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Summary

Mini-max is a concept often used for solving games. The idea behind it is a constant
alternation of minimizing and maximizing the value of moves to account for an adversarial
opponent in the game. Lots of established methods have been developed to allow computers to
play games like Chess [2] and Go [12]. Many of these methods involve evaluating sequences of
moves to determine the best move to play. Because games like Chess and Go are quite big, it
is infeasible to evaluate all possible sequences, so we resort to algorithms that pick sequences
selectively, collected under the name Monte Carlo Tree Search [5]. These methods, in their quest
to find the best move, already try to play as optimal as possible while figuring out the best move.
We think that by letting go of the desire to only sample good sequences, and instead only caring
for a good conclusion on the best move, we can improve on current algorithms.

We do this by adapting Best-Arm Identification’s objective to fit a Mini-max structure:
Mini-max Action Identification. We believe that this has not been done before. In Section 2 we
will establish the framework and details of Mini-max Action Identification.

We define the problem of finding an optimal algorithm in two ways: In Section 3 we define the
problem as the algorithm that provides the best guaranteed performance on the hardest set of
parameters. In Section 4 the problem will be based on parameters following a fixed distribution.
Further algorithms will be provided in Section 5. In this Section the algorithms will be compared
in their performance as well.

Lastly we present some findings on the worst-case set of parameters in Section 6, providing
proofs on a couple of these findings.
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Introduction

In this Section we will introduce the idea of Mini-max Action Identification by the hand of a few
examples. To this end we will introduce the concepts of Best-Arm Identification and Mini-max, and
show how the intersection of the two provide methods that can be used to solve the examples.

1.1 GENERAL INTRODUCTION

To set the stage, let us consider the following real-life example of the problem we will consider in
detail:

Example 1. Imagine, the San Diego Comic Con is right around the corner and you really want to
go. However, you are really late booking a hotel-room for your stay. Most of the hotels are already
filled up. You find two hotels with each one room leftover. The hotel-owners of course give away
their best rooms first, so the rooms left available are likely to be the worst rooms. You do not want
a bad room, so your goal is to find the best room available. Sadly, the quality of the rooms is not
directly available, so you will have to guess the quality through reviews on a review website like
TripAdvisor. You can see reviews of each specific room, but you do not know which rooms are already
taken.

In the end you get one choice, which hotel do you pick? You want to pick the hotel where the
worst room is the best. The best rooms are already taken, so there is no point paying attention to
which hotel has the very best room overall, because there is no chance that you would get that room
anyways. There is also another problem: the website has kindly notified you that there are 20 other
people looking at that page, so you cannot just go and read every review available to you; you want to
reach a conclusion as fast as possible. How do you spend your time as efficiently as possible? Once
you ve identified that a room is not the worst in its hotel, there is no point spending time reading
reviews to determine exactly how good it is. It would be way more beneficial to take a better look at
a worse room, because that is the one you might end up getting. So that room actually matters when
you try to compare the hotels.

This problem has two defining properties: the data we have access to and the structure of the
problem. To start with the type of data. The data are the reviews, they are not a direct value for
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the rooms, but rather represent a sample, a noisy sample because of opinions of various reviewers.
If there was no uncertainty about the quality of the rooms, the problem would be simple. Another
notable feature is the fact that there is a structure in the problem: there are multiple layers at
work here. The goal is to pick the hotel whose worst room is the best among the worst rooms of all
hotels. There are two layers: first you want to know what the worst room in each hotel is, then you
want to know which of those worst rooms is the best. If the goal was just to find the best room of
all rooms combined, there would have been only one layer to the problem.

Amount of layers

1 >1
Data samples | Best-Arm Identification | Mini-max Action Identification
values argmax Mini-max

Table 1.1: The defining properties of Example 1: the type of data and the structure of the problem.
This determines the methods that can be used to solve the problem.

Using these features, the problem in Example 1 would fall in the top-right corner in Table 1.1: Mini-
max Action Identification. Whereas the other three are already widely studied, Mini-max Action
Identification is new. As far as we can tell, the only related work is the recent [4], which independently
studies Mini-max Action Identification under different evaluation criteria. To introduce Mini-max
Action Identification, we first introduce the other entries of Table 1.1:

We may simplify Example 1 along two orthogonal dimensions (Table 1.1). First, we may remove
the statistical aspect (the noise in the reviews), by imagining that each room has a known quality
score. Second we may remove the game-theoretic aspect (the adversarial per-hotel room selection)
by imagining that each hotel has exactly one room.

With noise nor adversary we arrive at the problem of finding the position of the best entry in a
list of numbers. This is the "argmax" problem, which can be trivially solved in a single pass over
the list. With an adversary but no noise we arrive at the core Mini-max problem studied in game
theory. This will be reviewed in Section 1.2 below. With noise but no adversary we instead obtain
the so-called Best-Arm Identification problem. This problem has recently seen a lot of progress in
the literature on bandit problems. We will review it in Section 1.3. Section 1.4 will introduce the
full MMALI problem (the formal setup is the topic of Section 2). We conclude the introduction by
sketching the outline of the thesis in Section 1.5.

1.2 MINI-MAX

To properly explain Mini-max Action Identification, we first have to introduce the simpler problems
it generalizes. So first we drop the noise from samples and look at Mini-max (Table 1.2).

Amount of layers

1 >1
Data samples | Best-Arm Identification | Mini-max Action Identification
values argmax Mini-max

Table 1.2: Mini-max.
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We need a way to deal with the multiple layers: argmax;, ;.; min,oom,. This alternation of minimizing
and maximizing is called Mini-maxing.

One example where this problem is prevalent is games. When determining the best move, the player
has to keep in mind what the opponent is going to play. In most cases this will mean that the
opponent plays their best move, which would be bad for the player. So the best move would be
the best move among the worst outcomes one turn down the road. The intuition here is easiest to
explain in the form of a simple game. Imagine a game where two players each get one move, a choice
between A and B (Figure 1.1). After both players played their moves, player 1 gets a reward based
on what both players picked. Player 2 wants that reward to be as small as possible. Similarly here,
player 1 could focus on trying to get the highest reward possible, but it is unlikely that player 2 will
allow that to happen, so he will play the other available move. Because of this, player 1 should not
even focus on the highest reward, but rather figure out the move which forces the player 2 to give a
(relatively) high reward to player 1.

Player 1's turn
maXAB (30,40) = 40

»0

Player 2’s turn Player 2’s turn
min 4 (90, 30) = 30 min 4, 5(40, 60) = 40

/N

Figure 1.1: An example of a Mini-max problem: Player 1 wants to get the highest possible score,
whereas player 2 wants the lowest possible. Player 1 could try and get the 90 score and thus play A,
but then player 2 will take move B, so player 1 ends up with a score of 30. So instead player 1 looks
at the possible outcomes from the two moves A ({90,30}) and B ({40,60}), figures out the lowest
possible outcomes of each move, and picks the highest of those. The best move for player 1 is then
move B.

Example 2. A good example to demonstrate Mini-mazx in action is Tic Tac Toe. This is a two-
player game where both players have opposite interests; if one wins, the other loses. There are two
players: X (he) and O (she). From the perspective of X, a winning board has a value of 1 and a
losing board -1. Say the game has been going on for a couple of rounds and the board looks like this:

X|X|0
0]
0 X

It is X’s turn. The way to figure out the best move is to create a tree showing all possible sequences
of moves and perform a Mini-max search over it. This tree is displayed in Figure 1.2. X has three
possible moves: move 2, 8 and 4. To evaluate the value of those moves, we have to follow the branch
in the tree until the game is over. For move 2, it is simple. X wins instantly. This would obviously
be the optimal move to take for X. But for the sake of the example, lets see how the values for the
other moves are calculated. To do this, we start at the bottom of the tree and work our way up.
State 9 and 10 are the only possible outcomes for state 6 and 8 respectively, so X is forced to make
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X[ X]|O
1 0
0) X
X|X|0 X|X|0 X|X|0
2 0 30 4 O
(0) X (0] X (0] X
X wins
X | X|O X | X|O X[ X|O X | X |0
5 0|0 | X 6 O X7 0|0 8 O (0]
(0) X OO0 | X Ol X | X O X | X
O wins O wins
X | X]|O X | X]|O
9 O X 10 O X
0|0 | X 0|0 | X
X wins X wins

Figure 1.2: Tree of the possible moves in the Tic Tac Toe game in Example 2.

those moves if he is in state 6 or 8. X wins, so the value of states 6 and 8 are both 1. Besides state
6 there is state 5, the other move available for O in state 8. If O makes move 5, she wins, so this
has a value for X of -1. Obviously O wants to win as well, so if she has to move in state 3, she
would pick move 5. When O is at play, she minimizes the pay-off for X. And X has to keep this in
mind. So when evaluating move 3, X knows that O will pick 5 and then win, so he assigns the value
-1 to state 8. The same goes for state 4, where O would win with move 7. State 2 now has value 1,
state 3 has value -1, and state 4 has value -1. X wants the best mowve, so picks move 2 and wins.

The difficulty in more complex games like chess is that the amount of moves that each player can
make is huge, so the tree, simple in Figure 1.1, would grow exponentially in the depth. This makes
applying brute force mini-max in practice quite hard, but there are methods to help with this,
like pruning. Another method is to stop after a certain amount of moves, and then approximate
the value of those moves: Instead of enumerating the entire game tree, looking at every possible
sequence of moves, stop after a certain amount of moves, and use a decent, established (greedy)
strategy to play the rest of the game and see who wins (or what the final score is). This then gives
an approximation of the quality of the moves made to that point (Figure 1.3). This method is called
Monte Carlo Tree Search (MCTS) [5]. There are many algorithms that bring MCTS into practice,
some of which presented in [5].

These roll-outs can be considered random samples, as they add some uncertainty to the values of
game states. This is also in line with what we would need to solve the problem in Example 1. This
is where Mini-max Action Identification comes in. Through the results and estimates gained by
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“ 9/12 root
! as/ i x}

0/1 6/7 | 2/3

( b/ / %) b/ / b

I I ) I 2

3/4 L 2/2 0/1 + 1/1  search tree
o/ N

| 0/1 | 2/2 1 | | 1/1 | | !
S e T T

| ! 1 ! 1/1 | | 1 ! 1 } !

3 1 | 1 i 3 3 | | | 3 } roll-outs
6 0 i 1 i i i i 1 6 i i outcomes

Figure 1.3: Example of Monte Carlo Tree Search, adapted from [5]. The algorithm moves through
the game tree for a predefined couple of moves and then applies a generic strategy to play until the
end of the game (roll-out), after which it gets an outcome (0/1, loss/win). This is then propagated
back to the values of the sequence leading up to the node where the roll-out started.

the roll-out with an established strategy, an estimate is gained for the values of game states, after
which a Mini-max search is performed to find the best move.

1.3 BEST-ARM IDENTIFICATION

If we take a closer look at how to draw conclusions about maximizing (or minimizing) an expectation
based on some distribution, removing the game-theoretic aspect, reducing the number of layers
to one, we end up in the domain of Best-Arm Identification (Table 1.3). Because a lot of the
setting discussed in Section 2 is based on what is currently done in Best-Arm Identification, we will
introduce this as well.

Amount of layers

1 >1
Data samples | Best-Arm Identification | Mini-max Action Identification
values argmax Mini-max

Table 1.3: Best-Arm Identification.

To illustrate Best-Arm Identification, let us consider another example:

Example 3. Consider a clinical trial. You want to compare the effects of different drugs on patients.
You can give each patient one drug, and can then measure their response by taking their vitals.
Your goal is to find the best drug. Not all patients react similarly to the drugs, so there is some
randomness involved. Also, after you have given a patient one drug, you cannot use any other drugs
for that patient, so you cannot know what their response would have been. You apply the drugs
sequentially, so you know the effects of all the drugs you previously applied to the previous patients.
Which drug do you give next if you want to identify the best drug overall?
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Which arm has the highest expectation E(z)?
|

argmax E(x)

Ni:xz~N(5,1) Ny:xz~N(10,5) Ns:z~ N(11,4)

Figure 1.4: An example of a best-arm identification problem: which arm has the highest expectation
for 27 Each arm has a different distribution N; on the value for x, which can be sampled by the
algorithm and used to evaluate the expected value for .

The problem of deciding which drug to apply next is widely covered in the field of Best-arm
identification [7]. The goal of Best-Arm Identification is to identify the option that has the highest
parameter or expectation of some response variable (Figure 1.4). Again the quality of the arms can
be sampled with algorithms that decide where to look next. To make this problem mathematically
precise, there are two distinct ways to approach the problem: fixed-budget and fixed-confidence.
The setting determines the stopping rule of the algorithm, which has a lot of implications on the
way the algorithm works.

In fixed-confidence the algorithm continues until it knows through probability theory, typically by
means of bounds, that it has at most a ¢ chance to be wrong in its recommendation for the best arm,
where § is some predefined parameter. The algorithm is more efficient if it reaches this confidence §
in as low as possible amount of samples. After all, the more efficiently it allocates the drugs, the
faster it’ll be able to reach a conclusion. Alternatively, in fixed-budget, the algorithm receives a
budget T, which represents the amount of samples it is allowed to draw, or how many patients are
available. The quality of the algorithm then is determined by the quality of the recommendations;
how often does the algorithm identify the correct arm?

1.4 MINI-MAX ACTION IDENTIFICATION

Now we have properly introduced Best-Arm Identification and Mini-max, we combine the two into
Mini-max Action Identification by replacing the optimization objective of Best-Arm Identification
with the Mini-max method of alternating maximization and minimization (Table 1.4).

Amount of layers

1 > 1
Data samples | Best-Arm Identification | Mini-max Action Identification
values argmax Mini-max

Table 1.4: Mini-max Action Identification.

One thing many MCTS-algorithms do in their quest to find the best move, is already trying to play
as optimal as possible while figuring out the best move. We think that by letting go of the desire to
only sample good sequences, and instead only caring for a good conclusion on the best move, we can
improve on current algorithms. Therefore we apply Best Arm Identification to the MCTS methods
described in Section 1.2 to provide a way to determine the Mini-max move based on sampled data.
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The algorithm moves through the tree of states (Figure 1.5), up until some predefined number of
moves, and then uses an established strategy to roll-out the game until the end. This is abstracted
to drawing a sample from that game state. The goal of Mini-max Action Identification is to ’sample’
the moves efficiently until it has an estimate of what the Mini-max move is.

argmax, min; E(x; ;)

i=2

argmln E( ach argmln E( xz,]

A

11~ P11 Ti27~ P12 T21 7~ P21 X222~ P22

Figure 1.5: Tree structure of the Mini-max Action Identification problem (See Example 1: i are
the hotels and j are the rooms within hotels).This is a combination of Mini-max and Best-Arm
Identification. If you remove the randomness of the samples, this problem is the same as in Figure
1.1. Alternatively, the argmin; and argmax; can be seen as individual examples for Best-Arm
Identification (See Figure 1.4).

1.5 IN THIS WORK

In this thesis we will present some sampling methods to be used to determine the Mini-max action.
In Section 2 we will define the setting and provide additional information, as well as present the
backbone sampling algorithm. In Sections 3 and 4 we will present two elaborate algorithms: the
Optimal algorithm and the Bayesian Expected Regret respectively. In Section 5 we present some
more practical algorithms and make a comparison between them. Section 6 elaborates on the
question ‘what are the worst-case parameters?” We do this by showing that the parameters follow a
certain pattern. In Section 7 we give a recap of the thesis and make some recommendations for
future work.



Mini-max Action Identification

The problem introduced in Section 1 can be seen as an combination of Best-arm Identification and
Mini-max. In this Section we will define the setting in which the Mini-max Action Identification
algorithm operates.

2.1 'THE GAME

This thesis focuses on optimizing the Mini-max Action Identification algorithm involved in figuring
out the mini-max best move problem in games from noisy leaf evaluations (see Example 1). To focus
as much as possible on the sampling rule part of the algorithm, we abstract the random play-out by
some parameter {p; ;} for each node, representing the probability of winning. The intuition behind
this replacement is that the sample generated by random play-out has inherently some chance to
win based on the quality of the move pair, so drawing a sample from a Bernoulli distribution with
that same parameter should give the algorithm the same information. For simplicity, we assume
that samples from the terminal nodes are i.i.d.

Additionally, we reduce the amount of moves available to the bare minimum, namely two, ending
up in the same game tree as described in Figure 1.5. Each of the four terminal nodes receives
a {pi;}, a win-chance. Player 1 uses Mini-max Action Identification to get an estimate of the
{pi;} of each of the terminal nodes. The algorithm receives some budget of 7" samples. We use
the fixed-budget setting instead of the fixed-confidence (Section 1.3), because it makes more sense
to have a time-based restriction on the move, rather than an error-based. The reason for this is
that games generally limit the time players have to think about their moves. This is more in line
with fixing the budget than fixing the confidence. The budget provided can be spent on sampling
one variable from any of the four terminal nodes’ distributions. After the budget has been spent,
the algorithm makes a recommendation based on the sampled results. Player 1 plays the move
recommended by the algorithm. Player 2 then plays his move, but does not sample. Instead, player
2 is assumed to be all-knowing, he knows the true parameters behind the terminal nodes and will
always pick the move that minimizes the win-chance. Afterwards the recommendation is evaluated
to measure the performance of the algorithm. If it recommended the sub-optimal move, some loss
will be assigned, more on that in Section 2.3.

13
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2.2 THE MIN-MAX ACTION IDENTIFICATION ALGORITHM

On initialization, the algorithm receives a sampling budget T". This specifies the amount of samples
the algorithm is allowed to draw before its recommendation. The algorithm uses the function
someSampleRule to determine which node to sample from, based on all the previous sampling
results. Similarly, when the budget T is spent, the function someReccomendationRule returns the
recommended arm i, again based on all the results of the samples. The core algorithm is shown in
algorithm 1.

Data: The set of true parameters {p; ;}, unknown to player 1. A sampling budget 7.
Result: A recommendation for player 1 for the mini-max arm.
initialization;
fort=1to T do
{i,j}+ < someSampleRule;
iy 5, ~ Bern(pi, j,);
end
someRecommendationRule;

Algorithm 1: The core of a Min-max action identification algorithm. The functions
someSampleRule and someRecommendationRule are different for different algorithms and determine
which node to sample from and which node to pick at the end respectively.

A very basic example of a sampling algorithm is the Equal-algorithm (Algorithm 2). This algorithm
spreads the available budget equally over all the arms. As recommendation it suggests the move
with the best expectation based on the Maximum Likelihood Estimator (MLE) of the parameter

pi7j'

someSampleRule < function(t){
i+t mod2+41
j < 10.5t] mod2+1
return({i,j})

}

someRecommendationRule < function(z;, j,){
foreach {i,j} do
‘ ﬁiJ A mean({xit,tht =i and j; = ]})
end
if minj ﬁl,j = minj ﬁQ,j then
i < Bern(0.5) + 1

/* Tie: resolve uniformly at random. */
else
‘ i < argmax; min; p; ;
end
return (i)

}

Algorithm 2: The Equal-algorithm’s functions: it spends its budget equally over all combinations
of {i,j} and recommends based on p; ;.
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2.3 EXPECTED REGRET

In order to compare different algorithms, we need to find a measure that can quantify the performance
of these methods. One popular objective is the error-rate (the probability that the chosen move
I = someRecommendationRule is not the optimal move i* = argmax; min; p; j: P(I # i*)). This
does not take the severity of the error into account. To see this, consider a game in the form of Figure
1.5, where two arms are very close, or even equal (min;p;; ~ min;ps ;j): The Equal-algorithm
(Algorithm 2) would have an error-rate approaching 0.5 as | min; p ; — min; ps ;| — 0. However, as
the difference gets smaller, the negative effects of picking the wrong move ¢ are smaller as well.

This is where the concept of regret comes in. Instead of having a 0/1-loss, measuring no penalty if
the correct arm is picked and a unit penalty if the wrong one is, the regret can be used. The regret
is set to be equal to the difference in quality between the optimal move * and the chosen one I:

R(I) = maxminp; ; — minp;; = minp; ; — minpy ; (2.1)
i J J J

This way the errors made by the algorithm are scored based on how far the arms (the optimal one
and the one picked) are actually apart. It is easy to see that if i* = I, R(I) = 0. As [ is random
because of the randomness in the samples drawn by the algorithm and a possible randomness in the
algorithm’s recommendation, we can write the expectation on the Regret as follows:

E(R) =Y R(I)P(I) (2.2)
I

In the case of a simple game with two moves, like in Figure 1.5, E(R) depends on the error-rate
P(I # ¢*) and the possibly incurred regret § = | min; p; ; — min; po ;|.

When comparing algorithms, it is most interesting to look at the worst-case scenario. In other
words, what is the worst expected regret? Formally this would be maxy,, 3 E(R), maximizing
the Expected regret over {p; ;}, the set of parameters p; ;. This measure is a guarantee that the
algorithm performs better or equal to that value. Alternatively, we could use the expectation
E¢p, ;3 E(R), which requires some prior distribution on {p; ;}, turning it into a Bayesian problem.
We prefer to use the worst-case Expected regret, because this gives a guarantee on the performance
of the algorithm in all cases and does not require us to put a prior on {p; ;}.

To get an idea of how the Expected Regret works, consider the the Equal-algorithm (Algorithm 2)
modified to work with Best-Arm Identification with a budget of T' = 20. Instead of sampling equally
over four terminal nodes, it samples over two arms instead. In this example the algorithm spreads
the budget T equally over both arms, resulting in 10 samples for each arm. Its recommendation is
based on argmax; p;. p; is the MLE of p;, which is X;/n;, where X; is the amount of successes in
the Bernoulli trials and n; the sample size (10 in this example). The algorithm picks incorrectly if
Pi— > Pi=, where ¢* = argmax; p; and i~ # argmax; p;. Because p = X/n, where X is the number of
won games (successes in the binomial distribution):

b > i = Xi- > X



16 2. MINI-MAX ACTION IDENTIFICATION

The error-rate therefore is:

n k . . n
P(X;- > X)) = Z Z K?) (pi- +0) (1 — (p= +6))" — 7 <k>Pi—k(1 —p-)" k (1=0.5(1=xy))
k=0 =0
| I | | |

All instances where ijProbability of ﬁ successes in * Probability of % successes in i— Randomize ties

(2.3)

With regret:

I=i
R(I) = {0 " (2.4)
0=pir —pi- I=1i

The Best-Arm simplification of Equation 2.1 drops the min terms.

n k

E(R;6,pi-n) =3y > K’;) (pi+0)) (1~(pi-+0))" (’;)pz--’fu—pi-)" ~F1-05(1 =)
k=0 j=0
(2.5)

A plot of this function with n = 10 can be seen in Figure 2.1. On the diagonal, where p; = py the
regret factor 0 in Equation 2.5 is dominant, pulling towards 0, whereas when p; and po are further
a part, the error-rate term takes over. The variance of samples x ~ Bern(p) are equal to p(1 — p).
This is highest with p = 0.5. This means that the estimates are most uncertain if p = 0.5, thus
allowing more room for errors. Of course, then they are both equal to 0.5, the regret becomes 0, so
they have to be different. The maximum of the expected regret is centered around 0.5, so these
would be the hardest p; to differentiate between. In Figure 2.1 the highest Expected Regret is at
the parameters p; = 0.416 and py = 0.584, as well as their mirror: p; = 0.584 and p, = 0.416.

We will use this algorithm as a building block in Section 5.

2.4 MINI-MAX IN GAMES

Mini-max Action Identification is combining Best-Arm Identification with Mini-max, so instead
of looking for max; E(x;), the maximum expectation for x;, we want to pick the mini-max option:
argmax; min; E(z;;). Here z;; is the value of the arm, or game, resulting if player 1 plays move
i and player 2 plays move j (Figure 1.5). In boardgames the value generally ends up being 0/1,
depending on whether it ends in a win or a loss, but if the algorithm stops at a certain level and
then moves over to a reasonable default policy, the value becomes a Bernoulli variable with a certain
probability p; ; to end up in a win. This parameter will then be the parameter from the Bernoulli
distribution from which the Mini-max Action Identification algorithm samples.

The fixed-budget setting makes more sense as a problem formalization within games than fixed-
confidence. This also goes for Example 1. There is only a limited amount of time to be spent looking
at reviews, in other words, you have a budget of T" amount of minutes to spend looking before the
rooms are taken. Within games, often there is a soft budget limit, players in most competitive
games have a limited amount of time to think about their moves. While time spent does not have
to be linear in the amount of samples drawn, it makes more sense to use than fixed-confidence.
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Figure 2.1: Expected regret plots (viewed from two perspectives) of Equal-algorithm (Algorithm 2)
adjusted for two-arm Best-Arm Identification with a budget of T" = 20.



The Worst-case Optimal algorithm

For fixed budget algorithms, there are two defining properties. The sampling rule and the rec-
ommendation rule. These decide how the algorithm acts while sampling and finding the best
recommendation. There is of course a multitude of statistics from the results from earlier samples
that might be used to decide which arm to sample from in the next iteration, but it is not immediately
obvious how to design a good algorithm.

So instead, we do a search along all of the possible algorithms one could use as sampling- and
recommendation rules. The way to approach this idea is to regard the search for an algorithm as
a game in itself: with two players. Player 1 tries to find the best move, versus Player 2, Nature,
which picks the values {p; ;} of the arms. Using game theory, the strategy to such a game can be
optimized using a Linear Programming solver. Using this method, we can find an optimal strategy
to finding the best move ¢ against the worst-case {p;;}, in other words, the worst-case optimal
algorithm. In Section 3.1 we define the problem. In Sections 3.2 to 3.8 we define the game and
present simplifications to the problem to make its size manageable. In Section 3.9 we will show the
performance of this optimal algorithm and in Section 5 we will use this algorithm in the comparisons.

3.1 ADVERSARIAL PROBLEM

The goal of the Mini-max Action Identification algorithm is to minimize the Expected regret,
whereas the ‘Opponent’s’ goal is to maximize this value. The problem can then be formalized to
the following:

min max E R(I) (3.1)
Algorithm strategy {p; ;} Samples
(mixed) Recommendation

Where the samples and recommendation follow the protocol of Section 2.2 and:
R(I) = maxminp; ; — minpy ; (3.2)
i J

18
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Using the ‘Minimax Theorem’ [9] we can rewrite Equation 3.1 to:

max min
Q Algorithm strategy {p; ; }~Q Samples
(pure) Recommendation

R(I) (3.3)

Where @ is the mixed strategy for the ‘Opponent’.

3.2 THE ALGORITHM-GAME

We define the game as follows: Player 1, the algorithm, tries to find the best move ¢ (Figure 1.5) by
sampling from the arms {p; ;}, to minimize the Expected regret. Player 2, the opponent, picks the
values of the arms {p; ;}. The algorithm does not know the opponent’s choice, so it has to consider
all possible combinations of {p; ;}. After the {p; ;} are picked, the algorithm plays alone. Each move
available to the algorithm will represent one sample to be taken. Therefore, in every node of the
game tree where the algorithm is at play, it has the same choices C; ; = {1, 2}2, which represent the
arms to sample from. These moves are alternated by chance moves € {0, 1}, representing a loss or a
win returned from that sample respectively. We define a to be the total number of arms to sample
from: a = 4 generally. In the case of the Best-Arm identification example (Section 1.3), a = 2.

In the end, the pay-off for the game is calculated based on the recommendation, expressed in
expected regret. We define the game to be zero-sum; As the goal of the algorithm is to minimize
the expected regret, the goal of the opponent becomes to maximize this. The solution found for this
problem not only gives us an optimal algorithm to solve the best-arm or minimax identification, but
also provides us with a distribution on worst-case {p; ;}.

We begin this analysis enumerating all possible algorithms, and then move on using a series of
simplifications provided by [8].

3.3 DEFINITIONS

The game can be represented in a tree (Figures 3.1 and 3.2). The root of the tree defines the start
of the game. Each node in the tree represents either a move for player 1, a move for player 2 or a
chance move. Chance moves in conventional games represent things like shuffling a deck, rolling a
die, etc., and in this setting it represents a draw from the arm chosen by the preceding move for
player 1, with the parameters chosen in the first move by player 2. Each node x, or leaf, in the tree
represents the recommendation, which in turn corresponds with a penalty h(x) € {0,1}. The regret
is zero when the recommendation is right, so the pay-off is the regret (Equation 2.1).

An example for a node z is as follows: there is a particular set {p;;} picked by the opponent.
For each sample in T, there is an arm {i, j} picked to sample from, along with a win or a loss
returned as sample. Then finally, based on the samples there is a recommendation I, which is
either the correct arm (I = argmax; min; p; j) and the pay-off is h(x) = 0, or it is the incorrect arm
(I # argmax; min; p; ;) and the pay-off is h(z) = ¢ (Equation 2.1).

The algorithm is unaware of the {p;;} picked by the opponent, so therefore cannot distinguish
between the subtrees after the first move (Figure 3.1). Formally, all corresponding nodes between
the subtrees belong to the same information set w. Player 1 cannot tell nodes x € u apart, so
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Player 2 picks {p; ;}

{pi} {pi;}° {pi;}° i}’

Player 1 plays Player 1 plays Player 1 plays Player 1 plays

Figure 3.1: Game tree representation of the first move: the opponent picks a set of {p; ;} and the
algorithm samples from the arms with those {p; ;}.

{pl }TL
return loss return win
i=1 i=2 i=1 =2

return loss return win return loss return win return loss return win return loss return win

Figure 3.2: The game tree representation after player 2 took their turn picking {p;}. This example
is with a = 2; a Best-Arm example.

their choices in Cye,, should all be the same: C),. There is no more interaction with the opponent
after he has picked {p;;}, except for the roll-out of the chance moves. Because this is already
incorporated in the chance moves, there is no need to account for this in the information sets,
so we drop that. Therefore the choices in node z are C, € {1,...,a} (We switch to a {1,...,a}
notation from {(1,1),...,(2,2)} for convenience in notation. Furthermore, the dimensionality is
not important, except for the recommendation).

We denote a strategy that decides which actions to take for each specific node z* by 7%, where k
ranges over the players. 7! is a single value, denoting which vector of {pi ;} is picked by player 1,
but 72 is a vector with an entry for every node. We call vectors 72 of this form pure strategies.
The set P* is the set of all the available pure strategies for player k. To play the game, we allow
the players to place weights (summing to 1, nonnegative) on each of these pure strategies, creating
mixed strategies p*. The expected pay-off of a pair of mixed strategies p = (u', u?) is H(u). For
any node z, let Pr,1(x) be the total u? weight of all strategies 7! prescribing exactly the moves
for player 1 along the path to z and similarly Pr,(z). Let 3(z) be the probability of all chance
moves along x. To find H(u), we multiply the probability of reaching node x given p and chance
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moves 3 as Pr,(x). B(x) then is the product of all the chance moves along the way to node x. The
expected payoff then is H(p) = Y, Pra(z)Pr(x)B(z)h(x) = Y, Pry(z)h(z), where 2 are all
the terminal nodes in the tree and h(x) the pay-off in node z.

3.4 ENUMERATING ALL ALGORITHMS

Using the above definition of the game tree, the goal is to find a mixed strategy p! that minimizes
the expected regret (expected because of the randomness incurred by both the chance moves and
mixed strategy from the opponent) at the end of the game. As this is a zero-sum game, we can
solve this with a Linear Programming solver [15]. It is easy to see however that enumerating all
possible strategies 72 grows exponentially with the size of the tree. The amount of nodes in turn
grows exponentially in the level of the tree. For a budget T, without the nature move, the tree
has Y7 (2a)’ nodes. 2a because each node has a choices, which each can return a win or a loss,
resulting in 2a new nodes. The amount of different algorithms possible for the tree then becomes

T—1 i
a2aizo (20)" 9207 (as the recommendation only has two choices, not a), which becomes unfeasible at
T as low as T' = 3 with a = 2.

Of course, the representation can be made more compact. If at x1, C;, = 1 is chosen as action, the
entire tree originating from the other actions in Cy, will not be visited. It is useless to enumerate
all the different choices in nodes that will never be visited. From every node, one action can be
chosen, which in the chance node resulting from it, produces two child nodes, one with a success,
one with a failure. So for each level in the tree, the amount of nodes doubles. The amount of nodes
then visited is Z;TFZO 2¢ = 2T+1 _ 1. This leaves us with a2" "~ different algorithms, which is still
too big (See Table 3.1). More simplifications will be made further on, but first we will cover how to
calculate the optimal mixed strategies p.

a
2 4
8 16
128 1024

32,768 | 4,194,304
232 7.04 10%3

=W N

Table 3.1: Number of possible strategies (or approximation) for some values of a and T

3.5 LINEAR PROBLEM

We now introduce the Linear problem that finds the optimal strategy and its parametrization, so
we can use these definitions in the upcoming Sections.

The opponent has to pick {p; ;j}. Because of size constraints, we discretize the available values for
{pi;} such that the opponent has the option to pick from m different combinations of {p; ;}. This
makes it so that there are finitely many pure strategies for the opponent. Because the opponent has
the option to pick a mixed strategy, we can see the weights placed on each {p;;} as a probability
of picking that value. We therefore define the nonnegative weights as z = (21, ..., z,)? with the
probability restriction Y ;" z; = 1. Similarly, the algorithm has n different strategies to pick from,
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with the following nonnegative weights: y = (y1,...,9,)? with 3 y; = 1. Let A, be the
Expected regret H(w},72) of the pure strategies v and w. For the linear constraints on z and y, we
define Ex = e with E as a 1 x m matrix of 1’s and e as the scalar 1. Similarly, Fy = f with F as a
1 x n matrix of 1’s and f as the scalar 1. Furthermore, let p and g range over scalars. The algorithm
tries to find argmin, max, 2T Ay while simultaneously the opponent looks for argmax, min, 27 Ay.
With this equilibrium, according to Wilson (1972) we end up with the following linear problem:

minimize e’p (3.4)
y7p

subject to — Ay + ETp >0,

- Fy = _f7
y=>0
The dual according to Wilson (1972) is:
maximize — ¢’ f (3.5)

2,9

subject to 27 (-A) —¢"F <0,
2'E = e,

z > 0.

The solution for this is easily found numerically, but will not be discussed yet, as there are more
simplifications to be done.

3.6 REALIZATION WEIGHTS

The next step [8] is instead of defining an algorithm which describes the actions taken at each
node, and then calculating the optimal weights on each algorithm to take, we place the weights
on the different choices C, for each node in the tree. This way the representation becomes a lot
more compact. Instead of a2" ™= the number of weights y becomes aZ;TFZO(Qa)i. This is one less
exponent than the previous representation. The hierarchy between the nodes in the tree needs to be
specified. Implicitly this is done by changing the restriction > 1 y; =1 t0 Yz, = D cc(1,.a) Yori1,es
where y is the weight of node x;, where z; is a node x after ¢ of the T" samples have been used.
Z¢+1,c is the node resulting from z; after sampling move c. The intuition behind this is that y,, is
the chance of the algorithm reaching node x; when multiplied with 5(x;), which is incorporated
in the pay-off matrix A, the product of the chance moves (in this case sample draws) passed on
the way from the root to x;. Intuitively, the probabilities for each of the possible actions Cy, to
be taken from z; should again sum to y,,. Therefore y,, — > 7 741, =0V 2, € {1: S _o(2a)1.
These added restrictions are added in the matrix F' turning it into a n x an matrix where n is the
number of nodes Y"i_,(2a):
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-1 1 -
-1 1 1

-1 1 1 (1)

F = -1 1 1 f=1.

1 :

-1 0

With only non-zero entries displayed. On the rows are the nodes x and on the columns the actions
for each node C,. The corresponding vector f then becomes f = (1,0,0,...)". The pay-off matrix
A is redefined as the product between the probabilities of the chance moves () and the pay-off at
that node. Because there is no pay-off until the terminal nodes, all row entries of A corresponding
Ty 27 are 0.

3.7 SUFFICIENT STATISTIC

The simplification provided above has one property, which is something called perfect recall. This
implies that the players know, remember and act according to all the previous actions. This would
mean that if action 1 was picked twice, once returning a failure, once returning a success, the order
in which those two happened matters (or might matter sometimes) for the action picked from the
resulting node. Or at least that a separate variable is made to reflect this difference. Each node x
also has some sufficient statistic [3], representing the results from the previous samples. This is a
vector of length 2a: v(z) = (successesy, failuresy, ..., successes,, failures,).

One more simplification that can yet be made is to disregard the order in which the previous samples
leading to node x were taken, and allow branches of the tree to rejoin together if v(z) = v(z’).
The change made to the linear restrictions on the variables is as follows: }° ;4 — Z?:1 =0V
i€ {1:31_(2a)!} where x;, are all the actions from other nodes that can result in reaching x; in
the game tree. An example of two nodes having the same sufficient statistic is shown in Figure 3.3.

In the next section we will prove that this simplification will still result in an optimal solution.

3.8 VALIDITY OF THE SUFFICIENT STATISTIC

In Section 3.7 we presented a smaller version of the problem in Section 3.5. In this Section we show
that they will give equivalent solutions.

Theorem 1. The optimal solution from solving the reduced problem in Section 3.7 can be used to
find an optimal solution in the complete problem in Section 3.5.

Proof. Let x and y be two nodes in the above defined game tree where v(z) = v(y). Let M be the
Linear problem described in Section 3.5. Let S be an optimal solution for M. Similarly, let M’
be the Linear problem described in Section 3.7. Let S’ be an optimal solution for M’. Let z, and
xp be the variables in S corresponding with the weights on the choices C, and similarly y, and
yp corresponding to Cy. In the sufficient statistic model M’ adds the weights together = + y = zv,
Tq + Ya = TYq and xp + Yy = TYp-
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success failure

‘1000) (z) = (‘0100)

/\ /\
..‘. /\ /\ ..‘.

success failure success failure
\ \ \ \
v(z) =(1,1,0,0) v(z) = (1,1,0,0)

Figure 3.3: An example of two nodes in the tree sharing the same sufficient statistic. As the tree
gets deeper, these nodes become more and more common.

S is an optimal solution for M, therefore satisfies the following restrictions:

x = g+ X
Yy = Ya + Yp
T + Y = Tg+Tob + Yot W

Therefore, S is a solution 3s’ € M’.

The payoff determining the value of the solution S depends only on the sufficient statistic v(z) of
all the nodes x. Therefore v(z) = v(y) = (vry) = h(x) = h(y) = h(zy). The expected regret,
taking the weights into account, then becomes h(zy)xq + h(Ya)Ya = h(2ya)Tys. This means that
the payoff of the optimal solution h(S) = h(s' € M') = h(S) > h(S’).

Similarly, S’ is an optimal solution for M’, therefore satisfies the following restrictions:

Ty = TYa + TYp
T+y = ZatTy + Yot W

There are many solutions that satisfy the restrictions of M, but dividing zy, and xy, over x4, xp,
Y and y, according to the ratio % always will yield a valid solution:

Zq = 1y TWa

Ya = xi_,_yxya
Ta T Ya = T%Wa T 745
Ta + Yo = %xya

o + Yo = TYa
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And
Tq = Iiw:rya
Tp
Teg + T = ﬁywya + =y

T

z(x+y)
T+y
T

I
8
!
<
=
<
S

Using this, we showed that S’ has a corresponding solution s3 € M. With similar arguments
as above, we can see that h(S’) = h(s € M) = h(S’) > h(S), which along with the earlier
statement h(S) > h(S’) means that h(S’) = h(S) = S’ =S.

O

3.9 RESULTS

Calculations were performed in R, using the package Rglpk.

We first used the model described in Section 3.7 on a Best-Arm problem with a = 2 and a budget of
T = 20. The results can be seen in Figures 3.4 and 3.5. One thing to remark is that the strategy for
all but a few nodes is entirely placed on one of the two arms, instead of some distribution between
the two. This means that, even though the algorithm has the option to define some weights on the
choices Cy, it will place all the weights on one action in most nodes.

The goal of this method was to try to find some pattern in the sampling rules of the optimal
algorithm. However, looking at Figure 3.5, there is no clear pattern or rule to extract from these
results. The results plotted in this Figure are even just from a 2 armed Best-arm setting. The
interpretation of the results from a mini-max optimal algorithm with a = 4 would be very hard, if
not for the fact that it is hard to visualize this.

Looking at the performance of the optimal algorithm (Table 3.2), we see that in the worst-case
scenario, the optimal algorithm is slightly better, but it pays for that for other sets of parameters.
It is very likely however that the slight improvement is caused by numerical noise. Another remark
is that the algorithm is not symmetrical. If we were to exchange the observations between arm
1 and arm 2, we would expect the algorithm’s action to change as well. This is not the case, so
it seems that there are more than one optimal solutions. The Linear Program solver just picked
one. To fix this we force the symmetry between arm 1 and arm 2, by adding constraints of the
form: if node x1 and xo are symmetrical, the weights on the choices of move x; are equal to their
equivalents of xo. The results of this are shown in Figure 3.4. The worst-case set parameters {p;} is
shown in Table 3.3.

The performances of the Optimal algorithm in the Min-max setting does not have the same problems
of barely being able to improve on sampling equally as a = 2 has (Figure 3.6). With more arms to
sample from, it is has more to win by not sampling each arm equally. Compared to the Best-arm
results, the performances are worse as a increases, but that is to be expected, as there are more
arms to sample from, with the same budget. This means less samples per arm, so it becomes harder
to reach a good conclusion.

Sadly the calculation of the Optimal algorithm becomes too computationally intensive as T increases,
leaving us with an algorithm for a maximum budget of 7' = 6 in the simplest Min-max scenario.
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Worst-case Optimal algorithm Equals algorithm
max E(R) 0.03815815 0.03818470
Mean(E(R)) 0.01681627 0.01465692

Table 3.2: Performance of the Worst-case Optimal Algorithm in @ = 2 and T' = 20. The performance
was compared to the Equal-algorithm adapted for a = 2 (Section 2.3). As can be seen in the top
row, in the worst-case set {p; j} the Worst-case Optimal Algorithm performs slightly better. When
we look at the average performance over a uniform grid of {p;;}, we see that it is worse. The
Worst-case Optimal Algorithm is indeed better in the worst-case, but pays for that in the rest of
the parameter-space.

T D1 D2 Weight
0.0000000 0.5102041  0.3310811
2 0.4897959 1.0000000  0.2635135
0.7959184 0.2857143  0.4054054
0.3061224  0.0000000 1.454700e-17
5 0.3469388 0.6530612 6.530612e-01
0.6530612 0.3469388 3.469388e-01
0.0000000 0.2244898 2.947623e-05
0.3673469 0.6122449 2.458179e-01
10 0.3877551  0.6326531 2.533630e-01
0.6122449 0.3673469 2.541521e-01
0.6326531 0.3877551 2.466070e-01
1.0000000 0.7959184  3.051906e-05
0.4081633 0.5918367  0.4081633
0.5918367 0.4081633  0.5918367
0.4081633 0.5714286 4.691306e-01
20 0.4285714 0.5918367 5.308692¢-01
1.0000000 0.8775510 1.644140e-07

15

Table 3.3: Worst-case {p; ;} along with their weights for the Worst-case Optimal Algorithm with
a=2.

This is not sufficient to use in practice. We can however extrapolate the performances as a base of
comparison for other algorithms. Additionally we do get an intuition on the worst case set of {p; ;}.

In the Min-max a = 4 setting, the worst-case set {p; j} could only be calculated for 7' = 6, at which
point the differences § can be relatively big without suffering the lower error-rate. The distribution
on the worst-case set can be found in Table 3.4. This is an extreme case; the high difference between
min;p1,; and min;jps ; is caused by the low budget, leaving the algorithm unable to differentiate
between such big differences between the parameters.
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T

P11

P12

D21

D22

Weight

0.0000000
0.5000000
0.5000000
0.8333333
1.0000000

0.5000000
0.5000000
0.5000000
0.3333333
1.0000000

0.5000000
0.0000000
0.5000000
0.8333333
1.0000000

0.5000000
0.5000000
0.0000000
0.8333333
0.5000000

0.2424640
0.2870249
0.1847969
0.2123198
0.0733945

0.0000000
0.1666667
0.3333333
0.3333333
0.5000000
0.6666667
0.6666667
0.6666667
0.6666667
0.8333333
0.8333333
0.8333333
1.0000000
1.0000000

0.3333333
0.6666667
0.8333333
1.0000000
0.5000000
0.1666667
0.6666667
0.6666667
1.0000000
0.3333333
0.8333333
0.8333333
0.6666667
1.0000000

1.0000000
0.5000000
0.6666667
0.0000000
0.6666667
0.6666667
0.3333333
0.8333333
1.0000000
0.6666667
0.5000000
1.0000000
1.0000000
1.0000000

0.3333333
0.5000000
0.6666667
0.3333333
0.1666667
0.6666667
0.8333333
0.3333333
1.0000000
0.6666667
1.0000000
0.5000000
1.0000000
0.6666667

0.002875250
0.016654876
0.190211561
0.004388016
0.093909648
0.031962007
0.176373542
0.050641718
0.068342128
0.169562899
0.064617805
0.111302297
0.016941423
0.002216828

0.1666667
0.3333333
0.3333333
0.3333333
0.3333333
0.5000000
0.5000000
0.5000000
0.5000000
0.6666667
0.6666667
0.6666667
0.8333333
0.8333333
1.0000000
1.0000000
1.0000000

0.6666667
0.0000000
0.0000000
0.8333333
1.0000000
0.1666667
0.5000000
0.5000000
1.0000000
0.1666667
0.6666667
0.6666667
0.3333333
0.8333333
0.3333333
0.6666667
1.0000000

0.5000000
0.3333333
0.3333333
0.6666667
0.3333333
0.5000000
0.1666667
0.6666667
0.8333333
0.5000000
0.3333333
0.8333333
0.6666667
0.5000000
0.3333333
1.0000000
1.0000000

0.5000000
0.3333333
1.0000000
0.6666667
0.0000000
0.5000000
0.6666667
0.1666667
0.8333333
0.5000000
0.8333333
0.3333333
0.6666667
1.0000000
0.0000000
1.0000000
0.6666667

0.086782237
0.003221396
0.003311834
0.124142292
0.006076984
0.006250593
0.086337326
0.064793146
0.044011895
0.051353397
0.126594455
0.156756307
0.166241956
0.036764226
0.002765150
0.010733693
0.023863113

27

Table 3.4: Worst-case {p; ;} along with their weights for the Worst-case Optimal Algorithm with

a=4.
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Expected_regret
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Figure 3.4: Expected regret plots (viewed from two perspectives) of the optimal algorithm for a
two-arm Best-Arm Identification problem with a budget of T"= 20. Compare this to the Expected
regret by the Equal-algorithm with same budget in Figure 2.1.
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Figure 3.5: Strategy representation of the optimal algorithm for a = 2 and T' = 20. The pixels
represent nodes as follows: The boxes represent the samples spent in that arm, from 0 to 7" in both
directions. Within the boxes, each pixel corresponds to the amount of successes obtained in that
arm: from 0 to n in both directions. The color of the pixel shows the strategy within that node.
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Figure 3.6: Performances of the Optimal algorithm in the worst-case scenarios. Due to computer
time, results for higher T' are not available. The results for a = 2 are in the Best-Arm setting, while
the other results are Min-max.



The Bayesian algorithm

Our search for the optimal algorithm in Section 3 tried finding the optimal algorithm in the worst
case scenario, creating a mini-max game in itself. We found that not only does this game grow
exponentially in size, it also grows greatly in computation time, practically limiting us to 7' = 6.
If we relax our aim to find an algorithm optimal in the worst case scenario and instead look at
optimizing the expectation over all {p; ;} under some computationally convenient (and reasonable)
prior distribution, the objective becomes easier to compute. We hope that an algorithm that
optimizes the expectation, is a decent alternative for one that optimizes the worst case scenario.

The expectation over all {p; ;} requires some distribution for those parameters. Recall Equation 3.3
(repeated as 4.1), which maximizes the Regret with respect to some distribution @ on {p;;}.

R(I) (4.1)

max min
Q Algorithm strategy {p; ; }~Q Samples
(pure) Recommendation

Same as Equation 3.3.

If we fix the distribution @, it will formally take the role of a Bayesian prior on {p; ;}. The objective
then becomes:

min E E R(I) (4.2)
Algorithm strategy {p; ;j}~Q Samples
(pure) Recommendation

It makes sense to approach this in a Bayesian framework, basing the decisions on the expectation
of the regret conditional to a posterior distribution on {p; ;}. First we will define the priors and
decision rules. Then we present the results for comparison in Section 5. While the Algorithm is
Bayesian in spirit and construction, the evaluation will still be based on the worst-case Regret, in
line with the other algorithms.
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4.1 THE PRIOR AND POSTERIOR DISTRIBUTIONS

For numerical convenience we use as Q the fourth power of the conjugate prior for the Bernoulli
distribution [11], one prior distribution for each arm in {p;;}. This is the Beta distribution. We
pick the prior to be uninformative, with parameters apior and bpior. The posterior distribution
is again a Beta distribution, with aps = Num.wins + aprior and bpos = Num.losses + byrior. To
test whether the prior distribution seriously affects the algorithm, we tested its performance with
three different priors: Beta(0.5, 0.5), Beta(1, 1) and Beta(1.5, 1.5) (Figure 4.1). Beta(0.5, 0.5)
is a commonly used prior for binomial parameters, yielding an uninformative distribution that is
invariant for all transformations of the parameter [6]. Beta(1, 1) is equal to Unif(0, 1), and as such
also uninformative. Finally, Beta(1.5, 1.5) also has mean 0.5, but places more weight around the
mean, which is where we would expect the worst-case parameters to be, based on results in Sections
2.3 and 3.9. This way we make the algorithm consider those parameters to be more realistic. The
final prior is slightly informative.

Beta priors
=
« — Beta(0.5, 0.5)
— — Beta(1, 1)
—— Beta(15,15)
= |
o
= _
(=}
o |
=
= I T I T T I
0.0 0.2 0.4 06 08 10
X

Figure 4.1: Beta prior distributions

The posterior distribution can easily be calculated based on the sufficient statistic value of a node

v(z) (Section 3.7). Conditional on this posterior, the expectation on getting a win or a loss is
Apos bpos

respectively R PR

4.2 Eg, (R )

The final recomme@zﬂion made by most algorithms presented in Section 5 is based on the MLE
of the parameters {p; ;} and with that an estimate of the Regret, while the Bayesian framework
rather looks at the posterior distribution of those parameters: {p; ;} ~ Qpos. This means that there
is not just one value, but again a distribution of the regret. So preferably we would like to take the
expectation of this to make our decisions.
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i, g

Where z is a terminal node in the game tree (Section 3.3).

The goal is to minimize the regret with respect to I:

argmin E (Ry;z) (4.4)
1 Apig}

Because the first term in the integral does not depend on I:

argmax [ [ (minpr,)P({pes} lo(a)) dprs dpi (4.5)

To find a strategy, the integral in Equation 4.3 has to be calculated for each terminal node in the
tree (Figure 4.3). This is a huge fraction of all nodes in the tree, so this calculation takes a lot of
time. Therefore we approach the integrals with a four-dimensional grid on {p; ;}, summing over the
min; pr jP({p;;}|v(z)) for each four-dimensional combination of grid-points, so we can calculate
E(p, ;1 (Rr;2) in linear time with the one-dimensional grid size.

To show that our approximation of Equation 4.3 yields representable results, we compared its
outcomes with the Eg,, 1(Ry) calculated off a Monte Carlo sample (n = 10°) of {p;;} generated
from the Beta posterior distributions given the v(z). The results of this are shown in Figure 4.2.
In Figure 4.2a we show the distribution of min; p;, which makes up part of the integral. For each
value of i, these plots are then shown in 4.2b, along with the density of the pairwise maxima. This
is again compared to the grid-wise approximation of the density. As can be seen, on a grid of 500
points, this yields a decent approximation, while saving a lot on computation. We find a grid of 500
points to be accurate while still being fast to compute.
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Density of mini(p;)

— P

— P2

—— MC of min(p))
Approx of mingp;)

Density

MC of min(p, )

MC of min{pz., ;)

MC of max(min(p; ))
Approx of max(min(p, )

Density

Figure 4.2: The estimated density of min; p; (a) and max; min; p; ; (b) evaluated on a grid of 500 val-
ues for p. Comparison shown is for the node with sufficient statistic v(z) = {17,15,11,19,5,15,2,1}.
The results are compared to the results of a Monte Carlo sample of {p; ;} drawn from the posterior
Beta distributions on this node. n = 10°. The overlap between the approximation and the Monte
Carlo results show that the approximation is sufficient.
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Figure 4.3: An example of the someRecommendationRule and someSampleRule for the Bayesian
Expected regret algorithm. Shown on the left is one node ({0,2,7,3,5,5,0,1}). The algorithm
has one sample left to spend, after which it has to make a recommendation. For each of the eight
possible terminal nodes and their two possible recommendations, the expectation of the Regret is

calculated according to Equation 4.3.
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4.3 BAYESIAN STRATEGY

When all the terminal nodes have their Expected regret calculated, the values for the rest of the
nodes can be calculated in backward fashion. Each node has four arms to sample from, so the
algorithm picks the arm which in expectation yields the lowest regret. In order to do that, we need
to know the probability of getting a success or a loss from that sample. This can be calculated
conditional to the posterior distribution on {p;;} in that specific node:

i,J b

. apos 1 pos 0
argmin | ——— E (R;;)+ ———— E (R;)) (4.6)
2 a;)’gs + b;;gs {pi s} ZJ a;;gs + bggs {pij} ZJ

Where i, j is the arm to sample from and E{piﬂj}(R%l) the Expected regret value of the resulting

node after sampling from arm ¢, j and receiving a loss or a win respectively.

An example of this calculation is shown for a small part of the game tree in Figure 4.3: Within the
node, the recommendation that minimizes this expectation is picked as the chosen recommendation
for someRecommendationRule. For the topmost terminal node, this calculation is shown, for the
other nodes only the value is shown. From these Expected regrets, the expectations on the regrets
on the nodes leading up to these terminal nodes is calculated. Conditional on the posterior in the
node, the probabilities of getting a win or a loss are used to calculate the expectation of the regret.
With a Beta prior, these probabilities are convenient to calculate (Equation 4.6). In this example,
the algorithm has the lowest Expected regret if it picks arm 1, so it picks arm 1.

4.4 RESULTS

The strategy for this algorithm is way faster to calculate than the optimal algorithm because it does
not need to consider all possible distributions {p; ;} ~ @, but only the fixed prior. However, here
as well there are limitations. This downside with this algorithm is that, similarly to the optimal
algorithm, the entire algorithm has to be calculated in advance. There is no straightforward way
to calculate the next step on the fly. This means that the entire strategy has to be stored, which
becomes hard as the budget grows. With all the simplifications mentioned in Section 3.7, the tree
still becomes too big around T =~ 30.

The strategies for this algorithm were calculated in R, for T from 2 to 30, with different prior
distributions for {p; ;}. Then the performance was evaluated over a grid of {p;;}, using the
worst-case regret. The results are shown in Figure 4.4. In this figure the results are compared to
the Optimal algorithm presented in Section 3. Notable is the better performance of the Optimal
algorithm. This is of course the promise of the algorithm. Sadly the computational burden of
calculating the Optimal algorithm prevents us from comparing the Bayesian Expected Regret
algorithm for more realistic 7T'.

The different priors seem to perform similarly as 7" increases. This makes sense, as the smaller T is,
the bigger the influence of the prior. This also explains the relatively big differences for lower T

As mentioned, this strategy has the problem that it has to be calculated fully in advance as well,
again creating a upper-bound on what can be calculated in reasonable time and space. However, it
does give some additional information about hard cases of {p; ;} (not using the term 'worst-case’,
because this algorithm makes no such guarantees) and how they change as T' increases. The results



4.4. RESULTS

Prior P11 P12 P21 P22
Beta(0.5, 05) 0.5 1 0.65 0.65
Beta(l, 1) 043 1 057 057
Beta(1.5, 15) 05 1 0.65 0.65
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Table 4.1: Worst-case parameters py;;) for the Bayesian Expected Regret algorithm at 7" = 30.

here confirm the intuition explained in Section 3.9: for T' = 30, the highest Expected Regret as a
result from the algorithm with priors Beta(0.5, 0.5) is from the set {p; ;} = {0.65,0.65,1,0.5}. Now
it should be noted that this is based on a grid of 11 values for each p; ;, resulting in 114 = 14641
sets. This of course is not the densest grid, but it does give a decent picture of a hard case.
The worst-case parameters are shown in Table 4.1. Because the indices ¢ and j do not have a
fixed order, the worst-case parameters have symmetries. {0.5,1,0.65,0.65} should be no harder
than {1,0.5,0.65,0.65}, {0.65,0.65,1,0.5} or {0.65,0.65,0.5,1}. As can be seen in Table 4.1, the

worst-case parameters for Beta(0.5, 0.5) are the same as for Beta(1.5, 1.5).
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Figure 4.4: Results from the Bayesian Expected Regret Algorithm, compared to the results from the Optimal algorithm (Section 3). From
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Algorithm comparison

In this Section we make a more elaborate comparison of some algorithms used in Mini-max Arm
Identification, using the worst-case Expected regret maxy,, .y E(R) as our evaluation criterion. We
will first introduce the subsequent algorithms in the format provided in Algorithm 1. Then we will
compare their performance and their worst-case parameters.

5.1 ALGORITHMS

In this subsection we will introduce four new algorithms for comparison.

5.1.1 EQUALS ALGORITHM

The Equals algorithm was already presented in Section 2.2 (Algorithm 2). This algorithm serves as
a logical upper-bound on the performance of an algorithm. The algorithm makes no effort to adjust
its sampling based on the results from the samples and does nothing adaptive. Rather, it divides
the budget T in 4 parts, and samples each arm accordingly.

5.1.2 HIERARCHICAL ALGORITHM

The first logical step up from the Equals algorithm is the Hierarchical algorithm. The idea is to
first expend some of the budget to sample equally, determine which arm is min; p; ; for each 4, and
then spend some more samples on those arms specifically. This effectively increases the amount of
samples used on the (estimated) lowest arms, increasing the certainty of the estimations for p; ;.
The budget T is divided in 6 parts: equal to the amount of arms {7, j} plus the amount of arms
{i}. First each arm gets one part, then the arms with the lowest min; p; ; then get another part
of the budget. These arms will have ! /3 of the budget, instead of the /4 of the Equals algorithm.
The fraction of the budget spent equally versus on the minimal arms can be tuned further, maybe
adaptively, but that is beyond the scope of this work.

39
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Divide budget 7" in 6 parts R
'

Sample each arm for one part R
v

Estimate argmin; p; ; for both ¢
Sample argmin; p; ; for z;nother part R for both ¢
Estimate p; ; again taking t:le new samples into account
Estimate arginaxi min;p;.

Figure 5.1: The actions taken by the Hierarchical algorithm.

someSampleRule < function(t, z;, j,){

if t < %T then
/* Samples equally for first 4 parts of the budget.
14t mod2+1
j <« [0.5t] mod2+1

else if t = %T then
/* Performs last equal sample and determines min;p; ;.
14t mod2+1
j <« [0.5t] mod2+1
foreach {i,j} do

\ Pij < mean({x;, j,|ix =i and j; = j})
end
for I in ¢ do
‘ jmz’n,[ < argminj ﬁ[,j

end

else
/* Samples equally over the estimated min;p; ;.
141 mod2+1
J < Jmin,i

end

return({i,j})

}

someRecommendationRule < function(z;, j,){
foreach {i,j} do
‘ ﬁivj A mean({xit,jt’it =i and j; = j})
end
if minj ]51,]‘ = minj ﬁQJ‘ then
i < Bern(0.5) + 1
/* Tie: resolve uniformly at random.
else
‘ 1 < argmax; min; p; ;
end
return(i)

Algorithm 3: The Hierarchical algorithm’s functions. See Figure 5.1.

*/

*/
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5.1.3 LOWER CONFIDENCE BOUND ALGORITHM

The objective of the Min-max Action Identification algorithm is to find the max; min; p; j;, which
means it is sensible to focus as much as possible on sampling the lowest arms on each side. Once
the estimator of an arm becomes relatively high, it is unlikely to be the min; p; ;, so there no point
sampling from that arm anymore. The Lower Confidence Bound algorithm implements this by using
the 95% confidence interval on the estimated p; j. When some p; ; is high, its confidence interval
should be high as well, scaled to the amount of samples already spent on that arm. This algorithm
is adaptive by sampling the arm for each i that has the lowest lower bound on the 95% confidence
interval of {p; ;}.

Because this interval is calculated after each sample, we need a confidence interval that is accurate
when n is low. There is a multitude of confidence intervals for the Binomial distribution, each with
different drawbacks, but they all struggle when p is extreme and/or n is close to 0. We use the
Jeffreys Interval, based on the Quantiles of the Beta function [1]:

(0, Bi_a/2(z +0.5,n — 2 +0.5)) ifx=0
Clhio-ay% (1) = § (Bajo(z +0.5,n — x +0.5)),1) ifx=n
(Baj2(r +0.5,n — 2 +0.5)), Bi_q/2(x + 0.5,n —x + 0.5)) otherwise
(5.1)

Where By(a,b) is the ¢-th quantile of the Beta distribution with parameters a and b.

5.1.4 ONE-MORE BAYESIAN ALGORITHM

The One-more Bayesian algorithm is inspired by the Bayesian algorithm presented in Section 4,
but instead of minimizing the Expected regret over the entire budget, the algorithm samples as if
there is only one sample left. This could be seen as a greedy approach, sampling each time from
the arm that minimizes the expected regret right there and then. In other words, I have one more
sample to spend, how do I do that as efficiently as possible? That question is asked for each and
every sample in the budget 7. The sample rule would then be an adaptation of Equation 4.6. The
recommendation rule is the same as for the Bayesian algorithm (Equation 4.5).
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someSampleRule < function(t, z;, j,){
foreach {i,j} do
\ Pij < mean({w;, ;,|ir =i and j; = j})

end
sztiﬂ't
Di,j
1+t mod2+1
for J in {1,2} do
\ Cly < Clysy (Di,g - ni g, i)
end
j +argmin; Cly
return({i,j})

Nij —

}

someRecommendationRule < function(z;, j,){
foreach {i,j} do
| pi;j  mean({;,j,|ir = i and ji = j})
end
if minj ﬁlvj = minj ﬁij then
i < Bern(0.5) + 1

/* Tie: resolve uniformly at random.

else

‘ i < argmax; min; p; ;
end
return(i)

}

5. ALGORITHM COMPARISON

Algorithm 4: The Lower Confidence Bound algorithm’s functions. For Clgsy(a,b) see Equation

5.1.

someSampleRule <« function(x;, j,){
pos <—05+th1%
b;)’gs «— 0.5+ Mgy — Zt xivjt

{i,j} « argmin, ; ¢]E{p”}(R1 )+ L

1 J 2]
+bpos

2] 25
+bpos

return({i,j})

someRecommendationRule < function(w;, j,){

i < argmax; [[(min; p; ;) P({pi;}[v(zij,)) dpr1 dpr2

return(i)

05)

Algorithm 5: The One-more Bayesian algorithm’s functions.
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5.2 PERFORMANCE EVALUATION

For the evaluation we again use the maxy,, ) E(R), based on a grid for fixed {p;;}. The evaluation
of the Equals algorithm (Section 5.1.1) and the Hierarchical algorithm (Section 5.1.2) can be found
in closed form by considering all possible results from the samples and the regret incurred by the
algorithm in those occasions (similar to Equation 2.5). This is doable because the Equals algorithm
does not sample adaptively and the Hierarchical algorithm does so in a very predictable manner.
This means that the amount of samples drawn from each arm is stable, which makes the amount of
possible outcomes a relatively small set.

Shown below is the closed form for the evaluation of the Equals algorithm, assuming 7' is divisible
by 4:

!

"M»H

N

NIEE

R(argmax{min{i, 7}, min{k, [} }; {pi;}) [[ Bl=, ; {Pij})

E(R; {pi;},T) =
; 01=0 we{ijk,l}

1=0j=0k

(5.2)

Where B(z,n,p) is the Binomial probability of = successes out of n trials with probability p.
R(I;{p;;}) is the regret incurred with recommendation I given parameter set {p; ;} (Equation 2.1).
The Hierarchical evaluation is computed in a similar fashion, but is not shown here because it is
more complicated.
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The performance with the worst-case set {p; j} would then be:

max E(R; {p:;}, T) (5.3)

Di,j

This closed form compilation is not the case for the Lower Confidence Bound algorithm (Section
5.1.3) and the One-more Bayesian algorithm (Section 5.1.4), as these sample adaptively. To calculate
the E(R) the entire strategy would have to be calculated in a manner similar to the Bayesian
algorithm in Section 4. This then again runs into similar problems as that algorithm: the tree
becomes exponentially large as T increases. So instead we evaluate these algorithms based on the
regret averaged over 1,000 runs of the algorithm for each set {p;;}.

5.3 RESULTS

Based on the evaluation described in Section 5.2, the performances of each presented algorithm is
performed on a grid of parameters {p; ;}. The results of this are shown in Figure 5.2 and Table
5.1 along with the performances of the Bayesian algorithm and the Worst-case Optimal algorithm.
Because the Worst-case Optimal algorithm could only be calculated for T' < 6, it is omitted in
Figure 5.2. As T' = 30 is approximately the upper limit for the Bayesian algorithm, the performances
in Table 5.1 are shown for T' = {6, 30,60, 100}.

Because of the guarantee the Worst-case Optimal algorithm provides, it is the best at T" = 6, closely
followed by the Hierarchical algorithm. With the absence of results for the Worst-case Optimal
algorithm at higher budgets, the Hierarchical algorithm shows the best performance. At T' = 60
the performance of the Lower Confidence Bound algorithm is slightly better than the Hierarchical
algorithm. An important thing to note though is that the performance of the Lower Confidence
Bound algorithm is based on a Monte Carlo sample of 1,000 runs of the algorithm. This means
that there is some margin of error in the performance estimation. This margin of error is very
unpredictable however, because the measure is the maximum of the Expected regrets evaluated over
a grid of {p; ;}. This also means that the measure is biased to high extrema. However, because the
worst-case set {p; ;} for the Lower Confidence Bound algorithm looks very much alike the others,
we do not believe that these measures are outliers.

It seems that the attempts to sample adaptively do not improve much on sampling (hierarchically)
equally. In contrary, the One-more Bayesian algorithm performs much worse. The sampling methods
of this algorithm are very greedy though, looking only at what is best in the short run, which means
that either it works correctly, or it fails miserably. This is because there is no guarantee that it
will sample all arms. For example, if sampling the first arm minimizes the expected regret, there
is no reason for the algorithm to try the other arms. This way it is possible for the algorithm to
completely tunnel-vision on one arm.

The worst-case parameter sets {p; ;} are shown in Table 5.2. The worst-case parameter distribution
on the Worst-case Optimal algorithm are ommitted, but can be found in Table 3.4. As mentioned
in earlier sections, an interesting pattern appears in the worst-case sets. It seems that the min-max
arm max; min; p; ; is equal to the non-minimal arm on the same side. This is further discussed in
Section 6.
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T
Algorithm 6 30 60 100
Worst-case Optimal 0.1095045 NA NA NA
0.5 0.5 0.17676308 0.05725861 NA NA
Bayesian 11 0.1767631  0.0574952 NA NA
1.51.5 0.1767631  0.0590056 NA NA
Equals 0.1924198  0.06740518 0.04774235 0.03702653
Hierarchical 0.1133918 | 0.05161268  0.0382073 [ 0.02987815
Lower Confidence Bound 0.2134286  0.0567 0.0381 0.03195239
One-more Bayesian 0.2255 0.133 NA NA

Table 5.1: The Maximum Expected regret values for various algorithms. The Worst-case Optimal
algorithm is elaborated upon in Section 3. The Bayesian algorithms and their priors are discussed
in Section 4, the other shown algorithms are discussed in Section 5.1 and 5.2. The green cells show
the best performances for that budget (among the available data).

Algorithm T P11 D12 D21 D2,2 o

0.5 0.5 30 0.5 1 0.65 0.65 0.15
Bayesian 11 30 0.4285714 1 0.5714286 0.5714286 0.1428572

1.51.5 30 0.5 1 0.65 0.65 0.15
30 0.5 1 0.7142857 0.7142857 0.2142857
Equals 60 0.4285714 1 0.5714286 0.5714286 0.1428572
100 0.4452381 1 0.5547619 0.5547619 0.1095238
30 0.35 0.7142857 0.5714286 0.5714286 0.2214286
Hierarchical 60 0.4285714 0.7142857 0.5714286 0.5714286 0.1428572
100 0.3833333 0.5880953 0.4785714 0.4785714 0.0952381

30 0.5 0.7142857 0.65 0.65 0.15

Lower Confidence Bound 60 0.35 0.5714286 0.5 0.5 0.15
100 0.4452381 0.6333333 0.55 0.55 0.1047619
One-more Bayesian 30 0.6896552 1 0.9310345 0.9310345 0.2413793

Table 5.2: Worst-case parameter set {p; ;} for the different algorithms discussed for 7' = 30, T' = 60
and 7" = 100 where available. The possible regret incurred § = |min;p;; — min; ps ;| is also
displayed.
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Figure 5.2: Maximum Expected regret values plotted on a logarithmic scale. Shown are the results of several algorithms with budget 1" in
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Worst-case set {p;;}

Based on the information found on the worst-case sets of {p; ;} in Sections 2.3, 3.9, 4.4 and 5.3, we
noticed a pattern in the worst-case sets {p; ;}. In this section we specify the pattern and prove that
it is indeed the worst-case set in algorithms with different recommendation rules.

6.1 'THE PATTERN

As already described in Section 3.9, the minima on both sides (min; p; ;) are centered around 0.5.
The pattern we found describes the value of the arms that are not the minima. If p; 1 = min; py ;
and p2 1 = max; min; p; ;, then the pattern we find is p11 < p21 = p22 K P12 (Figure 6.1).

For Best-arm identification we already saw in Figure 2.1 that the worst-case set {p;;} is the
equilibrium of a big regret on one side, and a high probability for the algorithm to make a mistake
(Section 1.3). In the Min-max setting, the worst case set {p; ;} is very similar to Best-Arm, if we
consider the Equals algorithm (Algorithm 2). The min; p; ; follow a similar pattern as the Best-arm
worst case set. The interesting thing is the behavior of the regret as the non-minimal parameters
change. The intuition behind this is easy to understand if you consider the following: The algorithm
makes a mistake if the estimate for argmax; min; p; ; is not actually argmax; min; p; ;. This could
happen because of the randomness of the samples drawn, and becomes more likely, again, with a
lower sample size T or a smaller difference 6 = | min; p; j — min; po j|. But also the role of the other
parameters can be explained with this. Because the algorithm makes its decisions on the Maximum
Likelihood Estimates of the parameters, the chance of min; p;+; to be lower than min; p;~; becomes
bigger when then p;- ; are all close together (See ps ; in Figure 6.1). The opposite is the case for the
arms that are not Min-max (i~); here the min; p;~ ; and the other arms from 7* are so far apart
that their confidence intervals do not overlap anymore.

In the upcoming subsections we will provide proof for this pattern with respect to both ps 2 and p1 o.
Seeing as we found this pattern in multiple types of recommendation rules, Bayesian and frequentist,
we will show for both settings that this proof applies.

47



48 6. WORST-CASE SET {Pr.;}

04 -

I-'II
(=]
[= 1}
1
]
——
p—=—

0.2 -

00 = 1.1 12 21 2.2

Figure 6.1: Example of a set of {p; ;} with arbitrary confidence intervals.

6.2 pgjg

We will provide proof for the pattern described in Section 6.1. First we start with pg o:

Theorem 2. Let p11 be min; p1 j and p21 be max; min; p; ;. Let p11, p1,2 and pa;1 be fized. Consider
an algorithm that samples all arms equally and makes its recommendation on any function that

strictly increases with the sufficient statistic. Then argmax,, , E(R) = pa 1.

Proof. Let p11 be min; py; and p22 be max; min; p; ;. Let p11, p12 and pa1 be fixed. Because
min; p; ; are fixed, the regret incurred if the algorithm makes a mistake is fixed as well. So to
maximize E(R) we need to find:

argmax P(I # I)

P22

Let S; j be the sufficient statistic of n samples drawn from p; j. Let f(S; ;) be some function used
in the recommendation of the algorithm, strictly increasing in S; ;.

Because we change p2 2, conditional to py 1, p12 and pa 1 the objective becomes:

argmax E P(Sy ;> Sy

%2,2 x{l,l}NP{l,u[ ( »J J)]
T{1,23~P{1,2}
T{2,13~P{2,1}

Which, as we take the expectation over Zy 1} (1.2} (2,1}, equals:

argmax B [Pley > 21 f(522))]
’ T{1,2}~P{1,2}
T{2,1}~P{2,1}

Because f(S) is strictly increasing:
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argmax E [P(f_l(c) > 5272)}
P2,2 T1,13~P{1,1}
T{1,2}~P{1,2}
Ti21}~P{2,1}

=a a E { d -1 ]

rgmax, B L6 Ifs,,(f(c))
T T{1,237~P{1,2}
Ti213~P{2,1}

As S is binomially distributed: S; ; ~ B(p; j,n): [14]

Cdf52,2 (x) = Il—p272 (n -z, + 1)

Where I,(a,b) is the regularized incomplete beta function. This function is strictly increasing with
z, therefore cdfs, ; is strictly decreasing in p; j, which implies (because p22 > p21):

-1
argmax E [cds c }: 2.1
Poo  ET{L1)VP{LL) fsaa(F ()] =P
T{1,2} ~P{1,2}
Ti2,1}y~P{2,1}

This implies that:

argmax P(I # I) = po

P2,2

6.3 P12

The proof for p; 2 is very similar to that of ps 2 provided in Theorem 2, but then reversing the logic:

Theorem 3. Let p11 be min; p1 j and pa 2 be max; min; p; ;. Let p1 1, p2;1 and pa 2 be fized. Consider
an algorithm that samples all arms equally and makes its recommendation on any function that
strictly increases with the sufficient statistic. Then argmax,, , E(R) = 1.

Proof. Let p11 be min;py; and ps2 be max; min; p; ;. Let p1 1, p21 and pao be fixed. Because
min; p; ; are fixed, the regret incurred if the algorithm makes a mistake is fixed as well. So to
maximize E(R) we need to find:

argmax P(I # I)
P1,2
Let S; ; be the sufficient statistic of n samples drawn from p; ;. Let f(S; ;) be some function used
in the recommendation of the algorithm, strictly increasing in S; ;.

Because we change p1 2, conditional to p1 1, p2.1 and p2 2 the objective becomes:

argmax E P(S: i > So
%12 x{lyl}Np{m}[ ( Lj 273)]
T %91y ~Pi2,1)
12,2)~P{2,2})
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Which, as we take the expectation over Ty 1} (2,1} (2,2}, equals:

argmax, E [Pleraf(S12) > c2,5)]
’ T{21}~P{2,1}
T{2,2}y~P{2,2}

Because f(S) is strictly increasing:

-1

argmax E {IF’ f(c) < S21 }

P1,2 T1,13~P{1,1} ( ( ) )
Z{2,1}~P{2,1}
T{2,2}~P{2,2}

- E [1— d -1 }

argoax, B [1 = edfs,,(f7(©)
T T{2,13P{2,1}
T{2,2}~P{2,2}

As S is binomially distributed: S; ; ~ B(p; j,n): [14]

cdfs, (x) =I1p, ,(n—x,2+1)

Where I,(a,b) is the regularized incomplete beta function. This function is strictly increasing with
z, therefore cdfg, ; is strictly decreasing in p; j, and again 1 — cdfs, , is strictly increasing:

argmax, B |1 edfs,, (57 (@) =1
%12 Xx{l,l}Np{Ll} fSl,Q(f (c))
T a1 P{2,1)
(2,2} ~P{2,2}

This implies that:

argmaxP(I £ 1) =1

P12

6.4 f(S)

The proof in Sections 6.2 and 6.3 has one requirement that has to be cleared up. This is the
monotonicity of f(S; ;) in p; j. Now we will show that this holds in both frequentist and Bayesian
recommendation rules.

Theorem 4. The recommendation rule argmax; min; p; ; has an associated f(S; ;) which is mono-
tone in p; ; if n s equal for all arms.

Proof. The associated f(S; ;) for the recommendation rule argmax; min; p; ; is:

f(Sij) = mjinﬁz',j
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As n is equal for all arms, p; ; o< S ;.

Now we need to find a distribution for min S; ;. If we define the CDF of min S; ;, so in other words
P(min S; j < X) as F(X), and cdf(S; ;) as the CDF of S; ;:

F(X) = 1— 11— cdf (X))

J

The CDF of the binomial distribution is

Cdfsi,j (z) = Il_pi,j (n—z,x+1)
F(X)=1-[[[1 = hp, (0= X, X + )| = 1= ]] B, (X + 1,0 - X)]
7 7

Again, I(a,b) is strictly increasing in x, so F'(X) is decreasing in p; j, which implies that f(.S; ;)
increases in p; ;.

O

Theorem 5. The recommendation rule argmin; E¢,. 1(R) has an associated f(S; ;) which is mono-
tone in p; ; if n is equal for all arms.

Proof. The associated f(S; ;) for the recommendation rule argmin; Er,, 1 (R) is:

/ / (mjinpz‘,j)P ({pijHo(x)) dpix dpi2 = Emjinp;’gstmor

2 . 1] _q. . 0, ; .
Pposterior ~ B(Sij + Qprigps ™ — Sij + bprioy), Which we can use to define the cdf of min; p; ;:

F(X)=1- H [1 —cdf i (X)

posterior
J

cdf i (X)=1Ix(Sij+aipn — Sij+ b7

rior)
posterior p

As p; ; increases, so does S; j. I(a,b) is both strictly decreasing in a and strictly increasing in b, so
strictly decreasing in S; ;. Which means that F'(X), the cdf of min; p; ; is strictly decreasing in p; ;.

E(X) :/ (1- Fx(z))dz for X >0
0
This imlies that if F,(X) > F,(X) VX = E,(X) < E,(X). This means that Emin; p,

9

J
pposterior
is strictly increasing in p; ;.

O
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6.5 DISCUSSION

The subsections above proved that in algorithms that sample all arms equally and have some
specific rules on which they base the recommendations, the worst-case parameter set {p; ;} has
the following property: If p;1 = min;p;; and p22 = max; min; p; j, then the pattern we find is
p1,1 < p2,1 = p22 <K p1,2. However, the numerical results from the previous sections do suggest that
these patterns hold even when some of these restrictions do not hold, especially regarding ps 2. The
behavior of p; 2, being as high as possible ( = 1), is likely to change as the algorithm becomes more
adaptive in its sampling. After a couple of samples, an algorithm might be able to identify p; 2 to be
(relatively) high, and stop sampling there. This would mean that more samples are being invested in
actually relevant arms, allowing for a better estimate of those parameters, improving the accuracy.
So one would expect there to be some trade-off, with at one side p; » being as high as possible to
maximize ]P’(f # I) and at the other side as low as possible to keep the algorithm interested. This
effect can be seen in the results of the Hierarchical algorithm and the Lower Confidence Bound
algorithm (Table 5.2).

Further proof for these patterns in algorithms that do not necessarily sample equally is yet to be
found, but might be worth investigating.



Conclusion

7.1 RECAP

We presented a new concept, combining the goal of Mini-max with the sampling methods of Best-
Arm Identification. To explore the possibilities of this combination, we went on to create some
sampling algorithms as per the setting created in Section 2. We presented two elaborate algorithms:

o The Worst-case Optimal algorithm (Section 3), which guarantees the best performance in
terms of worst-case regret: maxy,, .3 E(R). The section elaborates on the steps taken to make
the problem more compact to prevent it from exploding exponentially in 7. Nonetheless, the
problem was too big to solve for budgets higher than 6, rendering it practically useless.

o The Bayesian Optimal algorithm (Section 4) was presented as a simplification of the Worst-
case Optimal objective by relaxing the goal of finding an algorithm that provided worst-case
guarantees and instead provide an algorithm that does optimally conditional to a fixed (prior)
distribution on {p; ;}. This proved to be a more compact problem, but also struggled with
higher budgets, because of the requirement of computing the entire strategy in advance.
Computer-time and memory space quickly become a bottleneck. The performance of the
Bayesian Optimal algorithm was worse than the Worst-case Optimal algorithm, as is to be
expected.

As both elaborate algorithms have issues with computer time and memory space, caused by having
to calculate the entire sampling strategy in advance, we created some practical algorithms with
more simple strategies. These were compared in Section 5.

o Equals algorithm (Section 5.1.1), which samples each arm equally, regardless of what the
outcome of the previous samples were. Then bases its recommendation on the Maximum
Likelihood Estimator (MLE) for {p;]} This provided a baseline for other algorithms. As all
algorithms that sample adaptively and (attempt to) allocate their budget more efficiently,
should be able to get a higher performance than this. Else the adaptivity of the algorithm has
failed.
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o The Hierarchical algorithm (Section 5.1.2), which treats the mini-max problem as three
separate problems: two minimizing problems for each side and then one maximizing problem
between the two minima. In practice this ended up having the best performance among the
algorithms tested.

o The Lower Confidence Bound algorithm (Section 5.1.3), which samples based on the lower
bound of the Confidence Interval of the estimates of {p; ;}. It performed decently, but was
not optimal.

o The One-more Bayesian algorithm (Section 5.1.4), an adaptation of the Bayesian Optimal
algorithm, spending its samples on the arm that yields the best gain in Expected regret at
that point. This algorithm sampled very greedily, which is reflected in its performance: worse
than the Equals algorithm.

One of the results gained from the performance evaluations was an idea of 'hard’ parameters {p; ;}.
Because what is hard for algorithms to sample efficiently and draw correct conclusions from? All of
the worst-case sets {p; j} pointed to a single pattern: If p; ; = min; p; ; and py» = max; min; p; j,
then the pattern we find is p1,1 < p2,1 = p2,2 < p1,2. In Section 6 we proved that this is indeed the
worst-case set {p; ;} in algorithms that sample each arm equally. The results however indicate that
this is also the case if the samples are not distributed equally among the arms.

7.2 RECOMMENDATIONS

This thesis has followed a very practical approach to studying Mini-max Action Identification. For
future work it might be beneficial to look at it in a more theoretical manner, like exploring the
complexity of the problem. Furthermore, fine-tuning the presented algorithms to improve their
performances is also an option.

Finally, I would suggest to see if a proof for a broader version of Theorem 2 can be found so that
the assumption that the algorithm samples all arms equally can be relaxed. The results do already
hint that this is the case after all.
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