
HAL Id: hal-01648006
https://hal.inria.fr/hal-01648006

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

DSS: A Scalable and Efficient Stratified Sampling
Algorithm for Large-Scale Datasets

Minne Li, Dongsheng Li, Siqi Shen, Zhaoning Zhang, Xicheng Lu

To cite this version:
Minne Li, Dongsheng Li, Siqi Shen, Zhaoning Zhang, Xicheng Lu. DSS: A Scalable and Efficient Strat-
ified Sampling Algorithm for Large-Scale Datasets. 13th IFIP International Conference on Network
and Parallel Computing (NPC), Oct 2016, Xi’an, China. pp.133-146, �10.1007/978-3-319-47099-3_11�.
�hal-01648006�

https://hal.inria.fr/hal-01648006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

DSS: A Scalable and Efficient Stratified
Sampling Algorithm for Large-Scale Datasets

Minne Li, Dongsheng Li, Siqi Shen, Zhaoning Zhang, and Xicheng Lu

National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, Changsha 410073, China

litoeknee@gmail.com,dsli@nudt.edu.cn

Abstract. Statistical analysis of aggregated records is widely used in
various domains such as market research, sociological investigation and
network analysis, etc. Stratified sampling (SS), which samples the pop-
ulation divided into distinct groups separately, is preferred in the prac-
tice for its high effectiveness and accuracy. In this paper, we propose
a scalable and efficient algorithm named DSS, for SS to process large
datasets. DSS executes all the sampling operations in parallel by calcu-
lating the exact subsample size for each partition according to the data
distribution. We implement DSS on Spark, a big-data processing sys-
tem, and we show through large-scale experiments that it can achieve
lower data-transmission cost and higher efficiency than state-of-the-art
methods with high sample representativeness.

Keywords: stratified sampling, aggregation, distributed processing, Spark

1 Introduction

With the rapid advancement in the data collection and storage technology, bur-
geoning data size has brought both opportunities and challenges to driving busi-
ness decisions. Valuable information and knowledge could be extracted from the
ever-increasing datasets. To gain knowledge from the dataset, various computing
techniques such as cloud computing [15, 23] and big-data processing [5, 22] have
been proposed, which provide us the computing platform to process the data.
However, it is time-consuming to process the ever-increasing and massive-scale
data. Data sampling techniques can be used to gain statistical results, estima-
tion and approximation of data in short time with slightly reduced accuracy.
They are playing critical roles in areas such as social network analysis [8, 18] and
business market research[4]. In this work, we focus on stratified sampling (SS),
a widely adopted sampling technique [20] with high efficiency and accuracy. We
implement a Distributed Stratified Sampling (DSS) algorithm, and the exper-
imental results show that our algorithm can be 65% faster than a well-known
distributed SS algorithm [14] with high-accuracy and high-scalability.

Basic steps of sampling consist of extracting a representative subset of the
population, performing the estimation and experiment, and extrapolating the
results back in order to understand characteristics of the overall population.

2

Specifically, stratified sampling is a sampling method involving the division of
a population into distinct groups known as strata (homogeneous subgroups, in
which the inner items are similar to each other). It assigns individuals of the
surveyed population to strata, and then applies normal sampling methods (e.g.,
simple random sampling (SRS) or systematic sampling) without replacement to
each stratum independently. Compared to SRS, stratified sampling is able to
get higher statistical precision because the variability within subgroups shar-
ing the same properties is lower than that of the entire population [20]. Thus
stratified sampling improves the representativeness by reducing sampling error.
In addition, having a higher statistical precision enables stratified sampling to
tolerate smaller sample size than other methods, which helps to save time and
effort of researchers. Consequently, stratified sampling outperforms other sam-
pling methods both in efficiency and accuracy. Traditional implementation of
stratified sampling, e.g., reservoir sampling, is not designed for distributed com-
puting environment. Although several distributed implementations [14, 22] have
been proposed, they are either not able to generate a statistical satisfied answer
under certain conditions or not able to fully utilize the computing resources. We
will further discuss this point in Section 2 and Section 4.

In this work, we propose a distributed algorithm for SS which is scalable
and efficient. It has four main steps: (1) conducts a modified reservoir sampling
with rough sampling size inside each data partition, (2) gathers the meta-data
of intermediate results, (3) computes the exact sampling size for each partition
and (4) performs a modified reservoir sampling in parallel to generate the fi-
nal sampling results. Different from the method Spark Single Query Evaluator
(Spark-SQE) proposed in [14], DSS reduces significantly the computational cost
by conducting sampling process in a distributed manner. Moreover, the data
transfer cost is reduced considerably because the computation phases are con-
ducted in distributed nodes instead of in a master node, meaning that the volume
of data transferred is much reduced.

The remainder of this paper is structured as follows. In Section 2, we compare
our work with related research with a focus on scalable sampling techniques. In
Section 3, we further discuss the definition and provide the syntax and semantics
of stratified sampling queries, and present the sequential stand-alone algorithm
of answering a single stratified sampling query. In Section 4, we describe the
design of the algorithm. In Section 5, we show the experimental results, and in
Section 6, we conclude this work.

2 Related Work

A lot of research effort has been made to design scalable algorithms for processing
large-scale datasets. Boyd et al. [2] have investigated the alternating direction
method of multipliers to solve distributed convex optimization problem, and
Owen et al. [17] have introduced Mahout to apply machine learning algorithm
against large datasets. However, many of these algorithms cannot generate re-
sults within an acceptable range of time without reducing data size[16].

3

In order to reduce the storage and computational cost as well as keep impor-
tant statistical properties of the original data, researchers have proposed various
data sampling algorithms. Gjoka et al. [7] have implemented a multi-graph sam-
pling method for online social network datasets to generate representative sam-
ples for highly clustered individual social graphs. Kurant et al. [12] have utilized
stratification to generate weighted graphs for efficient data crawling and metric
estimation. However, these works are not designed for distributed computing
environment [14].

In terms of stratified sampling, numbers of previous works have been pro-
posed for the stand-alone environment. One of the many classical methods is the
reservoir sampling algorithm [21], which requires a single pass over the whole
dataset to generate representative results. However, the original reservoir sam-
pling algorithm is not designed for distributed computing environments: data
shuffling among clusters for a single query is required because the partition of
data into clusters is mostly different to the partition of the population into strata.
However, conducting data shuffling is unbearable in the big data environment. In
order to design a scalable sampling algorithm and implement it on top of the data
stored on distributed machines, the sampling process should be conducted in a
parallel and distributed manner. Spark [22], a platform for large-scale datasets
processing, provides the distributed stratified sampling API as one of its basic
statistic functions, namely sampleByKey and sampleByKeyExact. These func-
tions conduct sampling with given sampling probability. However, in order to
draw a stratified sampling set by sample size in Spark, users need to provide
the total count of records satisfied the stratum constraint, which is not possible
in the practical, distributed computing environment. Even if the actual count is
provided, the existing function could still fail the statistical requirement if the
product of sampling fraction and total record count is not an integer. Levin et
al. [14] have proposed a framework for stratified sampling queries, which will be
further discussed in Section 3.

3 Stratified Sampling Queries

In this section we will provide the definition, syntax and semantics of stratified
sampling queries, as well as present the sequential stand-alone algorithm (the
modified reservoir sampling algorithm) of answering a single stratified sampling
query. We will further discuss in Section 4 that our sequential algorithm can be
conducted in a parallel and distributed manner effortlessly.

3.1 A Single Stratified Sampling Query

The notations used in this work is defined as follows. A single stratified sam-
pling query in this paper is defined as a set of stratum constraints sk, denoted
by Q = (s1, s2, . . . , sm). Each stratum constraint sk is denoted by sk = (pk, fk),
where pk is a propositional formula and fk is the required sample size. It is
worth noting that for a qualified stratified sampling query, the strata must be

4

non-overlapping, in other words every individual should be assigned to only one
stratum. Joint strata will result in nonprobability sampling since some individ-
uals may have greater chances of being chosen. For example, if we define two
stratum constraints s1 and s2 for a group of students, where p1 = (male) and
p2 = (age > 10), conducting two simple random sampling separately in stratum
defined by s1 and s2 will give males over 10 years old greater chances of being
selected.

3.2 Sequential Answering Process

A valid answer to a query Q = (s1, s2, . . . , sm) is the union of m disjoint sample
sets where (1) every single individual in subset k (k = 1, 2, 3, . . . ,m) satisfies the
propositional formula pk and (2) there are exactly fk individuals in subset k.
In addition, a statistically representative answer set should guarantee that each
subset k is a simple random sample of all the individuals in the population that
satisfy pk. We will further discuss this point in Section 4 and Section 5.

Algorithm 1 Reservoir sampling for stratum constraint sk
1: Store the first fk individuals satisfied pk into a reservoir Rk

2: for j from fk + 1 to n do
3: With probability fk/j, randomly choose an individual from Rk and replace it

with individual j
4: end for
5: return Individuals in Rk

After providing the definition of a single stratified sampling query, we present
a sequential stand-alone algorithm for generating the subset satisfying a stra-
tum constraint, which is listed in Algorithm 1. Algorithm 1 is derived from the
reservoir algorithm [21] with almost the same procedure. The algorithm creates
a reservoir array of size fk with the first fk items satisfied pk from the popula-
tion containing n individuals. Then the algorithm iterates through the remaining
population. At the jth iteration, the algorithm randomly chooses an individual
from the reservoir and replace it by individual j with probability fk/j. It can
be proved that at the end of the iteration, every individual has equal probability
(i.e. fk/n) of being chosen for the reservoir.

Thanks to the disjoint property of strata, answering a queryQ = (s1, s2, . . . , sm)
requires only single pass over the population set sequentially if we maintain m
reservoirs Rk and m element indexes jk. Each reservoir contains fk individuals
satisfied pk respectively and thus holds a simple random sample of the processed
individuals at any step during the execution.

4 Distributed Sampling Design

This section commences by focusing on the detailed design of our algorithm Dis-
tributed Stratified Sampling DSS. We first present the algorithm which reduces

5

significantly the data transmission cost among distributed nodes by sending the
abstract of intermediate result rather than the result itself. In addition, DSS con-
siderately reduces the computational cost compared to existing alternatives by
conducting all the sampling phases in a distributed manner. The experimental
comparison will be covered in Section 5.

4.1 Sampling Representativeness in Distributed Environment

We now give the definition of representativeness in distributed environment can
be seen as a cluster of connected computers (the nodes) or virtual machines pro-
vided by cloud computing services including Amazon EC2, Microsoft Azure, etc.
Note that in the production environment, data is already stored in the file sys-
tem and distributed separately to nodes. We are required to answer the sampling
query without changing the original position of data. To generate a statistically
representative answer set to a single stratified sampling query, the sample result
should be unbiased in the first place. Because the partition of the population into
strata is always different to the partition of data into clusters, data shuffling is
required to response a sampling query. However, this is unrealistic in industrial
and practical environment. Consequently, the proportion of satisfied elements in
each data partition must be taken into account.

For example, we are asked to generate a sample of 10 male students playing
basketball from a population of 50 students. The satisfied population (all the
male students playing basketball in the population) data is distributed among
two separate nodes, 20 in node O1 and 30 in node O2. A simple solution is to
generate an intermediate sample of 10 male students playing basketball for both
of nodes, and then conduct a unification process to produce the final answer
set. However, this approach will trigger a biased, statistically invalid sample.
The above approach produces a male student playing basketball selected for
intermediate a probability of 1/2 and 1/3, for O1 and O2 respectively. After
conducting a simple random sampling to select 10 individuals among interme-
diate results, the probability of individuals from O1 and O2 appearing in the
final answer set will be 1/4 and 1/6 respectively. This answer, however, is biased
and statistically invalid since each individual should have a chance of 1/5 to be
selected for the query. Consequently, in order to have a uniform and unbiased
sample, the proportion of satisfied elements in each data partition located in
each node must be taken into account for deciding the selection ratio from each
intermediate sample. In this case specifically, the intermediate results from O1

and O2 should be selected with probability of 1/2 and 1/3 respectively.

4.2 Distributed Algorithm Spark-SQE

In Section 3.2, we present the modified reservoir algorithm (Algorithm 1) for
answering sequentially a single stratified sampling query. By combining this al-
gorithm with the sampling method discussed in Section 4.1, we further describe a

6

distributed version of Algorithm 1, namely Spark Single Query Evaluator (Spark-
SQE), derived from the Map Reduce Single Query Evaluator provided by [14].
The procedure of Spark-SQE is depicted in Figure 1.

Fig. 1. Process of Spark-SQE, including the map phase (Algorithm 1), the local phase
and the weighted sampler. The symbolic tuples besides the arrow in each phase rep-
resents input and output for this phase respectively. The local transformation and
computation between the raw data and the intermediate sample is connected by dotted
line. Data transmission among clusters is represented by solid lines. Thick lines indi-
cate large data-transmission while the thin ones indicate the opposite. Each D, M and
S stands for data partition, intermediate sample, and final result respectively.

In each data partition, similar process as Algorithm 1 is conducted to generate
local intermediate result, of the form [(sk, t)] which is a list of tuple (sk, t) if
individual t satisfies sk. A parallel execution of Algorithm 1 can be seen as a
map phase specified by Spark, which deals with key-value pairs to generate a set
of intermediate key-value pairs of the form [(sk, t)].

To gather the intermediate results, one of the naive implementations will
copy all the satisfied individuals from the whole cluster to the master node.
However, this procedure cannot fully utilize the computing resources.

Instead of the naive method above, during the local phase of Spark-SQE, we
can merely collect a certain amount of intermediate sample. For example, we

can construct a simple random selection of f lk individuals for each data partition

l before passing them to the weighted sampler (f lk could be less than fk if not
enough satisfied individuals exist in some certain data partitions). The local

phase generates the local sample set satisfied sk, the sampling size f lk and N l,
the total number of individuals satisfied sk in this partition. This approach could
considerably reduce the data sent over the network and increase concurrency.

7

Lastly, a weighted sampler merges all intermediate results, which are already
shrunk by the local process in each data node, and conducts a weighted random
selection of size fk. This approach will generate a representative answer because
the final sampling size is proportional to N l of each intermediate result as we
described in Section 4.1.

4.3 Improved Distributed Algorithm DSS

By sending the meta-data rather than original data to the reduce function after
conducting the local phase in Spark-SQE, we can further reduce the amount of
data transmitted over the network. Figure 2 illustrates the process of Distributed
Stratified Sampling (DSS) which is an improved version of Spark-SQE.

Fig. 2. Process of DSS, including the map phase (Algorithm 1), the local phase I, the
gather scatter phase, the local phase II and the reduce phase. The dotted lines represent
local transformation and computation between the raw data and the intermediate sam-
ple. In addition, the data and meta-data transmission among clusters are represented
by solid lines and dashed lines respectively. Each D, M, L, S’ and S stands for data
partition, intermediate sample, required sampling frequency list, local weighted result
and final result respectively.

The map phase of DSS is derived from Spark-SQE and generates the same
result. In the local phase I, DSS has already generated an intermediate sample

of f lk from N l individuals satisfied pk in data partition l as the Spark-SQE.

To reduce the data transfer cost, we can simply send f lk and N l instead of the
whole intermediate result to the master node which will execute the gather-
scatter function. Then in the gather-scatter phase, DSS computes the required

sampling frequency f lk of sk for each data partition using weighted sampling.

8

These required sampling frequency f lk of each partition is delivered to each data
node separately. Thirdly, a local simple random selection shown as the local phase
II in DSS is conducted to generate local parts of the final answer set. Compared
to Spark-SQE, the computational cost is reduced considerately as well since we
conduct the weighted sampling phase in different nodes separately rather than
running a sequential process in a single reduce node. Finally, the reduce phase
in DSS gathers every part of the final result from each data node together to
compose a correct, unbiased and uniform answer to the single stratified sampling
query.

The gather-scatter algorithm listed in Algorithm 2 receives L meta-data tu-
ples of intermediate samples for sk from L data partitions. Each tuple consists

of the actual intermediate sample size f lk and N l, the total number of satisfied
individuals in data partition l. At first, the algorithm checks if the sum of inter-
mediate sample size is enough for the required sample size fk (Line 1). If not, the

algorithm simply returns f lk as the weighted sample size for each data partition
l to generate the final answer (Line 2). Otherwise, the algorithm continues by
iterating over 1 through L to compute an index list for determining the exact
sample size of each data partition (Line 8 to 13). Because the index list is con-
structed based on the count of satisfied individuals N l in data partition l, it is
thus probabilistically proportional to N l.

Algorithm 2 Gather-scatter ([(f lk, N
l)], fk) → [(l, f lk)]

1: if
∑L

l=1
f l
k < fk then

2: return [(l, f l
k)], l ∈ [1, L]

3: end if
4: N ←

∑L

l=1
N l

5: I ← Randomly select n indexes from [0, N]
6: low bound← 0
7: up bound← N1

8: f l
k ← 0, l ∈ [1, L]

9: for l from 1 to L do

10: f l
k ← |I ∩ [low bound, up bound]|

11: low bound← low bound + N l

12: if l < L then
13: up bound← up bound + N l+1

14: end if
15: end for

16: return [(l, f l
k)], l ∈ [1, L]

The weighted sampler phase in Spark-SQE is similar as the gather-scatter
algorithm. Instead of the meta-data, it receives the intermediate sample and
then generates the final result, thus it requires significantly larger amount of
data transfer compared to the gather-scatter algorithm.

9

It is trivial to prove the correctness (a simple random sample) of the gather-
scatter algorithm by induction. The proof can be drawn inductively over the
size n of the final sample. Basically, we need to prove that every subset of the
population of size n has equal probability of selection, for every n.

5 Experimental Evaluation

In this section, we conduct large-scale and systematic experiments to evaluate
the proposed DSS and compare it with Spark-SQE, which is the Spark imple-
mentation of a well-known stratified method provided in [14]. We describe the
experimental setup in Section 5.1, and demonstrate the efficiency and scalability
of the algorithms by examining the running times and transmitted data size.
We also discuss how the sampled data generated by DSS precisely represent the
original data.

5.1 Experimental Setup

Dataset. In this experiment, we use two real-world datasets and one synthetic
dataset shown in Table 1. The two real-world datasets are the LiveJournal social
network dataset [13] and the Twitter-2010 social network dataset [1]. These
datasets are natural graphs following the power-law [6] distribution, where only
a few vertices have large numbers of neighbors while most of the vertices have
relatively few neighbors. We pre-process the datasets by changing the graph
storage structure from edge list to adjacency list. The synthetic graph dataset is
generated through Power Graph API [9]. By adjusting the power-law exponent
constant α we can control the skewness of the degree distribution, where a lower
α implies a higher graph density and larger number of high-degree vertices.
Because the adjacency list stores all neighbors of a vertex in a single record, a
lower α will result in a larger storage size of high degree vertices records.

Stratified Sampling Query. We generate the sampling query by considering
the out-degree of vertices. The strata are created by partitioning the out-degree
of vertices into sub-ranges, which are represented by propositional formulas, e.g.,
(out-degree < 20). We generate valid sampling query by randomly selecting non-
overlapping degree ranges. For example, Q = (s1, s2) where s1 = (out-degree <
20, 2000) and s2 = (out-degree > 50, 1000) represents a query with two distinct
strata where the out-degree of vertices is lower than 20 and higher than 50.

Environment. We have implemented the algorithms in Apache Spark frame-
work. The Spark environment is built on top of a cluster consisting four nodes,
with one serving as the master and three as worker. Each node is configured
with Ubuntu 14.04 LTS, 47 GB RAM, 8 Intel Xeon E5-1620 CPUs, and 2.7TB
storage. All the data is stored in HDFS.

10

Table 1. Properties of the dataset.

Dataset |V | |E| Size

LiveJournal 4,847,571 68,993,773 514M
alpha1.8 9,999,999 641,383,778 4.6G
Twitter-2010 41,652,230 1,468,365,182 13G

5.2 Results

In the experiment, we evaluate the efficiency and scalability of the algorithms
in terms of the runtime and transmitted data size, respectively. The runtime is
counted from receiving a query to generating a final result. The transmitted data
size is measured by calculating the data received in weighted sampler phase for
Spark-SQE and gather-scatter phase for DSS. The result has eliminated the time
of loading the raw data into memory from HDFS. Moreover, we perform exper-
iments to evaluate the representativeness and quality of the stratified sampled
data generated by DSS. For the social network datasets, we calculate their degree
distributions and check if the sampled data have the same degree distribution
as the original data.

Efficiency. Figure 3 illustrates the relative runtime of the algorithms grouped
by different datasets. The type of query has been classified by different scales,
which is the total number of records satisfied the stratum constraint. We generate
the query by defining the large group as plarge = (out-degree < 50) and the small
group as psmall = (out-degree > 200) and use the same sampling frequency as
2000. The small group indicates the “long tail” of the power-law graph, which
represents vertices with many neighbors. On the contrary, vertices with few
neighbors comprise the large group. According to the power-law we discussed in
Section 5.1, the number of records in large group is significantly bigger than the
small group.

As is shown in Figure 3, the runtime of DSS can be only 35% of Spark-SQE in
the best case. Even in the worst case, the runtime of DSS is about 65% of that of
Spark-SQE. This achievement is mostly attributed to our distributed sampling
process in the weighted sampling phase. The enhancement is not directly related
to the data size. The most time-consuming phases of the two algorithms are the
local phase and the reduce phase (weighted sampler phase for Spark-SQE). For
the local and map phase both algorithms are totally conducted in parallel. For
the reduce phase, only DSS runs in parallel and the time used in this phase is
directly related to the sampling frequency. Because we use the same sampling
frequency and a growing data size, according to the result shown in Figure 3,
we can conclude that the local and map phase contributes more to the running
time. This conclusion is theoretically explainable as the local and map phase
needs to conduct an iteration over all records while the reduce phase only needs
an iteration of 2000 records in our experiment.

11

LJ a1.8 Twitter

R
el

at
iv

e
R

u
n
ti

m
e

0

0.2

0.4

0.6

0.8

1
Spark-SQE DSS

(a) Large

LJ a1.8 Twitter

R
el

at
iv

e
R

u
n
ti

m
e

0

0.2

0.4

0.6

0.8

1
Spark-SQE DSS

(b) Small

Fig. 3. The running time of DSS divided by Spark-SQE for different query group: (left)
large group and (right) small group.

Scalability. As we mentioned above, the enhancement of our algorithm is di-
rectly related to the sampling frequency. To evaluate the scalability of our al-
gorithm, we create a group of stratum constraints, which ask for sampling sizes
ranging from 1000 to 4000. The running time for these groups of stratum con-
straints is shown in Figure 4.

1000 2000 3000 4000

R
u
n
n
in

g
 T

im
e

(s
)

0

100

200

300
Spark-SQE DSS

Fig. 4. The running time of Spark-SQE and DSS under different sampling frequencies
for the LiveJournal dataset.

Figure 4 illustrates the runtime of DSS under different sampling frequencies
can reach a linear improvement. Compared to Spark-SQE, a relative enhance-
ment of 65% is drawn in the best case. Note that we almost touch the upper
bound of optimization in our experiment environment since we have only three
executors.

Transmission Cost. Table 2 shows the comparison of network transmission
cost for the two algorithms. We focus on the intermediate data collection phase
and use the LiveJournal dataset. As is depicted in Table 2, the size of the trans-

12

Table 2. The size of data transmitted in bytes during the intermediate data collection
phase of the algorithms using LiveJournal dataset under different workloads, which
represents by a stratum constraint sk = (pk, fk) as described in Section 3.1.

Workload Spark-SQE DSS

s1 = (out-degree < 10, 1000) 2,017,416 112
s2 = (out-degree < 10, 2000) 4,028,816 112
s3 = (out-degree < 10, 3000) 6,048,232 112
s4 = (out-degree < 10, 4000) 8,064,840 112

mitted data of DSS is much smaller than that of Spark-SQE. The reason is that
the data transfer cost of Spark-SQE is proportional to sampling frequency, while
that of DSS remains the same across different frequencies. This is due to the fact
that DSS only transmits the metadata (a tuple of two integers per partition),
whose size increases linearly with the number of partitions in clusters. In contrast
to DSS, Spark-SQE sends an array of all intermediate records for each partition,
thus performs poorly when the sampling size increases.

Sample Representativeness. Degree distribution is an important property of
social network and has frequently been analyzed in much social network research
[3, 10]. We evaluate the representativeness of the sampled datasets through eval-
uating the difference between the degree distributions of the stratified sampled
datasets and that of the original datasets using Kolmogorov–Smirnov test (K–S
test) [11, 19]. The K–S test works as follows. It firstly generates cumulative prob-
ability plots for the two data and calculate each vertical distance for a given x
values between the two curves. Then the maximum distance (called K–S statis-
tic) is searched from all the vertical distances. In the end, the probability value
(p-value) is calculated by plugging this maximum distance into K–S probability
function. The closer to 1 the p-value is the more likely the two distributions are
similar, and vice versa.

Table 3. The K–S statistic and p-values of K–S tests for the three datasets used in
this work. The stratum constraint is defined as sk = (out-degree < 50, 1000).

Dataset K–S statistic p-value

LiveJournal 0.020336 0.798941
alpha1.8 0.017253 0.925117
Twitter-2010 0.016218 0.953649

As is shown in Table 3, the p-values of all the datasets are high (79.9%, 92.5%,
95.4%), thus we cannot reject the null hypothesis that the degree distributions

13

of stratified sampled data by DSS and that of original data are the same. In
other words, the degree distributions of sampled data and original data share
great similarities, which means the sampled data precisely represent the original
data.

6 Conclusion

This paper proposed a distributed algorithm DSS for applying stratified sampling
to large-scale, distributed datasets. DSS significantly reduces the computational
cost of selecting stratified sample by implementing a modified reservoir algo-
rithm inside each stratum in a distributed manner. Moreover, the data transfer
cost is reduced significantly as well, by transmitting the meta-data instead of
the data records. We implement DSS on Spark, a big-data processing platform,
and evaluate the algorithm using two large-scale real-world datasets. The exper-
iment results show that DSS performs well in terms of efficiency, scalability and
representativity. Compared to Spark-SQE, which is a Spark implementation of
state-of-the-art method, DSS reaches a relative enhancement of 65%. In addition,
DSS requires extremely smaller amount (less than 0.05% in our experiment) of
network resources in clusters than that of Spark-SQE.

Acknowledgments. This work is sponsored in part by the National Basic
Research Program of China (973) under Grant No. 2014CB340303, the National
Natural Science Foundation of China under Grant No. 61222205, the Program for
New Century Excellent Talents in University, and the Fok Ying-Tong Education
Foundation under Grant No. 141066.

References

1. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: Pro-
ceedings of the 13th international conference on World Wide Web. pp. 595–602.
ACM (2004)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends R© in Machine Learning 3(1), 1–122 (2011)

3. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Review 51(4), 661–703 (2009), http://dx.doi.org/10.1137/070710111

4. Cooper, D.R., Schindler, P.S., Sun, J.: Business research methods (2006)
5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Communications of the ACM 51(1), 107–113 (2008)
6. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the in-

ternet topology. In: ACM SIGCOMM computer communication review. vol. 29,
pp. 251–262. ACM (1999)

7. Gjoka, M., Butts, C.T., Kurant, M., Markopoulou, A.: Multigraph sampling of
online social networks. Selected Areas in Communications, IEEE Journal on 29(9),
1893–1905 (2011)

14

8. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: A walk in facebook: Uniform
sampling of users in online social networks. arXiv preprint arXiv:0906.0060 (2009)

9. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). pp. 17–30 (2012)

10. Jia, A.L., Shen, S., van de Bovenkamp, R., Iosup, A., Kuipers, F.A., Epema, D.H.J.:
Socializing by gaming: Revealing social relationships in multiplayer online games.
TKDD 10(2), 11 (2015), http://doi.acm.org/10.1145/2736698

11. Kolmogorov, A.N.: Sulla determinazione empirica di una legge di distribuzione. na
(1933)

12. Kurant, M., Gjoka, M., Butts, C.T., Markopoulou, A.: Walking on a graph with a
magnifying glass: stratified sampling via weighted random walks. In: Proceedings
of the ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems. pp. 281–292. ACM (2011)

13. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014)

14. Levin, R., Kanza, Y.: Stratified-sampling over social networks using mapreduce. In:
Proceedings of the 2014 ACM SIGMOD international conference on Management
of data. pp. 863–874. ACM (2014)

15. Lu, X., Wang, H., Wang, J., Xu, J., Li, D.: Internet-based virtual computing en-
vironment: beyond the data center as a computer. Future Generation Computer
Systems 29(1), 309–322 (2013)

16. Meng, X.: Scalable simple random sampling and stratified sampling. In: Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13). pp.
531–539 (2013)

17. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in action. greenwich, ct
(2011)

18. Papagelis, M., Das, G., Koudas, N.: Sampling online social networks. Knowledge
and Data Engineering, IEEE Transactions on 25(3), 662–676 (2013)

19. Smirnov, N.: Table for estimating the goodness of fit of empirical distributions.
The annals of mathematical statistics 19(2), 279–281 (1948)

20. Thompson, S.K.: Stratified Sampling, pp. 139–156. John Wiley & Sons, Inc. (2012),
http://dx.doi.org/10.1002/9781118162934.ch11

21. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software (TOMS) 11(1), 37–57 (1985)

22. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. pp. 2–2. USENIX
Association (2012)

23. Zhang, Z., Li, D., Wu, K.: Large-scale virtual machines provisioning in clouds:
challenges and approaches. Frontiers of Computer Science 10(1), 2–18 (2016)

