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I BASIC CONSIDERATIONS

(i) Sampling in research design 

We might want to design a research project to investigate the livestock
of farms in an area to be visited on a field course, or to find out where the
households on a particular estate do their shopping, or to measure an island's
soil properties. In each of these cases, we want to make generalisations
about a large number of units (elements) in a population consisting of all
the elements (farms, households, possible measuring points) whose character-
istics we want to describe.

In some cases, we can undertake a complete study of these elements, as
we might with shops in a small centre, and on other occasions we might
deliberately pick out for study a few items, for example, several towns of
the British Isles. But generally our resources do not stretch to collecting
data about all the elements in the population, and we have to make inferences
about the whole population by studying only some of them.

Even if our resources were adequate, a more economical way of carrying
out our study would be to draw a sample from the population. Clearly a sample
will only approximately represent the characteristics of the parent population,
since it only contains part of it, but sampling theory enables us to estimate
the likelihood of our sample being a good representation of the population,
provided we have followed certain rules in the choice of elements for the
sample.

(ii) Sampling and probability 

This book is mainly concerned with probability sampling, which requires
that each element in the population has a nown c ance of se ection for the
sample. Its simplest form is the 'simple random sample' in which all elements
have an equal chance of inclusion. This means that any particular sample, any
combination of elements, drawn from a population would have the same chance
of occurring as any other sample of the same size.

If a researcher only looks at the fields he can see from the road, or
interviews the people who happen to be in the street, his sample is clearly
biased. It does not surprise us that students sent to interview shoppers in
a market each return with a sample consisting of a different sort of people,
elderly ladies, young men, or whoever the student found it easiest to
approach. However, it is harder to realise that we cannot choose elements 'at
random', without any selection bias. Researchers sampling from a list of names
may tend to select more from one part than another; a biogeographer throwing
a stick to find a random point may subconsciously direct it towards some
interesting vegetation; if we place a small quadrat frame over a part of the
crop in a field, can we really do so without considering if the location
chosen is above, below or close to the average for the field? Only a method
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in which all the subjective choice is removed ensures that each sample, each
possible combination of elements, has exactly the same chance of selection.
Only if we have strict rules which prevent the researcher, or his agents such
as field-workers, using 'judgement' at any stage can a sample be subjected
to statistical testing on the basis that it is truly a probability sample.
One of the theoretical texts such as those in section A of the bibliography
should be consulted by those wanting a detailed discussion of sampling theory.
In the sections which follow, we summarise the main conclusions which have
the greatest relevance for the practical design of samples.

(iii) What is a 'good sample'? 

The major paradox of sampling is that, since we are trying to find out
about a population whose characteristics we do not know, we can rarely measure
the success with which our sample represents that population. Sampling theory
enables us to estimate the range around each sample statistic within which we
expect the true population value or parameter to lie, with a calculable margin
of error.

If a number of samples were drawn from a population they would provide
a number of estimates of such population parameters as the mean. While each
sample might give us a different estimate of the mean, the spread of all
possible samples of that size that we could conceivably select forms a dis-
tribution scattered around the true mean, the population parameter. We can
calculate statistics to describe the characteristics of any distribution, the
most important for our purpose being the variance, a measure of the spread
around the mean, or its square root, called the standard deviation.

The standard deviation is found by calculating the deviation of each

item together, dividing by the size of the sample, and finally taking the
square root, so that it will be in the same units as the mean. Where the
sample is small, dividing by (n-1) rather than n, the sample size, will give
a significantly larger answer. This compensates for the fact that the smaller
the sample, the less likely it is to have as large a variability as the popu-
lation itself.

The usual formula for the standard deviation of a sample is:

(1)

In sampling theory, the standard deviation of the distribution of all the
possible sample means around the true, population mean is called the standard 
error of the estimate, because each sample mean will be a more or less accur-
ate estimator of the true value. The more variable the population itself, the
more likely we are to have a sample which is very different from the popula-
tion, and the greater the range of possible estimates. The standard error is
therefore larger when we are measuring something which is very variable in
the elements of the population.
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We need to know this standard error if we are to have an indication of
the likelihood of having drawn a 'good' sample, one which closely corresponds
to the parent population.

Although we cannot actually calculate the standard error without knowing
the true population mean - the very thing we want our sample to estimate -
the distribution of values in our sample can give us some indication of the
probable standard error. The more variable the parent population, the more
variable the samples from it will tend to be. If we draw a very small sample,
it might not reflect all the variability in the population, because sometimes,
by chance, all the elements in the sample will be rather similar. However,
the larger our sample, the more likely it is to be as variable as the popu-
lation itself.

We therefore calculate the standard deviation of the values in our sample,
using formula 1. Then we estimate the standard error from it:

(2a)

where SE is the standard error, s is the standard deviation of the sample
(formula 1), n is the sample size, and N is the size of the population.

The expression (1-n/N) is designed to take into account the sampling 

fraction, the proportion of the population elements included in the sample,
(n/N), because we should expect the sample to resemble the population more
closely if it is a large proportion of it. Unless n is a very large proportion
of N, it will make little difference, and for practical purposes this factor
is frequently ignored. Thus the standard error of the mean is usually estim-

ated:

(2b)

Although realistically we would never be able to draw all the possible
samples from the population in which we were interested, we are able to use
their theoretical distribution as the basis for estimating the standard error
of any individual estimate, the value found in one sample. There are further
assumptions that we can make about the theoretical sample distribution.

If we drew all the possible samples from the population, we would expect
that as many of the samples would have means above the true mean as below.
The mean of the sample means would be the population mean.

In addition, the distribution of sample means would always form a normal 

curve, a distribution whose main mathematical property is that, regardless of
any particular mean and standard deviation, there will always be a constant
proportion of observations (in this case, sample means) within each standard
deviation unit (in the case of a sampling distribution, standard error unit)
of the mean. However variable the population, and thus however large the var-
iation in the possible samples, we would always expect 95 per cent of the
sample means to be closer to the true population mean than 1.96 times the
standard error; within 2.58 SE there will always be 99 per cent of sample
means. Statistical tables give the percentage at other standard error dis-
tances, but these are the most generally used, because we are usually inter-
ested in ensuring that we will be able to predict that our sample value is
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within a stated range of the true value, with a 95 per cent or 99 per cent
chance of being right.

This chance is called the confidence level, and is usually expressed as
a 95 or 99 per cent chance of being right, or conversely as a probability of
5 per cent or 1 per cent (.05 or .01) of making a statement which is wrong
about the relationship between the estimate and the parameter.

If 95 per cent of the sample means lie within 1.96 SE of the population
mean, 95 per cent of the time we expect the population mean to lie within the
same distance of our sample mean. Therefore, in order to be 95 per cent con-
fident of our prediction of the population value, we can add or subtract 1.96
times the standard error to our estimate, and assert that the true mean will
lie within this range.

The distance from the sample mean (in either direction) within which we
expect to find the population value is the confidence limit, calculated by:

(3)

where c is the confidence limit and z is the standard-error-unit measure for
the desired confidence level. The sign ± indicates that the figure given is
the range on either side of the mean, since we do not know whether our sample
mean is above or below the true value.

For the 95 per cent confidence level, the confidence limit is:

If the mean land holding in an area were found from a sample of 100 farms to
be 53 hectares, and the standard deviation to be 26, the confidence limits
could be calculated for the 95 per cent probability level:

We could therefore say that we were 95 per cent confident that the true mean
lies in the range 53 ± 5.1, that is, from 47.9 to 58.1 hectares. If we wanted
to be 99 per cent confident in our prediction of the population value, we
would calculate c using 2.58 instead of 1.96 in formula (3), and this would
give a confidence limit of 6.7; our population mean could then be said to lie
within the range 46.3 to 59.7 hectares with 99 per cent confidence.

When making assertions about population values on the basis of an esti-
mate from a sample, we can choose a high confidence level, a low chance of
being wrong, but then we have to make a less definite statement, that is, a
statement with wider confidence limits, a bigger range within which we expect
to find the population value.

The standard error, and thus the size of the confidence limits, depends
primarily on the variability of each characteristic studied. Samples which
are quite small may give very good estimates of phenomena which are fairly
uniform in the population as a whole, but we might find that when we calculate
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the confidence limits for variables with a more erratic distribution, our
assertions about the value for the population as a whole must be very qual-
ified indeed. In the case of the farms mentioned above, we might find that
the number of cows on each farm varied very little, and that we could say
that the average herd was 28 with a confidence limit of 2.2 and 99 per cent
confidence. In other words, we would be 99 per cent sure that the true value
was between 25.8 and 30.2 cows - a very close estimate indeed.

It would be rare for research reports to qualify all their assertions
about the population by the addition of confidence limits and a probability
of accuracy to each estimate, because their fluency would be greatly impeded.
However, the calculation should be performed for several variables reported,
and the results presented in a footnote or appendix, to indicate the confid-
ence with which the reader should approach the statements made in the text.
It is also important to give the standard deviation of variables in the study.
This will serve as an indicator of the standard error; a reader who sees a
large standard deviation and knows that the sample was small will approach
statements made about the population with caution, knowing that the confidence
limits will be large.

(iv) Sample size 

In general, a sample of 30 is the smallest that can be expected to con-
form to the normal distribution on which sampling theory, as outlined above,
is based. However, the larger the sample, the more accurate it will be, that
is, the nearer values calculated from it will be to the true population values.

Intuitively, we can see that if we want to estimate what proportion of
all students study geography, a sample of ten could not be expected to reflect
the whole student body as closely as a sample of a hundred would.

It is primarily sample size, and not the percentage of the population
included in the sample, which determines the accuracy of a sample. If we deal
out four hands of playing cards, each will tend to contain a mixture of cards,
of all suits, and of both high and low values. If we increase the number of
packs of cards to twenty, and the size of the hand to 52, the spread of suits
and values will be more even, although the sampling fraction will have de-
creased from 1 in 4 to 1 in 20.

Thus the larger our sample, the more confident we can be in our predic-
tion, or the narrower the range in which the predicted value lies. That is
why in the formula (3) for the confidence limit, the sample size, n, was in-
cluded. However, we should expect diminishing returns. Increasing the number
of cards in each hand from 13 to 18 would have a greater effect than adding
5 cards to a hand of 52. For this reason sampling theory indicates that it is
the square root of n, rather than n, that should be used in these calculations.

The second factor which, as has already been mentioned, will affect the
accuracy of a sample is the variability of the population. The more different
the elements are from each other, the larger the sample needed to represent
them accurately.

In a pack of playing cards, there are two colours, four suits, and 13
different values. We should need a comparatively small sample from the 20
packs to have a balance of the red and black cards, but a larger one would be



needed before the suits would be found in equal numbers. A still larger hand
would have to be dealt before the hand contained all 13 values in their
correct proportions.

The researcher will not usually know much about the things he sets out
to measure, but he will need some indication of the variability before he can
determine the sample size he needs for accuracy.

Equation (3) related the confidence limit to the standard-error-unit
measure for the desired confidence level and the standard error:

(3a)

(3b)

It therefore follows that we can determine the sample size needed for a given
confidence level and confidence limit by turning this information round:

or, more conveniently:

In the playing card example, we were concerned with attributes like colour
and suit which a certain proportion of the cards have. In the case of a pro-
portion rather than a mean, we cannot calculate a standard deviation. The
measure of variability which we use instead, for example in calculating the
standard error of a proportion, is v, measured by:

(5)

where p is the percentage with the characteristic.

Therefore, instead of formula (4b), we estimate the necessary sample size
using v instead of s:

(6)

Using these equations, if we need a sample to estimate the proportion of
households with cars to within 2 per cent (the confidence limit) with 95 per
cent confidence (the confidence level), in an area where we expect that only
half will have cars, we substitute in equation (6):

This means that we would need a sample of 2401 households to ensure the
precision specified.
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Some small scale studies will draw samples from small populations,
where the sampling fraction, the percentage included in the sample, will be
so large as to increase the accuracy of the sample significantly. The answer
obtained by formula (4) or (6) can be corrected to take account of the samp-
ling fraction:

(7)

where n' is the corrected sample size, n is the sample size calculated with
formula (4b) or (6), and N is the population size.

If there were 10,000 households in the area, we could estimate car
ownership to within 2 per cent with a sample of 1936 instead of the previously
estimated sample of 2401. However, if there were 100,000 households, the
corrected sample size from formula (7) would be 2345, not a very great re-
duction from the original estimate.

Normally only professional studies with considerable resources can con-
duct pilot exploratory work to find out the likely variability in the popu-
lation, but it is possible to draw on the experience of other research. For
human populations, sources such as population censuses can be used to make
an informed guess of the variability in the population to be sampled.

A more serious problem is that we are rarely concerned with only one
feature of the population, and the sample size needed for each will depend
on its variability. It is therefore the case that only an approximation to the
desired sample size can be made, and for this purpose Table 1 may be adequate.

Table 1 gives the sample size needed to estimate population values to
within a chosen percentage (the confidence limit) with a desired probability
of being right (the confidence level) if the variability of the population is
50 per cent. This was the case in the car ownership example, where half the
households had the characteristic. For a proportion, this is the maximum
possible variability, because v is the square root of 50 times 50, 2500, (49
times 51 is 2499), and the table therefore gives a conservative estimate of
sample size.

For a continuous variable, 50 per cent would not be the maximum possible
value. Not infrequently, the standard deviation is more than half the mean,
giving a coefficient of variability (100 s / R) over 50 per cent. The table
may therefore give an underestimate of the sample size needed for continuous
variables.

It can be seen that in order to obtain answers to within a narrow range
it is necessary to have a larger sample size if the population is variable.
In choosing a research project for a small scale study, it might be possible
to scale down the original ambitions to reduce the sample size needed.

Reducing the variability of the population could reduce the sample size
needed; to generalise about shopping patterns, a study of all households would
almost certainly need a larger sample than one concentrating on one particular
type of household, such as families with small children.

9
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The size of the target population can also be reduced, so that instead
of drawing the sample from a large area, a smaller one with fewer elements
is chosen. The sampling fraction may then have some effect on the sample size
needed, which can be adjusted with equation (7). This could not be done in
cases where the population was of unlimited size, for example consisted of
all possible sampling points in a river basin; in such a case, unless reducing
the area reduced the variability, there would be no increase in accuracy.

TABLE 1 

Sample sizes needed to estimate population
values with given levels of confidence ,

assuming a variability of 50% 1

and a very large population.'

(from equations 4b or 6)

1 16587 9604
2 4147 2401
3 1843 1067
4 1 037 600
5 663 384
6 461 267
7 339 196
8 259 150
9 205 119

10 166 96
15 74 43
20 41 24

Where the sample size given by the table is a substantial proportion of the
population size, the figure on the table should be corrected by formula (7)
in the text.

For a complex sample design which is expected to increase the standard
error by 1.5, the confidence limit should be set to 2/3 of the desired
limit, for example, for a desired confidence limit of ± 6%, read the sample
size for ± 4% (Section III, i).

The confidence limit is measured as a percentage. For an attribute, it is
expressed as the percentage having the characteristic. For a continuous
variable, it is given as a percentage of the mean.
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Redefinition of the target population is not something which a client
or sponsor of a commercial study would usually accept, but in academic re-
search the choice may be between an inadequate sample of a highly diverse
population, or a less wide-ranging one about which it is possible to infer
characteristics with greater precision.

In considering sample size, it is also necessary to decide the minimum
numbers needed in particular sub-groups of the population which are to be
compared. Statistical tests will require a minimum  in each category for any
meaningful conclusions to be reached.

A final consideration is the size of the data body that can be handled
at the processing stage. If the measurement to be undertaken on each element
is very lengthy, then the sample size may be limited accordingly.

Efficiency and resources of time and money have generally to be weighed
against each other. To reduce the sample error by 30 per cent, the sample
size will have to be doubled. This can be seen in Table 1, where the reduction
of the confidence limit from ± 6% to ± 4% necessitates an increase in sample
size from 267 to 600 at the 95% confidence level.

In the case of sampling from maps or lists, this increase in size may
not lead to a doubling of time and effort, but in the case of a questionnaire
survey, one of the leading research agencies estimates that doubling the
sample size would increase costs by 80%. Other studies involving field work
would expect similarly large increases.

In practice, in student work, sample size is usually determined by time
and resources. It may be that, having calculated the confidence limits for
the sample size that is feasible, it will be clear that statements could not
be made about the population with any degree of reliability. If we are unable
to conduct a study with a sample size sufficient to improve our population
estimates above the level of guesswork, then we might as well not conduct it
at all. Small scale work, even if it is only a very exploratory study, in-
tended to generate ideas rather than to draw conclusions about a population,
must recognise its limitations. Before embarking on any sampling procedure
the researcher should calculate the likely confidence limits for his estimates.
It will be in many cases a discouraging exercise, but is better done before-
hand than after collecting some meaningless data.

(v) Target population and sampling frame 

The results of a sample study are only applicable to the population from
which the sample was drawn, although they may stimulate other research, refute
or support generalisations made elsewhere, or contribute to the formulation
of ideas about a wider universe.

The researcher will normally define a population of a size and variabil-
ity that he can study with the resources he has available. However, he may
also have to re-define this target population to enable it to be drawn from
a convenient source, such as a list or a map, known as the sampling frame.

Establishing a sampling frame, which contains all the elements in the
target population, is the first stage in sampling. If the frame is imperfect,
the researcher has to decide in the circumstances of his particular study
whether to accept its deficiencies by re-definition of the study population,
or to amend the frame. It is only possible to compensate for obvious
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inaccuracies; often one can only evaluate the frame after completing the
research. If an old frame is being used, it may need up-dating.

There are two possibilities if the frame excludes part of the original
target population. For example, if the land use in a country is to be studied
from a map, but this does not cover the north east corner, we could obtain
another map, or prepare an additional map in some way, or alternatively we
could re-define the population in terms of the existing map. This would mean
stating that the study only concerned the part of the country shown. Provided
that this was made clear in any discussion of findings, the results for the
rest of the area would be by no means invalidated.

Similarly, in dealing with human populations, it is quite usual to ex-
clude those living in institutions such as army barracks, halls of residence
or hospitals, and the report will point this out.

Where an ineligible element is drawn in a sample, it cannot be replaced
by the next one on the list, as this would give the one following a second
chance of selection. If a list contains a large number of ineligible entries,
or substantial parts of a map are to be excluded, enough elements must be
chosen to enable the final total of eligible elements to correspond to the
desired sample size.

Sometimes an element will occur twice in a frame. In special cases,
duplication will be so rare that it can be conveniently ignored. For example,
so few individuals would qualify as members of more than one household that,
although they would actually have had two chances of selection, they would
hardly ever receive special treatment.

More usually, though, if an element occurs more than once, one occurrence,
normally the first, is taken as the one qualifying for inclusion in the sample.
If any of the others are selected, they are rejected as ineligible.

It is not always possible to find a comprehensive source to serve as a
sampling frame, but there may be two or more sources, which, with some over-
lap, include all the elements in the population. If all the sources were used,
elements which occurred in more than one would have an increased chance of
selection. The various sources are therefore placed in order, starting with
the most comprehensive or best organised. The first entry of each element is
then taken to be the decisive one. The initial selection of elements is made
from all the sources, using the same sampling fraction. All those in the
first list or on the first map are automatically included, but those chosen
in the others are checked to see if they had an entry in an earlier list,
or were on an earlier map; they would then be rejected as ineligible.

The form of the sampling frame will to a large extent determine the
possible sampling methods, but before looking in detail at the different
types of frame (chapters IV and V), it is helpful to consider the alternative
methods of selecting a sample.

II PROBABILITY SAMPLES 

(i) Simple random samples 

The most straightforward sort of sample is the simple random sample
already mentioned, where elements from a list or other sampling frame are
selected randomly, usually by using random numbers.

Each element in the sampling frame is allocated a unique identifying
number. Numbers are then read from a random number table, and elements in the
frame with those numbers are included in the sample. Random  numbers, published
in every set of statistical tables, are simply lists of numbers in which each
digit has an equal chance of occurring in each position. As many can be used
at once as are necessary to correspond with the size of the identifying num-
bers on the frame. For example, if the list were numbered 1 to 1000, three
digits could be read at a time, with the number 000 corresponding to 1000.
If the frame included 1001, four digits would be needed. If numbers are read
which do not correspond to numbers on the sampling frame, then these in-
eligibles are ignored, and the reading of numbers continues until enough
valid numbers have been read. It is usual to start from a randomly selected
point on the table.

Sampling theory assumes that if the same element is picked twice, it
will be included twice in the sample. In practice, this would not generally
be done, since it would tend to reduce the variability in the sample, because
two elements included would be identical. The technical term for not allowing
the same item to occur twice in the sample is sampling without replacement;
once an element has been selected, it ceases to have another chance of being
drawn, and those remaining have a slightly increased chance - although this
is only significant if the sample is a very large proportion of the population.

The procedure of the simple random sample will produce a sample which
can be of exactly the desired size, from any part of the sampling frame. It
might happen, since each digit has an equal chance of occurrence and there-
fore all combinations of elements in the frame could theoretically be en-
countered, that the chosen sample is concentrated in one part of the popu-
lation. If the list contained males and females, the chosen sample might be
of one sex only, and in theory it would be sometimes. If the sampling frame
covered different rock types, only one might be found in a sample drawn at
random.

Although simple random sampling is in many cases reasonably quick to use,
provided that the sampling frame can be readily numbered (as lists and maps
with grids usually are), better coverage could be ensured by other methods.

Deviations from the simple random sample will be used to increase pre-
cision, that is, to reduce the spread of sample estimates around the popu-
lation value, and eliminate the sort of 'freak' samples just mentioned. They
will also be used for practical reasons, or to reduce the cost of drawing the
sample. The alternative methods are discussed in the succeeding sections.

12 13



(ii) Systematic samples 

One simple and convenient method of ensuring even coverage throughout
a sampling frame is the systematic sample. Instead of using random numbers
which could indicate elements in any part of the population, a regular spacing
is used, taking every kth individual, or the intersections of a regular grid
laid over a map.

The sampling interval, k, is the reciprocal of the desired sampling
fraction, that is, k is N/n. If the sample is to contain 50 elements and the
sampling frame lists 5000, one element in 100 would be chosen by setting k
at 100.

The sample is selected systematically from a random starting point. This
is usually a number between 1 and k, in order to ensure that all the items
in the list before the first one chosen have a chance of selection. This is
the only random number which needs to be drawn. Thereafter the selection of
the components of the sample proceeds simply, with every kth one chosen.

It is subsequently very easy to check that the sampling method has been
correctly applied, because the sample will be regularly spaced; the sample
will come from every part of the original frame in the correct proportions.
However, there are two major reasons why the systematic sample, for all its
attractions and its frequent use, is not strictly a random sample.

Firstly, the systematic method does not enable all possible different
samples of the given size to be selected. The number of different samples is
limited by the sampling interval k. The selection of members of the sample
is not independent, because once the first individual has been chosen, all
the others are fixed. This violates one of the assumptions on which sampling
theory is based.

Secondly, if the sample produced by this method is to be analysed as if
it were a simple random sample, the frame needs to be in a random order.
Many lists can be assumed to be randomly ordered, but many lists and certainly
most spatial arrangements, whether plants, landscape features or the built
environment, contain order. In many cases there is a periodicity which may
not be immediately apparent. If a list of households is arranged in order
corresponding to their position along a street, taking a sampling interval
with an even number might produce a sample consisting entirely of the left-
hand pair of semi-detached houses, which might be different in size or other

i mportant features. Terrain or crops, too, might have periodic features which
could be picked up by a sampling method which used a regular interval.

An additional problem can occur when a list is arranged in an order,
for example, in ascending order of magnitude of some variable, (either one
being studied or one which correlates with variables being studied). In such
cases, the initial random start can affect the estimate of the population
mean, for a high starting point will bias the sample upwards, a low start
downwards. The effect may be reduced by treating the list as circular. After
drawing every kth element, those left at the end are added to those at the
beginning, and if there are more than k, another one is drawn; this is more
likely to give equal representation to high and low values but will not
completely solve the problem.
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A systematic sample is not equivalent to a random sample, but it may be
treated as one if the pitfalls discussed above are considered, and the re-
searcher feels confident that regularities in the sampling frame will not
lead to bias in the sample.

(iii) 'Systematic random' samples

Some of the problems of systematic samples can be minimised, while re-
taining the advantages of even coverage, by combining systematic sampling
with a greater random component. There are a number of ways of doing this.

The simplest method where periodicity is suspected is to use a series 

of random starts scattered throughout the frame, and to select with the
intercal k between them, as if each part constituted a separate list. For
example, in order to select 100 from a population of 1000, k would be 10.
We might choose 5 random numbers, starting with a random number between 1 and

1 0. If these happened to be 4, 26, 364, 505 and 787, we would start by samp-
ling 4, 14, 24, and then 26, 36, 46 ....  364, 374, 384 ....

Alternatively, a series of low starts could be made and a systematic
sample drawn with the same interval from each. If we wanted to take 100 from
1000 with 5 starts, we would use k = 50, and make 5 starts between 1 and 50.
Using an interval of 50 from each of these starts would have the same effect
as using an interval of 10 throughout the whole sequence.

A spaced random sample has the advantage of even coverage, but lacks the
advantage of quick selection. Random numbers are read for each member of the
sample, but the choice of an individual element excludes all its neighbours
up to a chosen distance away. This distance must be less than k/2, and the
closer to k/2 it is, the more evenly spaced this sample will be. Sampling
from maps might lend itself to this method, where the selection of a point
could exclude all the points in a circle around.

A randomly varying interval can be used instead of a fixed k. The inter-
val is varied each time by a small random number, r, added or subtracted, so
that the elements are chosen at intervals of k ± r, from a start between 1
and k. Whether r is to be added or subtracted each time should be randomly
determined. One way of doing this would be to read an extra random digit, an
odd number indicating plus, an even number (or 0) minus. Small random numbers
can be drawn quickly using playing cards; if r was to have a maximum value
of ± 7, the higher cards (and the picture cards) would be removed. Red cards
could indicate positive values, black cards negative values of r.

The desired k and the limits of r would have to be decided first, and
the random start made between 1 and k. With k = 50 and r between 1 and 7, a
starting point of 48 might be made. The next element would be chosen by
drawing a card. Red four would mean that the interval was 50 + 4, and the
element chosen would be 102. The next card might be black 1, and the interval
therefore 49, giving element number 151.

The final sample size using the k ± r method would be very close to the

sample size using a fixed k.

Many sampling frames will lend themselves to division into systematic 

blocks, where the number of blocks is the same as the desired sample size.
One element is then chosen from each at random. The advantage of this method
is that only small random numbers will have to be drawn.
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If the sample size is not an exact division of the population, the final
block will be smaller than the others. 'Blanks' are therefore added to it to
make it the same size, and if one of the blanks is chosen, no element from
the last section will be included in the sample. Thus each element in the
smaller section will have the same chance of inclusion as those in the other
blocks.

(iv) Stratification 

Systematic samples effectively choose elements from even-sized blocks
of the population. Strata, sub-divisions of the frame within which elements
are chosen, can be s imply even divisions of the population (or approximately
even, as in the case of the randomly varying interval systematic method),
but they can be sub-groups of the population of any size that are expected
to differ from each other in ways important to our study.

If we want a sample to contain both men and women, it would be sensible
to sub-divide the frame on the basis of sex before sampling (if we had the
information to do this), rather than run the risk of obtaining a sample
unrepresentative of the population. If we expect different areas to have dif-
ferent characteristics, it will be as well to consider them as separate
strata, and choose within each of them.

There are two benefits from stratifying in this way. Firstly, it will
ensure that each part of the population which we might want to compare will
be represented with a sample of sufficient size for the comparison to be made.
If it is known in advance what groups are to be tested, and they can be ident-
i fied in the frame, even approximately, it will be beneficial to stratify.

The second major advantage of stratifying is that it will tend to improve
population estimates, provided that the variable used for the stratification
is related to the subject of the study. For example, we might expect soil
types to be important determinants of aspects of plant communities. The more
different the plants on each soil type are, and the more internally homo-
geneous the communities are, the more the estimates of the population will
gain from the use of the strata.

If the frame were randomly ordered in terms of the variables being
studied, then there would be no gain from stratification (or from systematic
sampling) and a simple random sample would be as good. However, this complete-
ly random arrangement will be unusual, and although we will not normally be
able to calculate how much we have gained from stratifying, we can expect
that in almost all circumstances our population estimates will be more precise
as a result. Greater precision means a reduction in the spread of sample
estimates around the population parameter. Each individual sample may not be
better than each simple random sample, but freak samples will be less likely
to occur. This means that, at a given confidence level, the confidence limits
will be narrower for a given sample size - but the same effect might be
achieved more cheaply by drawing a larger simple random sample.

Even if the simple random sample will not produce great savings, it will
facilitate calculations, for even when the same sampling fraction has been
used in each stratum, the standard error is estimated by summing the variance
in each stratum:

16

(8a)

Unless the sampling fraction were very large, we could ignore the ex-
pression (1-n/N), and calculate the standard error:

(8b)

Many researchers make the assumption that the variability in all the
strata will be very similar and continue to use the formulas given in section
I, which are applicable to simple random samples. This has the advantage of
greatly easing the calculations, but each variable studied may have a differ-
ent variability in the strata, and a different degree of correlation with the
variable used to create the strata. For most variables the standard error
calculated by the simple random sample formula would be an over-estimate of
the sampling error.

(v) The procedure for stratifying 

In some cases, the sampling frame will be already divided into suitable
strata, for example, a trade directory may be arranged in different categories
of businesses, but in others the researcher will have to decide how to divide
up the frame.

If the sampling frame is conveniently divided, it is possible to draw
the part of the sample in each stratum separately, either randomly or systemat-
ically. Alternatively, a random sample with stratum quotas can be drawn by
dividing the sampling frame into 'strata ', which are either blocks of equal
size, or which correspond to differentiated parts of the frame, for example
soil types or areas of a town. Each part is allocated a proportion of the
sample, and random numbers are read until the quota in each stratum is full;
numbers are discarded if they fall in a part whose quota is completed.

There is no need for the strata to be of identical size, and there is
no rule about the appropriate number of strata, although Kish (1965, p.102)
suggests that between three and ten will normally be best.

If the sampling frame provides little information with which to perform
the stratification, supplementary information from another source may be used,
provided that it correlates with the desired stratifying variable.

Thus, if we wanted to include even coverage of areas with small and large
percentages of pensioners or particular house types, we could use a frame
such as the Electoral Register (section IV, iii) which did not contain any
information on these variables, but distinguish our strata by Census,
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airectory or map information for the same areas. This would probably be valid
even if the source was out of date, but the researcher would have to be sen-
sitive to any changes (new buildings, demolition and so on) which might

radically have altered the areas.

This suggests another important point: the researcher should always know
his study area as well as possible before commencing the formal data collec-
tion stage. He may in fact know the characteristics of the frame sufficiently
to make an approximate division on a subjective basis. The categorisation of
towns, house types, central and peripheral parts of a settlement or remote
and accessible parts of a nature reserve might be used to create strata which
would improve the population estimates. Provided that, having created the
strata, sampling proceeds rigorously, there is no obligation to use only in-

formation internal to the sampling frame.

(vi) The choice of sampling fraction 

The simplest form of stratification involves applying the same sampling
fraction, that is, taking the same proportion of elements, in each stratum.
There are occasions, though, when the use of a different sampling fraction

in particular strata can be beneficial.

The first case is when the variability of the population is very differ-

ent from one stratum to another, and is known or can be guessed in advance.

Thesma leh the variability, the smaller the sample size needed to provide
an estimate of its characteristics (section I, iv), and the same is true of
the part of the population in a stratum. A smaller number can be taken from
a more homogeneous stratum, saving resources which can profitably be applied

to the more variable strata.

If our sampling frame consists of mothers of children attending a partic-
ular nursery, for example, we might expect the mothers with jobs to differ
from those without. If the topic under investigation is perception of the
immediate vicinity, we might expect those not working to be more alike than
those who travel away from the area to work. If, on the other hand, we were

studying the behaviour patterns during the time between leaving and collecting
the children, the working mothers would almost certainly be less variable.

If we feel sufficiently confident in our decision about the differential
variability of the two strata, we might produce a more efficient sample (one
which gives a better population estimate than a simple random sample of the
same size) by using a larger sampling fraction in the more variable stratum.
However, it might happen that the working mothers are more uniform in their
perceptions, since they all work on a single industrial estate, and we would
then discover that we had made the wrong decision if we had over-sampled them.
Our allocation of the samples to the strata would then produce a less effic-
ient sample than a simple, unstratified, random sample. Only if we have strong
evidence for differential variability should we use different sampling frac-
tions, both because of the possibility of producing a worse sample than a
simple random sample, and because unequal allocation will necessitate weight-
ing, which, as the next section shows, complicates calculations.

The second case in which we might want to use different sampling frac-
tions is when one stratum is very small, and we need to have a sufficient

sample in that part to enable it to be compared with the rest. If the pro-
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portion of working mothers is very small, it might be necessary to sample
them at a higher rate even if we expect that they will prove more homogeneous.
The effect of this would be to increase the overall sampling error, making the
sample a less efficient way of determining the characteristics of the whole
population of mothers, but this disadvantage might be over-ridden by the
desire to be able to make comparisons between the two groups.

(vii) Weighting 

If the strata are sampled with different fractions, in order to generalise
about the population as a whole, the sample values for the individual elements
must be weighted by the reciprocal of the sampling fraction to represent their
true proportion in the population.

Table 2 illustrates a stratified sample for a study of three villages;
they have 200, 300 and 500 households respectively, and these are therefore

less variable than the first. The Table shows the calculations for the

owning households in the total population of the three villages. We can esti-
mate the proportion of car-owning households by dividing u by N.

TABLE 2 

Estimating population values with a weighted sample

Number of
Number of Sample car-owning

Strata
households size in households Weight for
in stratum stratum in sample stratum i

from
stratum i

Village one 200 35 18 200/35 = 5.7 102.9

Village two 300 30 21 300/30 = 10.0 210.0

Village three 500 35 14 500/35 = 14.3 200.0

Total N = 1000 n = 100

u, the estimated number with the characteristic, car-ownership, is 512.9
p, the estimated proportion with cars, is calculated:

p = u / N

= 512.9 / 1000

= .5129 or 51.29%
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Kish (1965, p.427) makes the point that there is no need for the weights
to be precise to several places of decimals; in most situations where weights
vary from 10 to 99, rounding the weights to 2 digits will be sufficiently
precise. Using 6, 10 and 14 as weights in the example above gives u = 514,
not very different from the precise answer. Weights do not have to equal the
reciprocal of the sampling fraction; more workable numbers may be obtained
by using numbers which are in proportion. Instead of 6, 10 and 14, we could
use 3, 5 and 7, but then instead of N in the calculations we would use

The formula for estimating the standard error of a weighted sample is:

(9a)

(9b)

(9c)

Weighting will counteract to some extent the beneficial effects of
stratifying because if some elements in the sample have very large weights,
it will reduce the variability of the sample. As a general rule, though, for
most variables we would expect our stratification to show appreciable gains
over a simple random sample, even with some weighting.

The most efficient sample will be obtained when the sampling fraction
in each stratum is proportional  to the variability in that stratum, measured
by the standard deviation. In other words, if we consider only one variable,
and the standard deviations in three strata are 5, 6 and 9, the best sample
is obtained when the sampling fractions are in these proportions.

If the costs of including each element in the sample vary between the
strata, this factor can also be taken into account in determining the alloc-
ation of effort to the strata. The best sample is obtained when the sampling

It would be rare indeed to have sufficient information to obtain a
sample which conformed to this optimum, but given the constraint about the
complexity of processing samples with very large weights, some such alloc-
ation can be attempted. In addition, only specialised sample designs of very
unusual populations would have strata where variability and costs differed
substantially.

(viii) Stratification after selection 

Occasionally, we may want to stratify on some variable which is not clear
on the frame, but which is measured in the course of the study. In these
situations, the original sample is sometimes weighted to correspond with the
known distribution of the population. This method should be used with care,
for if the final sample does not correspond closely to the characteristics of
the population in one or two important respects, it may be that the elements
that are included are not truly representative.

For example, we may want to weight a sample of people to correspond with
the age groups in the population as at the most recent Census. However, there
may be reasons why our sample does not have the correct proportions; our
sampling frame may have excluded mobile sections of the population, for
example, young people, or we may, by excluding those in institutions, have
reduced the number of elderly people. Simply to weight those young people or
those in the oldest age group whom we have included in the sample may not
improve our sample's estimates for the whole population, and may well make it
worse (Moser and Kalton, 1971, pp 99-100).

III CLUSTERING

(i) Reducing costs over a large area 

Sampling over a large area, or from a very dispersed population, can
produce a sample which is very precise, but enormously costly in time and
effort of data collection. Examples occur when field-work is necessary, and
a widely scattered sample, or one which is evenly spread as a result of using
systematic sampling, is difficult to survey. Similar problems occur when data
are from maps or other sources, and not all can be bought or sorted through
for the sample. In physical geographical studies, problems of access over
large areas might make a scattered sample very hard to use.

A common solution is to use a sample which is deliberately grouped
in a convenient number of small areas. In other words, we divide the frame
into parts, and not all of them are sampled. Small scale projects rarely

need to use cluster samples because they do not cover large areas.
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Yates (1960, p.19) writes that 'it will be more accurate to take 10 per
cent of all farms in each parish than to take all the farms in 10 per cent
of the parishes', in other words, a clustered sample will be less good at
estimating the population values than a sample of similar size drawn from
throughout the sampling frame.

Exactly how detrimental will be the effect of clustering on the pre-
cision of the sample is hard to determine. It will not be the same for all
variables, having the most adverse effects on the variables for which the
clusters are relatively homogeneous.

The ratio of the standard error of any sample to the standard error of
a simple random sample of the same size is the square root of what is usually
called the design effect (the ratio of the variance of a sample to that of
a simple random same of the same size). Since cluster sampling will almost
always increase the standard error, the ratio will almost always be more than
one while for stratified samples it will usually be less than one. Experience
shows that with clustered samples it usually varies from 1 to 2, depending
on the variable, and it is often around 1.5.

The calculation of the standard error of a clustered sample is complex,
particularly when, as is usually the case, clustering has been combined with
stratification. Rather than simply using the formulas for a simple random
sample, it will be better to correct them by the 'rule of thumb' ratio of 1.5
to take account of the design effect. Instead of formula (2), we might there-
fore estimate the standard error by:

(10)

where SE is the standard error of a sample where we expect the standard error
to be 1.5 times that of a simple random sample of the same size, s is the
standard deviation, and n is the sample size. The expression (1-n/N) will be
ignored unless the sampling fraction is very large.

The formula for calculating the sample size needed would be altered to:

(11)

where n is the sample size needed, s is the standard deviation, z is the
standard-error-unit measure for the desired confidence level, and c is the
confidence limit.

Table 1 can still be used to give an approximation to the sample size
needed if the result for the confidence limit 2/3 of the one desired is used.
It can be seen that if we make the assumption that the ratio will be about
1.5, our sample size needs to be twice as large as a simple random sample to
achieve the same precision. For example , at the 95% confidence level, if we
want to be within 9 per cent of the true value, we would have to have a sample
of 119 for a simple random sample, but 267 for a clustered sample.

Although the actual number used is arbitrary, multiplication by 1.5 will
generally be better than ignoring the adverse effects of clustering on the
ability of the sample to estimate the population values. The researcher should,
however, endeavour to minimise the design effect.
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The clusters should therefore be internally as heterogeneous as possible,
/so that the omission of whole clusters from the sample will not remove un-
usual parts of the population and thus bias the final sample. In stratified
sampling, the object is to create strata which are as different from each
other as possible, since all will be included. The opposite principle is

applied in creating clusters; each should be a microcosm of the population.

In many cases, clusters will be geographical sub-areas since that is why
clustering is more economical and has to be used. If it is thought that these
will be internally homogeneous, and different from each other, cluster samp-
ling is not appropriate. Maximising heterogeneity and concentrating data
collection in small areas are mutually contradictory for many of the features
of interest to geographers.

(ii) Creating clusters 

Clusters tend to be more homogeneous than the population as a whole, in
other words, elements within them tend to exhibit high intra-cluster cor-
relation. The procedures for creating clusters are designed to minimise the
effects of this.

Larger clusters, from each of which a small number of elements are taken,
will be best, because they are more likely to be heterogeneous.

The number of sampled elements in the cluster will be determined by the
savings that can be made, since clustering is undertaken for economic reasons.
If sample size can be increased by reducing travel time between elements, the
clusters should contain a reasonable assignment for one field-worker or one
day's work; a larger sample in one cluster would be unnecessary.

Heterogeneity can also be increased by skilful division of the sampling
frame. In urban areas, for example, gains may be made by producing elongated
clusters rather than compact ones, perhaps by aggregating wards; interviewing
would still be facilitated, because the areas would be contiguous and de-
limited, but the possibility of a cluster containing a single house type,
household type or 'social area' would be reduced.

If a list which is not spatially arranged is to be used as a sampling
frame, and it will be prohibitively expensive to spread data collection
throughout the area covered by the list, it can be arranged into clusters.
The quickest way of doing this is to draw a sample several times the size of
the required sample. These elements are then grouped into geographical areas
each of which contains the same number of elements. These clusters can then
be selected randomly, and the result will be a sample arranged in a more eco-
nomical way, although clusters will clearly not be as compact as might be de-

sired.

(iii) Selecting clusters 

The simplest form of cluster sampling is when the population is divided
into equal sized groups, and the resultant clusters randomly selected. All
elements within these, or a fixed proportion within the clusters drawn randomly
or systematically, are then included in the sample.
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If clusters of different size are randomly selected, and a fixed samp-
ling fraction is used, individuals in smaller clusters will have had a greater
chance of selection than those in larger ones. Elements will have to be
weighted by the size of the cluster from which they were drawn.

Where cluster sizes and sampling fractions both vary, two weights will
be needed for each element. Firstly the variable sampling fraction is correct-
ed by multiplying each element by the reciprocal of its cluster's sampling
fraction, as in Table 2, and then a weight proportional to the size of the
cluster is needed.

(iv) Sampling with probability proportional to size 

Clusters are usually created to economise at the data collection stage,
and the work-load in each is the smallest possible number of elements that
will make these savings. It is also preferable for each field-worker to be
allocated the same size of sample (except in circumstances where the work is
expected to be substantially more difficult in some areas, because of terrain
or greater difficulty in contacting respondents, perhaps). If the clusters
vary greatly in size, the equalisation of the sample size in each can be
achieved without weighting by selecting the clusters with a probability which
depends on their size.

The need for weighting results from the fact that selecting uneven-sized
clusters equally gives those in the smallest clusters a higher chance of
selection. If the initial selection of clusters is dependent on the cluster
size, this effect is compensated for.

The simplest method in practice is to allocate sequential numbers to the
elements in each cluster. In other words, the clusters are listed with a
cumulative total of elements within them.

Random or systematic sampling can be used to select from the list of
cumulative numbers; the clusters within which numbers fall are used in the
second stage of the sampling procedure. This is demonstrated in section IV,
vi (Figure 1).

In a multi-stage sampling design which is designed to avoid weighting,
every stage of selection except the last is made with probability proportional
to size. For example, if constituencies are used as the first stage, and
wards as the second, both should be chosen with probability proportional to
their size (number of electors). An equal number of elements should be taken
from each of the chosen wards.

The method requires that the population of each unit is known, or that
any errors will be constant for all the clusters (for example, if the inform-
ation on size is out of date, the error might be consistent if all the units
have increased their population in the same proportion).

Sampling with .probability proportional to size is the most convenient
form of cluster sampling.
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IV SAMPLING FRAMES 

(i) Convenient sampling frames 

Where resources are limited or time is short , the rapid application of
a sampling procedure to a readily obtainable sampling frame will greatly
assist the project.

At the expense of reducing generality, it might be reasonable to limit
a study to a sampling frame which can be easily obtained, and to devote pro-
portionally more resources to other aspects of the data collection.

For example, pilot or exploratory work on time geography (Thrift,
CATMOG 13 1977) might reasonably be limited to an institutional population,
such as nurses in a home, if the co-operation of the appropriate authorities
could be obtained. This might have the added advantage of reducing the expected
variability in the sample (there are only a certain number of shifts) and
thus reducing the necessary sample size.

Similarly, it might be possible to discover something useful about a
small area, or about the users of a particular facility. Even an inexperienced
researcher who had designed a sensible project might manage to gain access
to membership records of a small organisation which felt its work might
benefit from his study. Clearly, for example, a study of young people based
on those who used youth clubs would be in no way representative of young
people in general, but case studies are certainly not invalid because of
their lack of generality.

(ii) Inconvenient sampling frames 

If a researcher is interested in a population for which no listing or
source is available, it will be necessary to investigate the possibility of
constructing a sampling frame.

The compilation of large-scale sampling frames is complex and time-
consuming. Where the population to be examined consists of a rare sub-group
of a population some form of screening might be used. For example, to find
a sample of freezer-owners to compare with other shoppers, either a short
postal questionnaire or a brief interview might be necessary.

Screening is more economical when resources are concentrated in clusters,
rather than spread out to create a frame over the whole area. An area of
sufficient size should be screened or investigated to yield a sample of the
desired size without the rejection of any, so that all the resources employed
to identify the sampling frame would be used to the full. When the percentage
with the rare characteristic is not known, clearly it must be estimated con-
servatively, with the aim of finding at least as many as are needed for the

sample.

If at the preliminary stage there is doubt about whether an element is
eligible or not, it should be included, because false inclusions can be re-
moved at the data collection stage, but false exclusions will not be sub-

sequently checked.

Screening involves a great deal of time and cost to find each element in
the sample. Where each member of a research team wants to investigate different
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sub-groups or features of a population, and could pool resources to identify
the sampling frame, perhaps screening could yield a more justifiable return.

A similar process might be used where it is necessary to obtain a large
amount of information from a small number of individuals, and a small amount
from a large number. This might take the form of conducting short interviews
and asking a sub-sample to complete diaries or undergo longer interviews.
In other studies, it would be economical to utilise the differential vari-
ability of the information being collected by, in effect, having samples of
different sizes, with the more uniform variables collected from only a small
part of the larger sample from which the others would be collected. Farm size
might be highly variable, crop yields much less so; this factor could be used
in the sample design to speed up data collection by not determining yields
on every farm. However, if one aim of the study were to discover if more
extensive farms had higher or lower yields than smaller ones, the method would

be inappropriate.

The arrangement of the list will determine the ease with which the
'first entry' method can be used. In rural areas, names may be listed in
alphabetical order making it hard to work out the households; in urban areas,
the listing is alphabetical within addresses, street by street. Problems
arise when there are several surnames at the same address, who could
be boarders, relatives, or separate single person households in bed-sitters.
If a name is chosen and there is any doubt about whether others listed are
members of his household, all the names at the address would have to be listed
and checked by a field-worker, so that if the voter listed is not the first
named in a household, he can be crossed off.

The definition of what constitutes a household will have to be rigorous;
it is usual to include people who regularly live together and are catered
for by the same person for at least one meal a day, but specialised surveys
may need their own definition. The researcher will have to decide how to de-
fine any institutional households he wishes to exclude.

A supplementary frame can be used where the main frame is incomplete;
an area of new building might be sampled from an address list. However, the
sampling fraction would have to take into account the fact that the Register
gives individuals, the list dwellings.

Another way of dealing with omissions is to use the half-open interval 
method. With each element drawn for the sample a note is made of the next
element in the list. Any subsequently found to lie between them and not on
the original frame are included. This works well for small amounts of new
building, or where several households are found at one address. The method
assumes that each element omitted is linked unambiguously to one included,
and thus compensates for exclusions from the original frame. Problems arise
when the spatial arrangement makes it difficult to ascertain to which included
element an omitted ohe should be attached, and when the intermediate elements
are very numerous, when an unacceptable level of clustering would arise. It
also depends on field-work to identify all the exclusions.

(iv) Selecting within small clusters: the example of households 

Sometimes our sampling frame constitutes, in effect, a list of small
relatively homogeneous clusters. This would be the case with households
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(possibly selected from the Electoral Register, as explained above) where we
were really interested in individuals.

Often we would find that attitudes and behaviour were highly correlated
for members of the same household, and it would be detrimental to the sample
to include all the members of the household in the sample (section III, i).
There is also an additional problem with interviewing more than one person
at the same address where the first interview may influence the others, either
by suggesting responses, or by taking up an unreasonable amount of time.

Therefore one member of the household is usually chosen at random. The
problem is that we have to establish all the members of the household before
making the selection; as well as being tiresome for the field-worker this
procedure can be discouraging to the respondent and may prevent him from co-
operating altogether.

If a rare part of a population, for example a particular crop, rock or
group of people, is unevenly distributed, the reduction of generality to
areas where the concentration is greatest might be essential in order not to
dissipate energy searching out needles in the rest of the haystack - but the
isolated part of the population might well have distinctive characteristics,
and its exclusion would have to be explicit.

(iii) Sampling from lists: the example of the British Electoral Register 

The ideal sampling frame would be a list which contained all the target
population with no elements excluded and none included more than once. This
is rarely encountered, but in many cases an imperfect frame can be adapted to
serve. The British Electoral Register, the most commonly used sampling frame
for studies of people in Britain, is by no means a perfect source, and the
ways of using it illustrate the techniques adopted to deal with problems en-
countered more widely.

The Electoral Register lists all the adults aged eighteen and over
eligible to vote who have complied with the legal obligation to complete
registration forms on the basis of residence in October each year. Registers
are available in public libraries or can be purchased from local authorities.

Although compiled in October, the Register is not published until the
following spring, so that it will always be at least three months, and
possibly nearly fifteen months, out of date. Towards the end of the life of
the list (that is, in the early part of the  year) alternative frames might
be more attractive. It is possible to substitute a new occupant of the same
address for someone who has died or moved, although it would have to be some-
one not already included on the Register, and randomly selected within the
new household (see section IV, iv). If it is only the selected individual who
is no longer there, no substitution can be made, because the others in the
house would already have had a chance of selection.

Lists frequently contain a number of omissions: in the case of the
Electoral Register, foreigners, immigrants or others not sure of their en-
titlement to vote, as well as people who have recently moved. The simplest
solution is to ignore these deficiencies, and note in the research report any
qualifications which result.
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However, an alternative is available which may be preferred, particularly
in areas of high mobility or when the list is out of date. It is more likely
that one elector will have been left off than that all those in a household
will have been. It is therefore a better source for households than for
individuals.

We do not know how many voters are listed at each household. We therefore
decide that the first entry on the list of any household will have to be
chosen if that household is to be included. This gives each household only
one chance of selection irrespective of the number of voters in it.

In order to know what sampling fraction to use when many of the names
selected will be treated as ineligible because they are not the first listed,
we need to know that on average there are 2.2 in each household, and we
therefore start out by selecting 2.2 times the number of households we actually
want in the sample.

It will be necessary to weight the answers for each individual by the
reciprocal of the sampling fraction, within his cluster, that is, by the
number of eligibles in the household divided by the number chosen. Someone
who is the only eligible member of a household will therefore be weighted by
1/1, where there are two people eligible, the one chosen will be weighted by
2/1, where there are 3, 3/1, and so on. To avoid weighting, instead of using
the 'first entry' selection method from the Electoral Register we include a
household when any of its members is selected. This gives, in effect, selec-
tion with probability proportional to size (number of voters). Taking one
from each household prevents the need for weighting (III, iv).

TABLE 3 

Kish's tables for selecting one individual from a household

Rows are
allocated
in the
proportions: 1

Number of eligible individuals found:

2 3 4 5 6
or more

select individual number:

Row I 1/6 1 1 1 1 1 1

Row II 1/12 1 1 1 1 2 2

Row III 1/12 1 1 1 2 2 2

Row IV 1/6 1 1 2 2 3 3

Row V 1/6 1 2 2 3 4 4

Row VI 1/12 1 2 3 3 3 5

Row VII 1/12 1 2 3 4 5 5

Row VIII 1/6 1 2 3 4 5 6

An impartial selection within the household can be made by using
Table 3, devised by Kish (1965, pp. 398-400). The interviewer sets out with
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a list of households, to each of which is attached one row of the Table.
The rows are allocated in the proportions set out in the first column, so
that if an interviewer went to twelve addresses, two would have the first row,
one the second, one the third, and so on. When the field-worker has listed
all the eligible individuals in the house in a pre-determined order (usually
by age), he selects for interview the one with the number indicated for that
household size by the row of the Table given to that address. For example,
if there were four people eligible in a household, and the address had been
allocated row V, individual number three would be interviewed; using the same
row, if there were five in the house, number four would be interviewed, if
three, number two.

(v) Constructing frames from maps 

Published maps or aerial photographs can be used to create lists of a
variety of phenomena for which no suitable sampling frame already exists,
such as vegetation, water courses, shops, factories and dwellings. Clearly
there will be errors due to inaccuracy of the source map, changes such as
demolition and construction or disturbance of vegetation, and misinterpret-
ation. Comparison of the map with the area might indicate the extent of these
problems.

Some phenomena can be identified readily from maps, but care would have
to be taken over multiple-occupied premises, moveable stalls, mobile shops,
and so on.

Specialised maps may name all the elements to be included. An example
of this type of map is the series of Goad shopping centre maps, on which each
shop is named and its main functions indicated (Rowley and Shepherd, 1976).
Such maps might be preferable to directories if their coverage were more com-
plete, and if a sample were desired with a spatial spread. One way would be
to number all the units shown by a 'postman's walk' route, and then to use a
form of systematic sampling.

Where such a map is out of date, it might be possible to up-date it
without re-surveying the area. If, for example, a shop had been sub-divided
into smaller units, all should be included in the sample if the original was
included. The half-open interval method can be used for new units inserted,
provided that they can be unambiguously linked to their neighbour on one side.
The removal of a unit, such as a closure, would mean that element would be
considered as an ineligible blank. A sufficient size of sample would have to
be drawn to allow for some deletions in this way, because it would be quite
incorrect to substitute a neighbouring unit which would then have an extra
chance of selection.

(vi) Constructing frames by mapping 

Where there are no obtainable maps which mark the population to be
sampled and are up to date, a researcher may have to construct a sampling
frame on the ground, or at least amend the existing maps in order to construct
such a frame.

Buildings such as industrial or commercial premises in a small area,
dwellings in rural areas, new buildings, or in countries where there is no
suitable sampling frame for households, a listing may be prepared by mapping.

Clear procedures and forms for recording information will be needed,
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and Kish (1965, pp.322-351) discusses the instructions needed to list build-
ings for such a frame. The area is usually divided into segments delimited by
natural features or streets, clarified by sketch maps where necessary.

Complete enumeration of every element in the population may be possible,
but will often be too costly and time-consuming. The segments may be used
as clusters, and only those included in the sample need be mapped fully.

Clusters are most conveniently sampled with probability proportional to
size, to avoid weighting (section III, iv). If population sizes for the
segments are known, this method can be used, and then the same number of
elements would be sampled from each one.

Where segments contain fewer than 6 or 8 elements, it may be more eco-
nomical not to use probability proportional to size sampling, but to include
all the elements in the selected clusters. The value for each element would
have to be weighted by the size of the cluster from which it was drawn, but
this may be acceptable if the segments vary little in size. The advantage is
that there is no need to list all the elements first and then select within
them.

If the selected clusters were subsequently found to contain only slightly
more or slightly fewer elements than the enumerator first thought, there will
be little difficulty. If more were to be found than expected, all should be
included in the sample.

Figure 1 illustrates the kind of sheet that could be used to record the
segments, in a convenient form for the selection of clusters with probability
proportional to size. Random numbers would be drawn once the listing was
complete, and whichever clusters they were in would be the ones included in
the sample. In the example shown, if the numbers 9 and 21 were drawn, the
clusters selected would be segments 2 and 5. If the same number of elements
was chosen from each, the sample would be self-weighting (section III, iv).
In this example, two elements would probably be included from each. The dis-
advantage of the method is that the chosen segments have to be visited again,
and the elements within them listed.

It would be possible for the identifying numbers for the clusters to be
drawn in advance, so that the field-worker could proceed directly to data
collection after the listing of segments. In this case, to avoid conscious or
unconscious 'cheating', he should not have the random numbers to hand when
listing the segments, but should carry them with him in an envelope to be
opened only after all the first stage had been completed. In some situations,
particularly where the area to be covered is compact and the data to be
collected readily available (as might be the case with observations rather

than interviews), field-work could be conducted rapidly by this method.

(vii) Longitudinal studies 

Where studies are designed to measure changes over time, it may be
necessary to re-visit measuring points or a panel of respondents. This assumes
that the process of measurement does not destroy or affect the variables being
studied, as trampling vegetation or disturbing the soil does. A different
sort of change takes place in people who have been interviewed once, for they
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Fig. 1 Listing Segments: An Example

may become more conscious of their actions, or be conditioned to respond in
a particular way. They may therefore be very different from the population
they are supposed to represent at the subsequent interview.

With human populations, unless the time period between the interviews
is very short, there will be substantial 'attrition' of the sample as people
move out of contact or die. Substituting its replacement for a household which
has moved is sometimes used, although it may not be the case that the new
inhabitants resemble the old, and the method is anyway inapplicable to in-
dividual respondents. The response rate on the second interview is also likely
to be lower than on the first, unless the interview is very enjoyable or the

sample 'captive', as in the case of a school class.

31



To avoid repeating the measurement on the same individual or at exactly
the same point, some studies select two samples with the second sample ad-
jacent to the first. In the case of physical features, this method seems
legitimate, but it may not be safe to assume that people will be like their
next-door neighbours.

Another method of studying change, therefore, is to sample afresh. The
problem is that each sample may have such large sampling error that it is
i mpossible to distinguish differences due to that from real trends in the
data. It is more reliable, although more costly, with large-scale longitudinal
studies, to draw an initial master sample several times larger than the sample
needed each time. After the initial observation, sub-samples are drawn from
it for subsequent phases. Each individual is only examined twice, which
reduces the effects of 'contamination' due to observation. Moser and
Kalton (1971, pp 137-145) discuss panel studies and longitudinal surveys
for human populations; their suggestions have applications for other
studies.

(viii) Sampling continuous flows 

When records are constantly being added to a card index, or people are
passing a point, the researcher cannot start off with a complete sampling
frame and then make his selection. The only feasible sample will be systematic,
taking every kth element, or every (k ± r)th, where r is a small random num-
ber. The systematic sample incorporates the advantages of coverage through
time, representing early and late arrivals equally.

It is not possible, however, to pre-determine the sample size, unless
the rate of flow can be precisely predicted. The interval k will have to be
guessed on the best available evidence.

The processing of individuals in the sample may hinder the counting of
others. Counting and interviewing every kth shopper to pass through a super-
market checkout is a difficult task for this reason, and there will certainly
have to be someone counting as well as sufficient people interviewing. This
will inevitably mean that field-workers will be standing around for a large
proportion of the time, and what seems superficially a straightforward and
economical way of sampling is in fact less practical. It may be necessary to
interview half as many in the busiest time periods, for example, and then
weight them accordingly.

Another problem with sampling sequential flows is that what is being
sampled is passage past a point or entry onto a list. If a researcher was
really interested in users of a particular facility, rather than usage, the
visits might have to be weighted to represent the users. The chance of selec-
tion of an individual would depend on the frequency of his use of the facility,
so the results should be weighted by the reciprocal of the frequency of use
to produce an unbiased estimate of the users. This means that the results for
someone who uses the facility fortnightly should be given double the weight
of those of a weekly user.

There is also the general problem that the survey may cover an un-
representative time and may need to be repeated (section V, iii); different
time periods might be treated as strata (section II, iv).
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V AREAL SAMPLING METHODS 

(i) Frames and methods 

It might be expected that geographers would make considerable use of
areal sampling techniques, but especially in human geography samples are
generally drawn from frames which seldom have more than an incidental spatial
aspect. Land use, vegetation, soils and other continuous phenomena are, how-
ever, sometimes sampled from maps or aerial photographs, and similar sampling
methods may be used on a small scale in the field.

Many of the spatial sampling methods are directly analogous to the a-
spatial methods already discussed.

Normally we use a grid system with co-ordinates, preferably one already
present on the map as in the case of the National Grid on British Ordnance
Survey maps. If the area is of irregular shape, the grid must overlap the
study area, as shown in Figures 2 to 7. The grid reference for each point
serves the same function as the identifying number in a list.

Figure 2 shows the spatial version of the simple random sample, using
points as elements. Random number tables are used to provide co-ordinates on
both axes. Points selected which fall outside the study area, in this case in
the sea, are rejected, just as any blanks in a sampling frame would be.

This form of sampling is used to estimate land use on the assumption that
the points will fall on each land use type in its correct proportions; the
percentage of points on waste ground, for example, will give the percentage
of the whole area covered by waste land.

It is likely that waste ground will not be distributed across the whole
area; a small random sample might miss it altogether. Most work on an areal
basis requires even coverage, and a systematic point sample (Figure 3) is
therefore often used. This method is easier to use in the field than random
sampling, because the field-worker can move easily from one point where he
has to examine vegetation or soil to the next, perhaps using chains to measure
the distance. Just as in sampling from lists, though, there is a danger that
the interval between the points will correspond to some periodicity in the
data, as it might with land forms, or man-made landscapes, or, within a field,
the spacing of crops (Zarkovich, 1966).

Many of the methods of combining random and systematic sampling can be
adapted for the spatial situation. If the area is divided into parts, a quota
can be set for each which, when exceeded , leads to rejection and the selection
of other points. Alternatively, a  point can be selected at random in each
square of a regular grid (Figure 4).

Berry and Baker (1968) advocate a stratified systematic unaligned samp-

ling method (Figure 5), which utilises grid squares each with its own internal
grid co-ordinates. We start by drawing two random co-ordinates, a and b,
within the first square. The marginal grid squares along the top row are then
allocated points by drawing a random y co-ordinate within each square and
using the x co-ordinate, a, from the first square. The y co-ordinate, b, is
used with a random x co-ordinate in each grid square of the marginal column.
Each subsequent square's sample point is determined by the y co-ordinate of
its column and the x co-ordinate of its row.
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While this method is not strictly one in which each point is selected
independently, for all practical purposes it can be assumed to be a stratified
sample with independent selection within the strata (the grid squares);
Berry and Baker have demonstrated the successful use of this form of sample
for land use proportions.

If part of the area, for example a soil or land use type, is very small
or variable, and is to be compared with a larger and more uniform area,
stratification with different sampling rates may be used. A larger quota of
random numbers would be allocated to the smaller or more variable stratum.

The quickest way to draw the sample may be to take random numbers within
grid squares. Approximate demarcation between the strata may be adequate;
squares could be allocated to the more variable stratum if they contain more
than 50 per cent of the more variable feature. This misallocation of the
fringes may not matter if the grid squares are small relative to the size
of the strata (Figure 6).
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Figure 7 shows the simplest form of random transect sample, in which
lines are drawn across the area between pairs of random co-ordinates. It is
assumed that the area of phenomena will be in proportion to the length of
line crossing them. The percentage of each land use can therefore be simply
assessed by measuring distances along the transects.

For a systematic transect sample, the transects are arranged across the
study area, usually as a set of parallel lines. Purposively located transects 
are also commonly used; rather than using probability sampling the transects
are sited by the researcher across the contours, or to correspond with an
'environmental gradient'. If we were to position our transects at right angles
to the sea, at regular intervals, we would not have a probability sample, and
would have to make this clear in discussion of the techniques of our project.
However, along these transects we might use a random or systematic sampling
procedure, treating the initial transects as sampling frames. Transects have
the advantage that they can be illustrated readily by a cross-sectional dia-
gram or a series of diagrams showing such features as topography, land use
or vegetation along their length.
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Fig. 7 Random Transect Sample

Fig. 8 Estimating Species Density By The Method of
Cottam et al (1953)

All these spatial samples are easily applied to maps, but are more
difficult in the field. Trying to identify points on the ground, or to follow
straight lines, may be rendered impossible even without such obstacles as
buildings, termite mounds or impassable boundaries. The samples normally used
in the field are systematic rather than random, because it is convenient to
relate each observation point to the last.

Biogeographers in particular make considerable use of quadrat sampling,
which is not strictly a sampling method, but a data collection method at
points chosen by one of the areal methods discussed. A quadrat is a rigid
frame of fixed area and shape placed on the ground, for example with one cor-
ner touching the chosen point; the vegetation, soil or crop within the frame
is studied.

The shape and size of the quadrat will to some extent determine the re-
sults. There seems no generally agreed improvement on the square quadrat,
but the size has to be chosen for the particular features being studied.
Examples and advice on choosing suitable sizes are given in a number of refer-
ences (Peltier, 1962; Haggett, 1965, pp.198-199; Shimwell, 1971; Kershaw,
1973). A large number of small quadrats seems better than a small number of
large ones, because they can be more spread out, but they have longer edges
and therefore create more problems of determining inclusion or exclusions.
Shimwell (1971, p.17) discusses the question of the 'minimal area needed for
vegetation studies, the smallest area in which all species in the area will
be found, and which is thus 'large enough to represent the characteristic
structure and floristics of a plant community'.

Extra problems arise in the use of quadrats for crops, because if a field
is planted in rows, it might be possible to place the quadrat in such a way
as to contain either x rows, or x + 1. The solution clearly is to take several
randomly aligned quadrats from a field. A decision has to be made about the
border of the field, for the crop may be sparser at the margin. If quadrats
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which overlap the boundary are excluded, there will be a biased over-estimate
of yield (Zarkovich, 1966, pp.331-365).

Quadrat measurements can be taken at randomly or systematically located
points, or along transects. They cannot legitimately be located by throwing
objects at random', for this method will never approximate to a true random
sample. Even if a field-worker is genuinely concerned not to direct his throw,
the vegetation height may affect the point where the object falls, and points
around the border of the study area might also be under-represented (partic-
ularly as a long throw may make the object hard to find!).

Not all vegetation studies use quadrats; there are alternative methods
which have particular applications. For example, the contact between species
can be determined by sampling points by any of the usual methods, recording
the plant at each point, and any plants touching it; this produces an
'association matrix' between species (Yarranton, 1966) although it ignores
association in which plants do not 'touch'. Recording the distance from the
sample point to the nearest plant of a particular species in each of four
'quarters' (Figure 8) gives an indication of the density of the species and
may be quicker than estimating coverage by a large random sample (Cottam
et al., 1953).

In the field, particularly when a quick sampling method is required in
open country, use has been made of the random walk to find sampling points,
often points at which to take quadrat measurements, or as an alternative to
transects. From a random start, the observer moves a set distance (or number
of paces) in a direction randomly determined for a predetermined number of
'legs'. Such a method might give very poor coverage. The use of random walks
in urban areas is discussed in section VI, iii.

(ii) Problems of spatial frames 

The greatest problems with spatial sampling are concerned with access.
There is a temptation to ignore areas which have the most difficult terrain,
or to place transects across accessible points. Coastal vegetation studies
have sometimes been limited to points at which landings could feasibly be
made. These are not then probability samples, and the researcher would have
to use his judgement to guess how different the inaccessible areas might be.

Similarly, a rigorous sample might be drawn from a very incomplete frame.
The target population might include all the areas with a particular soil type,
but the sample might be restricted to areas not built upon. The research re-
port would have to indicate such deficiencies, and likely inadequacies would
need to be discussed. Rigorous sampling within the accessible areas could not
compensate for the initial lack of a probability sample, but as a case study
the work would not be invalidated.

Interaction between the researcher and the study area can be detrimental,
for example trampling across an area undoubtedly effects its vegetation. The
problem might not be too severe the first time an area is studied, but if the
field-work is to be repeated later, there could be problems analogous to the
'polluting', 'conditioning' or mortality of a human population. Placing
markers to indicate points to be returned to is particularly likely to affect
the vegetation, especially if the markers are posts on which birds may perch.
In such cases, sample points can be a set distance from their markers.
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One mistake is to use a spatial sample for a phenomenon which is not
continuous. If random points were located, and the sample were then to con-
sist of the nearest oak tree, or the closest farm building, then the method
would be biased in favour of the more scattered, isolated elements.

If we were to include elements if a point fell on them, buildings or
farms with large ground areas might be more likely to be included. The best
method for phenomena such as these is to list (or mark) all the elements.
For economy, we could do this in parts of the study area chosen by a probabil-
ity method, and sample within these.

Occasionally, where phenomena are relatively evenly spread, as in the
case of shops in a shopping centre or factories on an industrial estate,
elements are allocated to a single dimensionless point. This might be their
southwest corner, or their central point. The nearest one to each selected
sampling point in a given direction (and perhaps within a specified distance)
might then be chosen. The larger units would have a higher chance of selection
by this method, but if their size does not vary greatly, and a speedy selec-
tion is required, the method might sometimes be justifiable.

(iii) Sampling in space and time 

Sampling methods are sometimes used to locate points in time and space
for traffic counts or stream flows, or measures of a variety of phenomena
which are to be repeated.

Traffic counts are usually performed at purposively selected sites, for
example on all major roads leading into a settlement, but occasionally they
may be evenly spaced every k kilometres. Yates (1960, pp.363-364) discusses
this use of sampling.

Occasionally it is necessary to divide the measurement period in order
to cover a larger number of sites than there are field-workers. This might
occur when studying atmospheric pollution at a variety of locations over a
week (Haggett, 1975, pp.541-543).or when interviewing people using a number
of public libraries during different opening shifts (SCPR, 1973, pp.78-80).
In both cases a grid would be drawn up which ensured that each point was
sampled the same number of times, at different time periods, for example,
in the library case, in both morning, afternoon and evening equally.

Distinct time periods may be regarded as strata and sampled accordingly.
However, when a researcher divides his sample between different times and
places, he is in effect creating a clustered sample design. As was explained
in chapter III, such a sample probably only includes part of the variability
of the population as a whole. In order to counteract adverse effect, the
largest possible number of small clusters (sampling points and times) should
be used as will be economic.

Geographers might perhaps give more attention to choice of sampling
time, because both time of day and season will affect certain kinds of data.
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VI NON-PROBABILITY SAMPLES 

(i) Purposive samples 

When a geographer selects a 'typical' example, or set of examples, from
the total population he purports to study, this sample cannot be analysed as
if it were a probability sample. No matter how carefully chosen, it clearly
cannot conform to the requirement of probability sampling that each element
has a known probability of selection, and therefore estimates of standard
error and confidence limits cannot be produced.

In fact, the purposive sample drawn in this way may well contain the
extreme cases, or those which best illustrate the point the researcher wishes
to make.

Within purposively chosen samples it is possible to use probability
methods. Case studies of particular places are of this type. Transects of
vegetation or topography can be purposively located, but probability samples
drawn within them; data collected in origin and destination surveys, taken
at deliberately selected points where the work can be undertaken, may be
analysed quantitatively. In these cases, the researcher would make it clear
exactly what the limitations to the study were.

(ii) Quota samples 

If no convenient sampling frame exists, and costs or time preclude the
creation of one, it may be permissible to include elements so long as they
have certain specified characteristics of the target population. If the pro-
portions in which some features occur in the target population are known,
these features are used as quota controls, and elements are selected by the
most convenient method until the number in each quota is complete.

The method is usually used in samples of people, and particularly in
market research, but could be used for other phenomena. Quota samples depend
on accurate knowledge of the target population. It is known, for example,
from the Census how the population of Britain (or of particular areas of the
country) divides into age and sex groups. If the variables in which the re-
search project is interested are highly correlated with these variables whose
distribution is known, a sample in which they are represented in the correct
proportions can be expected to resemble the population. However, we are
usually interested in variables that are not highly correlated with the quota
control variables, and we can rarely assume this correlation; therefore the
method can lead to a very misleading sample.

The bias stemming from interviewer or respondent selection could be
considerable. If a researcher was interested in users of a particular central
facility who came from a particular part of the town, he could approach people
using the facility and ask them where they came from. If the resultant sample
consisted wholly of people under 30 he would have no way of knowing if this
was typical of users of the place, or if he had chosen an unrepresentative
time of day to carry out the survey, or if he had failed to approach all sorts
of people.

Quotas are established in one of two forms, depending on whether the
variables used as controls are given in an independent or interrelated form.
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In the interrelated form, the interviewer is given specific categories
of people to find, and told how many of each to interview. For example, a
quota sample of young people might control for occupation and sex. The quota
would then consist of a specified number of young unemployed males, young
unemployed females, young workers of each sex, and young people continuing
their education of each sex, giving six separate categories with a target
number for each. This would prevent the interviewer confining his attention
to the most accessible young people, for example by interviewing a large
number of unemployed or school pupils.

When the controls are independent, the interviewer would be told simply
how many of each sex, and how many in each occupation category to interview,
but not how many in each of the six categories. It would therefore be possible
for one category, for example, working girls, to be omitted altogether while
fulfilling the marginal totals. The interrelated form is therefore often
preferable, but it depends on the researcher knowing how many of each category
there are in the population, and the particular variables he is using may not
be cross-tabulated anywhere.

It may be possible to determine quotas appropriate to a particular study,
and indeed a researcher may feel confident that in doing so nothing is lost
by this method. It is also possible to set quotas which over-sample particular-
ly variable parts of the population, in the way that particular strata can be
over-sampled in probability methods.

When an interviewer has to approach individuals in the street, there is
a great temptation to omit certain people altogether. It is difficult to
approach someone and ask them the questions necessary to establish if they
are in the quota; asking age and occupation does not usually start off an
interview well. Similarly, it requires a certain amount of tact to refuse to
interview someone who does not happen to fit into a required category, and
there may even be a temptation to squeeze a co-operative but ineligible person
into an adjacent classification. Most interviewers are reluctant to approach
someone and then reject them, and consequently will approach people who look
like the stereotypes of the set categories. For example, if age groups are
given, the interviewers are likely to produce a sample which clusters in the
middle of the age ranges, although this is less likely when the quota con-
trols are not linked. If interviewing is conducted door-to-door , the problem
of excluding people not on the street is overcome, but the sample may instead
be biased towards those at home, such as housewives or the housebound. Bias
can never be removed from quota samples, but their greatest drawback is that
we can never know how severe it is in any given sample.

(iii) Random routes 

When there is no sampling frame, and the researcher wants to sample
households or buildings of some kind, it may be quick and cheap to sample by
means of a set of rules governing a walk around the study area.

A random start is chosen, and then instructions are followed, for example,
first right, first left, first right, calling at addresses at a fixed interval
along the way.
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Instructions should be sufficiently unambiguous for two people following
the same route to make the same decisions about where to turn and which
addresses to count, but in practice seldom are. Decisions will be needed about
maisonettes, tower blocks, multiple-occupied dwellings and cul-de-sacs. The
technique is attractive in that it dispenses with a sampling frame, but it
is open to misapplication, and the creation of a sampling frame would be the
only way to ensure that buildings obscured from the road, or houses containing
more than one address, were included.

The selected addresses should be treated as any other sample, and if
there is no reply, they will have to be visited again. Random walks depend
very much on the integrity of the practitioner, and are at best quasi-
probability samples.

(iv) Combining quota sampling with a random route 

To ensure that the initial selection of respondents is relatively un-
biased, and that if a sample is to represent residents of a place, they are
not all contacted in one part of it, interviewers can be sent to randomly
located starting points and told to follow random route instructions, approach-
ing households at a fixed interval, and interviewing until the quotas are
full.

The interviewer's honesty is greatly strained, particularly if told to
call at every kth house, because if the house next door seems more likely to
fulfil the quota, it will be very tempting to include it. Permitting the
interviewer to call at every house along the random route is preferable, and
i f the quota is for a comparatively rare trait, then the level of clustering
may not be too great; after a set number of eligibles have been found, the
interviewer can be told to move to a new point.

The method suffers from the disadvantage of quota sampling in general,
that those who are not in the right place at the right time never get in-
cluded. It might have applications for immobile populations such as morpholog-
ical features or buildings.

(v) Snowball samples 

One way of creating an approximation to a sampling frame for a rare
trait in human populations is to ask a number of initial contacts for the
names of any other eligible individuals, who are then approached and asked
the same question. This has been successfully used for deaf people, or players
of particular sports. Ideally the initial contacts should be randomly located,
and the trait should be one which leads to a high degree of contact. The
'snowball' should be allowed to grow until each respondent is producing a
list which consists largely of those already identified, but even then there
is no guarantee that there is not a substantial number of isolated indivi-
duals, or a self-contained group not in touch with those found by the snowball.

Snowball sampling has limited applications, but where a researcher felt
confident in the enclosed nature of the rare attribute qualifying for in-
clusion in the sample, and no sampling frame was available, it might be the
only feasible method.

(vi) Justifying non-probability samples 

If a probability sample can be used, in other words, if a reasonable
sampling frame exists or can be created, it is hard to justify using a non-
probability method. It is impossible to establish the absence or extent of
bias in these methods, and the statistical tests applied to probability
samples are invalid.

Their speed, cheapness and the ability to dispense with a sampling
frame may occasionally make their use essential, and they may be justified
in pilot or exploratory work. Paradoxically, though, they rely on experience
and a certain amount of knowledge of the target population - which the re-
searcher probably lacks when he is embarking on a pilot study. Whenever
possible, probability methods should be used.

VII RESEARCH DESIGN AND THE CHOICE OF SAMPLING METHOD 

The cost of using a sampling method is a combination of the cost of
collecting the measurements, and of the frame; the time taken is similarly
a combination of the time spent in the field and the time spent beforehand
obtaining the frame and drawing the sample. It is these costs and time limits,
as well as constraints at the analysis stage, which will largely determine
the sample size and the methods which are feasible.

After fixing the relevant population and properties of it which are to
be studied, and the method of measuring these characteristics (interviews,
observations, measurements), we have to decide the approximate size of sample,
the number of units, which can be studied. This size can be increased by re-
ducing costs or time, usually by clustering, but this will increase the samp-
ling error.

Conversely, stratification may be more costly, and lead to a reduced
sample size, but to an increase in precision which is effectively equivalent
to an increase in sample size. It is possible to cost ways of reducing the
sampling error to see which are feasible.

Therefore, the initial decision about sample size may be modified as
the research design proceeds, but it will be a major consideration and a rough
approximation will be needed from the outset.

Figure 9 shows a flow diagram for choosing between probability and non-
probability methods. It is only after discovering the absence of a sampling
frame, and deciding that it is not feasible to amend any existing frame or
create a new one, that non-probability methods should be resorted to. Having
established a sampling frame, decisions about the form of probability sample
are set out in Figure 10. There will be applications for all five methods at
the bottom of the chart, and their use will be largely determined by the
frame. A degree of clustering may be needed to reduce costs, and can be com-
bined with other methods. Complex sample designs are harder to use, and cal-
culations of standard errors are made more difficult. In small scale studies
elaborate sample designs will rarely be needed.
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Fig. 9 The Process of Sample Design: probability and non-probability methods

Fig. 10 The Process of Sample Design: Choosing between probability methods



The greater the knowledge the researcher has of the population he is to
study, and of the frame from which he is to draw the sample, the better able
he is to take decisions about the research design. But having made the various
choices, it is necessary to set out rigorous rules of procedure and follow
them, and finally, in any research report, to state exactly what they were,
and if there were any problems with them. The simplest and smallest piece
of research needs to have its methods clearly stated to enable anyone reading
it to understand its strengths and weaknesses.
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