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Sampling distributions of estimators

• Since our estimators are statistics (particular functions of random variables), their

distribution can be derived from the joint distribution of X1 . . .Xn. It is called the sampling

distribution because it is based on the joint distribution of the random sample.

• Given a sampling distribution, we can

– calculate the probability that an estimator will not differ from the parameter θ by more

than a specified amount

– obtain interval estimates rather than point estimates after we have a sample- an

interval estimate is a random interval such that the true parameter lies within this

interval with a given probability (say 95%).

– choose between to estimators- we can, for instance, calculate the mean-squared error of

the estimator, Eθ[(θ̂−θ)2] using the distribution of θ̂.

• Sampling distributions of estimators depend on sample size, and we want to know exactly

how the distribution changes as we change this size so that we can make the right trade-offs

between cost and accuracy.
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Sampling distributions: sample size and precision

Examples:

1. What if Xi ∼N(θ, 4), and we want E(X̄n−θ)2 ≤ .1? This is simply the variance of X̄n, and

we know X̄n ∼N(θ, 4/n).
4

n
≤ .1 if n≥ 40

2. Consider a random sample of size n from a Uniform distribution on [0,θ], and the statistic

U = max{X1, . . . ,Xn}. The CDF of U is given by:

F(X) =


0 if u≤ 0(
u
θ

)n
if 0 < u < θ

1 if u≥ θ

We can now use this to see how large our sample must be if we want a certain level of

precision in our estimate for θ. Suppose we want the probability that our estimate lies

within .1θ for any level of θ to be bigger than 0.95:

Pr(|U−θ|≤ .1θ) = Pr(θ−U≤ .1θ) = Pr(U≥ .9θ) = 1 − F(.9θ) = 1 − 0.9n

We want this to be bigger than 0.95, or 0.9n ≤ 0.05. With the LHS decreasing in n, we

choose n≥ log(.05)
log(.9) = 28.43. Our minimum sample size is therefore 29.
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Joint distribution of sample mean and sample variance

For a random sample from a normal distribution, we know that the M.L.E.s are the sample mean

and the sample variance 1
n

n∑
i=1

(Xi− X̄n)
2. Also,

• X̄n ∼N(µ, σ
2

n )

•
n∑
i=1

(
Xi−µ
σ )2 ∼ χ2

n (since it is the sum of squares of n standard normal random variables).

• If we replace the population mean µ with the sample mean X̄n, the resulting sum of

squares, has a χ2
n−1 distribution.

Theorem: If X1, . . .Xn form a random sample from a normal distribution with mean µ and variance σ2, then

the sample mean X̄n and the sample variance 1
n

n∑
i=1

(Xi− X̄n)
2 are independent random variables and

X̄n ∼N(µ,
σ2

n
)

n∑
i=1

(Xi− X̄n)
2

σ2
∼ χ2

n−1

Note: This is only for normal samples. Work through the application of this theorem on p. 475 of

your textbook, where you are asked to compute the probability that the sample mean and sample

standard deviation of a sample drawn from a N(µ,σ2) are within .2σ of their population values.
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The t-distribution

Let Z ∼N(0, 1), let Y ∼ χ2
v, and let Z and Y be independent random variables. Then

X =
Z√
Y
v

∼ tv

The p.d.f of the t-distribution is given by:

f(x;v) =
Γ( v+1

2 )

Γ( v2 )
√
πv

(
1 +

x2

v

)−(v+1
2 )

Features of the t-distribution:

• One can see from the above density function that the t-density is symmetric with a

maximum value at x = 0.

• The shape of the density is similar to that of the standard normal (bell-shaped) but with

fatter tails.
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Relation to random normal samples

RESULT 1: Define S2
n =

n∑
i=1

(Xi− X̄n)
2 The random variable

U =

√
n(Xn−µ)√

S2
n

n−1

∼ tn−1

Proof: We know that
√
n(Xn−µ)
σ ∼N(0, 1) and that

S2
n
σ2 ∼ χ2

n−1. Dividing the first random variable

by the square root of the second, divided by its degrees of freedom, the σ in the numerator and

denominator cancels to obtain U.

Implication: We cannot make statements about |X̄n−µ| using the normal distribution if σ2 is

unknown. This result allows us to use its estimate σ̂2 =
n∑
i=1

(Xi− X̄n)
2/n since

(Xn−µ)

σ̂/
√
n−1

∼ tn−1

RESULT 2 Given X,Z,Y ,n as above. As n→∞ X
d−→ Z ∼N(0, 1)

To see why: U can be written as
√
n−1
n

√
n(Xn−µ)
σ̂ ∼ tn−1. As n gets large σ̂ gets very close to σ

and n−1
n is close to 1.

F−1(.55) = .129 for t10, .127 for t20 and .126 for the standard normal distribution. The differences

between these values increases for higher values of their distribution functions (why?)
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Confidence intervals for the mean

Given σ2, let us see how we can obtain an interval estimate for µ, i.e. an interval which is likely

to contain µ with a pre-specified probability.

• Since
(Xn−µ)

σ/
√
n

∼N(0, 1), Pr
(
−2 <

(Xn−µ)

σ/
√
n
< 2
)
= .955

• But this event is equivalent to the events − 2σ√
n
< Xn−µ < 2σ√

n
and Xn− 2σ√

n
< µ < Xn+ 2σ√

n

• With known σ, each of the random variables Xn− 2σ√
n

and Xn+ 2σ√
n

are statistics.

Therefore, we have derived a random interval within which the population parameter lies

with probability .955, i.e.

Pr
(
Xn−

2σ
√
n
< µ < Xn+

2σ
√
n

)
= .955 = γ

• Notice that there are many intervals for the same γ, this is the shortest one.

• Now, given our sample, our statistics take particular values and the resulting interval either

contains or does not contain µ. We can therefore no longer talk about the probability that

it contains µ because the experiment has already been performed.

• We say that (xn− 2σ√
n
< µ < xn+ 2σ√

n
) is a 95.5% confidence interval for µ. Alternatively, we

may say that µ lies in the above interval with confidence γ or that the above interval is a

confidence interval for µ with confidence coefficient γ
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Confidence Intervals for means..examples

• Example 1: X1, . . . ,Xn forms a random sample from a normal distribution with unknown µ

and σ2 = 10. xn is found to be 7.164 with n = 40. An 80% confidence interval for the mean µ

is given by (7.164− 1.282
√

10
40), 7.164+ 1.282

√
10
40) or (6.523, 7.805). The confidence coefficient. is .8

• Example 2: Let X denote the sample mean of a random sample of size 25 from a

distribution with variance 100 and mean µ. In this case, σ√
n

= 2 and, making use of the

central limit theorem the following statement is approximately true:

Pr
(
−1.96 <

(Xn−µ)

2
< 1.96

)
= .95 or Pr

(
Xn− 3.92 < µ < Xn+ 3.92

)
= .95

If the sample mean is given by xn = 67.53, an approximate 95% confidence interval for the

sample mean is given by (63.61, 71.45).

• Example 3: Suppose we are interested in a confidence interval for the mean of a normal

distribution but do not know σ2. We know that
(Xn−µ)

σ̂/
√
n−1

∼ tn−1 and can use the

t-distribution with (n− 1) degrees of freedom to construct our interval estimate. With

n = 10, xn = 3.22, σ̂ = 1.17, a 95% confidence interval is given by

(3.22 −(2.262)(1.17)/
√

9, 3.22 +(2.262)(1.17)/
√

9) = (2.34, 4.10)

(display invt(9,.975) gives you 2.262)
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Confidence Intervals for differences in means

Let X1, . . . ,Xn and Y1, . . . ,Ym denote independent random samples from two distributions,

N(µ1,σ2) and N(µ2,σ2), with sample means denoted by X̄, Ȳ and sample variances by σ̂2
1 and σ̂2

2.

We’ve established that:

• X̄ and Ȳ are normally and independently distributed with means µ1 and µ2 and variances σ2

n

and σ2

m

• Using our results on the distribution of linear combinations of normally distributed

variables, we know that X̄n− Ȳm is normally distributed with mean µ1 −µ2 and variance
σ2

n + σ2

m . The random variable
(X̄n−Ȳm)−(µ1−µ2)√

σ2
n +σ

2
m

has a standard normal distribution and will

form the numerator of the T random variable that we are going to use.

• We also know that
nσ̂2

1
σ2 and

mσ̂2
2

σ2 have χ2 distributions with (n− 1) and (m− 1) degrees of

freedom respectively, so their sum (nσ̂2
1 +mσ̂

2
2)/σ

2 has a χ2 distribution with (n+m− 2)

degrees of freedom and the random variable

√
nσ̂2

1+mσ̂
2
2

σ2(n+m−2)
can appear as the denominator of

a random variable which has a t−distribution with (n+m− 2) degrees of freedom.
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Confidence Intervals for differences in means..contd

• We have therefore established that X =
(X̄n−Ȳm)−(µ1−µ2)√
nσ̂2

1+mσ̂
2
2

(n+m−2)

(
1
n+ 1

m

) has a t-distribution with

(n+m− 2) degrees of freedom. To simplify notation, denote the denominator of the above

expression by R.

• Given our samples, X1, . . . ,Xn and Y1, . . . ,Ym, we can now construct confidence intervals for

differences in the means of the corresponding populations, µ1 −µ2. We do this in the usual

way:

– Suppose we want a 95% confidence interval for the difference in the means, we find a

number b such that, using the t-distribution with (n+m− 2) degrees of freedom,

Pr
(
−b < X < b

)
= .95

– The random interval (X̄− Ȳ)−bR, (X̄− Ȳ)+bR will now contain the true difference in

means with 95% probability.

– A confidence interval is now based on sample values, (x̄n− ȳm) and corresponding

sample variances.

• Based on the CLT, we can use the same procedure even when our samples are not normal.
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