∆fj and the covariance Cov[fi, fj ] are zero for i 6= j.

The weights pi have a dependence on X, but in the case f̃(Xi) is the same for all
X the covariance terms Cov[fi, pj ] are also zero for all i, j. (32) therefore simplifies to∑

i

∑
j

Cov [pifi, pjfj ] =
∑
i

Var [pifi] +
∑
i 6=j,j

[E[fi]E[fj ]Cov[pi, pj ]] . (33)
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Expanding the variance term on the right hand side when f̃(X) is constant and fi and
pi are therefore independent gives∑

i,j

Cov [pifi, pjfj ] =
∑
i

[
E[pi

2]Var[fi]
]

+
∑
i,j

[E[fi]E[fj ]Cov[pi, pj ]] . (34)

Simulated weights method variance estimate

The simulated weights method corresponds to fixing the fi values while retaining the
stochastic dependence of pi on t. This means taking E[fi]sim = fi, Var[fi]sim = 0, which
combined with (34) gives

Varsimulated =
∑
i,j

fifjCov[pi, pj ]. (35)

Taking the expected values for fi and fj this becomes

E[Varsimulated] =
∑
i,j

E[fi]
2
Cov[pi, pj ] +

∑
i

(
E[f2

i ]− E[fi]
2
)

Var[pi]. (36)

Using that by definition
∑
i pi = 1 so

∑
i,j Cov[pi, pj ] = Var[

∑
i pi] = 0,

E[Varsimulated] =
∑
i

Var[fi]Var[pi]. (37)

In contrast the repeated runs method retains the sampling error of fi on θi and uses
the expected values of the weight E[pi]. Hence for a large number of trials E[fi]rep =

E[fi] = f̃(Xi), Var[fi]rep = Var[fi] for all i. Subbing into (34) gives

E[Varrepeats] =
∑
i

Var[fi]E
[
pi

2
]

+
∑
i,j

E[fi]
2
Cov[E[pi], E[pj ]] . (38)

Using that
∑
i,j Cov[E[pi], E[pj ]] = Var[

∑
iE[pi]] = 0,

E[Varrepeats] =
∑
i

Var[fi]E
[
pi

2
]
. (39)

Ratio of simulated weights and repeated runs variance estimates

Combining equations (37) and (39) gives the ratio of the simulated weights method and
repeated runs variances as

E[Varsimulated]

E[Varrepeats]
=

∑
i Var[fi]Var[pi]∑
i Var[fi]E [pi2]

=

∑
i Var[fi]

(
E
[
pi

2
]
− E [pi]

2
)

∑
i Var[fi]E [pi2]

. (40)

If Var[P (f(θ)|X)] is the same for all X this simplifies to

E[Varsimulated]

E[Varrepeats]
=

∑
i E
[
pi

2
]
− E [pi]

2∑
i E [pi2]

. (41)
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By definition the normalised weights pi ≡ wi(t)
Z(t) so

E [pi] = E [wi] E
[
Z−1

]
+ Cov

[
wi,Z−1

]
, (42)

E
[
p2
i

]
= E

[
w2
i

]
E
[
Z−2

]
+ Cov

[
w2
i ,Z−2

]
. (43)

Numerical results suggest that for a range of problems pi and Z are approximately
independent, in which case

E[Varsimulated]

E[Varrepeats]
≈
∑
i Var[fi]

[
(E
[
wi

2
]
− E [wi]

2
) + Var[Z−1]

E[Z−2] E
[
w2
i

]]∑
i Var[fi]E [wi2]

. (44)

Typical problems with a large n often also have Var
[
Z−1

]
� E

[
Z−2

]
, in which case

E[Varsimulated]

E[Varrepeats]
≈
∑
i Var[fi]

[
E
[
wi

2
]
− E [wi]

2
]

∑
i Var[fi]E [wi2]

. (45)

Keeton (2011) gives expressions for the weights as8

E [wi] =E[Li]
1

n

(
n

n+ 1

)i
, (46)

E
[
w2
i

]
=E[Li]2

2

n(n+ 1)

(
n

n+ 2

)i
. (47)

For a general likelihood the summation in (45) cannot be found exactly. However
one can estimate the ratio for each live point

E
[
wi

2
]
− E [wi]

2

E [wi2]
=

2
n(n+1)

(
n
n+2

)i
− 1

n2

(
n
n+1

)2i

2
n(n+1)

(
n
n+2

)i (48)

=
2− n+1

n

(
1− 1

(n+1)2

)i
2

(49)

≈ 1

2
when n� 1 and i� n2. (50)

This supports the observation that the ratio of simulated weights method estimates of
the standard deviation of stochastic errors to measurements from repeated runs is close
to 2−1/2 for special cases such as calculating the mean of a parameter for spherically
symmetric likelihoods with spherically symmetric co-centred priors.

8These formulae omit the trapezium rule and for brevity take wi(t) = Li(Xi−1 − Xi) — this
approximation has little effect on the results.
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Ratio in the special case where L(X) and P (f(θ)|X) are constant for all X

If the likelihood L is constant9 throughout the parameter space and Var[P (f(θ)|X)]
is the same for all X then the likelihood terms in the numerator and denominator
of (45) cancel and the summation can be found exactly. Furthermore estimates of Z
are very precise in this case as there is no stochastic variation in {Li}, justifying the
approximation (45). In this case the ratio is

E[Varsimulated]

E[Varrepeats]
≈
∑
i E
[
wi

2
]
− E [wi]

2∑
i E [wi2]

(51)

=

∑
i

[
1
n

(
n
n+1

)i
+ 1− 2

n(n+1)

(
n
n+2

)i]
∑
i

2
n(n+1)

(
n
n+2

)i (52)

=
1

2 + 1
n

, (53)

where the final step sums the geometric series and neglects terms from the truncation
of the sum due to termination of the nested sampling run.

C Split runs method

Instead of spending all available computational resources on a single nested sampling
run with n live points, one might consider performing N smaller runs with n/N live
points and estimating the sampling error from the variation of the smaller runs —
for example as 1/

√
N times their sample standard deviations. However this provides

a limited number of sub-runs, and does not give accurate credible interval estimates.
Furthermore while sampling errors in nested sampling are typically proportional to
1/
√
n, this breaks down when the number of samples is small due to trapezium rule

errors in sample weights which are O(1/n2). As a result multiple runs are best analysed
by combining them into a single run (Skilling, 2006).

Sampling error estimates from taking the standard deviation of the results of N = 20
sub-runs and multiplying by 1/

√
N are shown in Table 4. The split runs method is

inaccurate for the approximately log-normally distributed sampling errors in Z as well
as for credible intervals on distribution tails such as C.I.84%(θ1̂), as can be seen in the
third row of Table 4.

D Termination conditions

The sensitivity to termination conditions can be far higher for parameter estimation
than for evidence calculation. This is both because parameter estimation can have much
smaller sampling errors, and because the region close to the likelihood peak can have

9We assume L(X) has an infinitesimal slope to give direction to nested sampling’s inward iteration.
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Z θ1̂ C.I.84%(θ1̂)

Repeats St.Dev. 0.111(1) · 10−4 0.032(0.2) 0.055(0.4)

Split into 20 St.Dev. / Repeats St.Dev. 1.332(15) 1.012(8) 0.972(8)

Bootstrap St.Dev. / Repeats St.Dev. 1.009(8) 1.003(7) 1.008(8)

Split into 20 St.Dev. estimate variation 37.9(6)% 16.4(3)% 16.1(3)%

Bootstrap St.Dev. estimate variation 17.6(3)% 7.5(1)% 17.7(3)%

Table 4: Test of the split analysis method using perfect nested sampling with a 3-
dimensional unit Gaussian likelihood (14), a Gaussian prior (16) and n = 200. The first
row shows the standard deviation of results from 10,000 nested sampling calculations.
The second row shows the mean estimate of sampling error standard deviation from
2,000 individual runs using the split method, breaking each run into 20 smaller runs
with n = 10. The third row shows the mean of 2,000 bootstrap estimates of the sampling
errors for comparison. The fourth and fifth row shows the standard deviation of error
estimates from the split method and bootstrap method as a percentage of the mean
estimate. Numbers in brackets show the error on the final digit.

very high weight for some f(θ). For example for the Gaussian likelihood (14) an esti-

mator such as f(θ) = |θ|−1
may show significant errors due to termination conditions

which were perfectly adequate for calculating logZ. Numerical tests in this paper use
the termination conditions described by Handley et al. (2015b, Section 3.4), stopping
when the estimated evidence contained in the live points is less than 10−4 times the
evidence contained in dead points.

When splitting runs into their constituent threads (Section 4.1) then even in per-
fect nested sampling termination conditions must be chosen carefully to avoid causing
differences between threads from different runs which terminate at different likelihoods.
This typically happens when

1. termination conditions are worked out from the current set of dead points — e.g.
estimating the evidence Z remaining as in Handley et al. (2015b, Section 3.4).
This means some runs continue for longer than others;

2. the final point which violates the condition is kept. This means threads from
small runs are much more likely to have final points far exceeding the termination
condition than threads from large runs.

When comparing threads from different nested sampling runs, their equivalence can
be maintained by using a termination condition which does not infer anything from
the previous points, such as setting a fixed likelihood value Lterm for termination and
discarding any point that exceeds it. As we do not mix threads from different runs in
our numerical tests we do not need this approach.
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θ1̂ θ2
1̂

C.I.84%(θ1̂)

Repeated runs St.Dev. 0.044(0.3) 0.573(4) 0.119(0.8)

Bootstrap St.Dev. / Repeats St.Dev. 1.005(7) 1.003(8) 1.002(8)

Simulated wi St.Dev. / Repeats St.Dev. 0.717(5) 0.994(8) 0.926(7)

Bootstrap St.Dev. estimate variation 9.3(1)% 12.7(2)% 16.9(3)%

Simulated wi estimate variation 8.0(1)% 12.0(2)% 17.4(3)%

Bootstrap C.I.95% 0.072(5) 6.70(7) 1.69(2)

Bootstrap Mean±1St.Dev. coverage 68.6% 68.8% 68.7%

Bootstrap C.I.95% coverage 95.1% 92.1% 92.1%

Table 5: Sampling errors for a 3-dimensional Cauchy likelihood (15), a Gaussian
prior (16) and n = 200. The first row shows the standard deviation of 10,000 nested
sampling calculations. The second and third rows show the mean of 2,000 error estimates
from the bootstrap and simulated weights methods respectively as a ratio to the error
observed from repeated calculations; 200 weight simulations and 200 bootstrap replica-
tions were used for each run. The fourth and fifth rows show the standard deviations of
sampling error estimates for both methods as a percentage of the mean estimate. The
sixth row shows the mean of 100 bootstrap estimates of the one-tailed 95% credible
interval on the calculation result given the sampling error, each using 1,000 bootstrap
replications. The final two rows show the empirical coverage of the bootstrap stan-
dard error and 95% credible interval from the 10,000 repeated calculations. Numbers in
brackets show the error on the final digit.

E Additional numerical tests: 3-dimensional Cauchy
likelihood

Table 5 shows numerical tests of sampling error estimates with a 3-dimensional Cauchy
likelihood (15) with a Gaussian prior (16). As in the 3-dimensional Gaussian case shown
in Table 1, the mean estimates of sampling errors from our bootstrap method are very
close to measurements of sampling errors from repeated calculations — this can be seen
in the second row of Table 5. Again the empirical coverage rates for bootstrap credible
intervals are close to their nominal values, as shown in the final two rows.


	1 Introduction
	2 The nested sampling algorithm
	2.1 Evidence estimation
	2.2 Parameter estimation

	3 Sources of sampling errors in nested sampling parameter estimation
	3.1 Diagrammatic representation
	3.2 Transforming a parameter estimation problem into 2 dimensions

	4 Estimating sampling errors in nested sampling parameter estimation
	4.1 Dividing runs into threads
	4.2 Bootstrap estimate of sampling errors

	5 Numerical tests
	5.1 3-dimensional Gaussian example
	5.2 Sampling errors in different dimensions

	6 Application to existing nested sampling software
	6.1 Sampling errors on data fitting with PolyChord

	7 Conclusion
	References
	Appendices
	Supplementary material
	A Relative contributions of different sources of parameter estimation sampling errors
	B Analysis of the simulated weights method
	B.1 Sampling error estimates for special cases when (X) is constant for all X
	Variance of sampling error distribution
	Simulated weights method variance estimate
	Ratio of simulated weights and repeated runs variance estimates
	Ratio in the special case where L(X) and P(f()|X) are constant for all X


	C Split runs method
	D Termination conditions
	E Additional numerical tests: 3-dimensional Cauchy likelihood

