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Abstract

This article treats an issue that arises when statistical properties of a social network are estimated from data
that has been obtained by snowball sampling. Snowball sampling tends to over-represent vertices with high
degrees, which leads to a bias in the estimates of all statistical properties that correlate with the degree. We
propose a simple method to compensate this bias. The method is tested by simulating a snowball sampling on a
co-authorship network. The results show that our approach leads to reasonable estimates of the mean degree and
the clustering coefficient.
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1 Introduction
In recent years a significant amount of research in the field of complex networks has been conducted. The increas-
ing availability of real-world network data motivates interdisciplinary research in several fields such as physics,
mathematics, computer science and sociology. In sociology, the analysis of social networks has become an impor-
tant matter and a number of tools for statistical analysis including Statnet [7], Pajek [2] or UCINET [1] have been
developed.

Snowball sampling defines an iterative survey procedure where (i) an initial set of persons is more or less ran-
domly selected and asked to report their social connections, and (ii) in every following iteration, the interviewed
individuals are selected from the set of those people who have been reported as social contacts for the first time
in the previous iteration. The structure of the social networks under investigation affects which people are in-
terviewed, that is, the overall set of interviewed people is not a random sample from the entire population. This
article describes techniques that avoid biases in the estimation of network parameters from suchlike conducted
surveys.

A first analytical discussion of snowball sampling has been provided by Goodman [6]. That article discusses
the impact of the two main parameters of the snowball sampling algorithm: the number of contacts named by
an interviewed individual and the number of iterations conducted. Lee et. al [9] investigated in the statistical
properties of sampled networks. Beside snowball sampling, node and link sampling were conducted on computer,
biological and social networks. However, the impossibility to capture a complete network is only one of several
issues related to snowball sampling. In the particular case of social networks, one also has to deal with non-
response effects. A detailed sensitivity analysis of such effects is given by Kossinets [8].

The remainder of this article is organized as follows. Section 2 describes the snowball sampling procedure
in greater detail. Section 3 presents the main results of this article. It introduces several network statistics that
are to be estimated from snowball sampled data. For each statistic, it discusses the nature of the bias (possibly)
introduced by snowball sampling, proposes a technique to avoid this bias, and demonstrates the efficiency of the
technique for an example network. Finally, Section 4 summarizes the article, and gives an outlook on upcoming
problems that have not been addressed in this article.

2 Sampling method

2.1 Definition
We model a social network as an undirected and unweighted graph where the vertices represent individuals and
the edges represent relations among the individuals (such as friendship, collaboration or some other kind of inter-
action). Denote the set of vertices by V , its size by N, and the set of vertices that are linked to v ∈ V by an edge
by K (v). The individual represented by a vertex is also called ego, and the vertices that are linked to an ego are
called its neighbours or alters.

Snowball sampling is an iterative survey technique that aims to reveal structural information about a network
by purposefully sampling a subset of its vertices and edges. By sampling, we mean some kind of interview with
the person who is represented by the according vertex. We begin our presentation with a formal specification in
Algorithm 1 and an illustration in Fig. 1.

Algorithm 1 Snowball Sampling

1. Initialize iteration counter i = 0.

2. Select a random sample V (0) of vertices from the network.

3. Repeat as often as desired:

(a) Increase i by 1.

(b) Ask every ego v in V (i−1) to report its alters. Let V (i) contain all reported alters which have not been
identified before. That is,

V (i) =
⋃

v∈V (i−1)

K (v)−V (0)− . . .−V (i−1).

Snowball sampling requires two basic parameters: (i) the number of initial vertices selected in Step 2 of Alg.
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1 and (ii) the number of alters named by an ego in Step 3b. What kind of alters are to be named is defined by the
so called name generator which is a question posed to the respondents. For example, the name generator may ask
the respondents to name friends they discussed important matters with in the last six month. If the name generator
includes distant alters, a high-degree network is sampled, and if the name generator only includes close friends, a
low-degree network can be expected. That is, the name generator affects the degree of the sampled network.

If the network has disconnected components, a full coverage is only possible if at least one seed vertex per
component is selected.

0. iteration
"seed vertex"1. iteration

anonymous
vertex

original network sampled network after 1st iteration

Figure 1: Snowball sampling mechanism. Left: original network, right: sampled network after the first iteration.
Black and framed vertices are sampled, black vertices without frame are so called anonymous vertices. That
means, vertices the existence of which is known, but which have not been sampled yet (where sampling means
some kind of interview). Grey vertices are still uncovered.

2.2 Compensating the bias in snowball sampling
Networks sampled with snowball sampling tend to overestimate the mean degree in early iterations. By definition,
high-degree vertices are more likely to be selected by this algorithm. In the 0th iteration, the set of sampled ver-
tices, i.e., the seed vertices, is representative for the network if it is chosen at random. In the following iterations,
vertices with higher degrees have a higher probability to be sampled compared to vertices with lower degrees
because high-degree vertices have more connections along which they can be discovered. In addition, vertices
that are predominantly connected to vertices with high degrees are also more likely to be selected. This effect
is eminently distinct with networks that have right-skewed degree distributions like networks with power-law
distributions [9].

Figure 2a visualizes this effect. It plots the fraction of sampled vertices with a particular degree over the
sampling iteration. The higher the degree, the faster rises the according curve. Once all vertices are sampled, the
over-representation of high-degree vertices ceases. However, the latter observation is of little practical use since
the effort to completely sample a network is typically not affordable (and it also renders the snowball sampling
technique itself superfluous).

It is possible to correct this kind of bias if we account for the probability with which a vertex of a particular
degree is sampled. We cannot calculate this probability directly, but we can make a reasonable estimate in depen-
dence of the vertex’ degree and the iteration in which it is sampled. Let v be our vertex of interest and let kv be its
degree. The probability P(i)(v) that v is sampled before or in iteration i equals the probability that at least one of
its neighbours is sampled before or in iteration i−1. This is the same as one minus the probability that none of its
neighbours is sampled before or in iteration i−1, i.e., P(i)(v) = 1−∏w∈K (v)(1−P(i−1)(w)) where we make the
assumption that v’s neighbours are discovered independently. Since P(i−1)(w) is just as unknown as P(i)(v), we
approximate P(i−1)(w) ≈ n(i−1)/N. Recall that N is the total number of vertices in the network and n(i−1) is the
number of sampled vertices after iteration i−1. Assuming that the neighbours of v are discovered independently,
we obtain P(i)(v) = 1− (1−n(i−1)/N)kv as the probability that a particular vertex v of degree kv is sampled before
or in iteration i. Since this formula holds equally for all vertices of a particular degree, we subsequently denote by

P(i)
k = 1−

(
1− n(i−1)

N

)k

(1)

the probability that a vertex of degree k is discovered before or in iteration i. This expression is only dependent
on the number of sampled vertices in the previous iteration i− 1, and thus it allows to correct the estimated
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Figure 2: Fraction of vertices over sampling iteration for degree 1, 10 and 50. a) n(i)
k /Nk where n(i)

k is taken

from simulation and Nk is known, b) calculated with Eq. 1, so that n(i)
k /Nk = P(i)

k n(i)/N where n(i) is taken from

simulation. Nk denotes the total number of vertices with degree k, n(i) is the sampled number of vertices and n(i)
k

denotes the sampled number of vertices with degree k.

degree distribution after every iteration i by weighting the number of sampled vertices of degree k by 1/P(i)
k when

estimating the frequency of their occurrence in the network.

3 Statistical properties of snowball-sampled networks
We investigate the characteristics of sampled networks by simulating a snowball sampling. After each iteration,
we compute several statistical properties of the sampled network and compare them to the original network.
Simulations are repeated 50 times with different random seeds, so that the set of ten seed vertices differs in each
simulation run. We use the collaboration network of the condensed matter e-print archive (arxiv.org) [10]. For
practical use, we extracted the giant component of the network including 36458 vertices and 171736 edges.

3.1 Mean degree and degree distribution
Figure 3 depicts the estimated mean degree 〈k〉 for the arxiv.org collaboration network. In a), it is calculated
directly from the raw sampled data and in b), it is calculated using the bias correction of (1), that is,

〈k〉(i) ≈
∑v∈V (0...i) kv/P(i)

kv

∑v∈V (0...i) 1/P(i)
kv

(2)

where V (0...i) = V (0) ∪ . . .∪V (i) denotes the set of all vertices sampled before or in iteration i, which is of size
n(0...i). The plot without bias correction (Fig. 3a) exhibits a considerably overestimation of the mean degree up to
iteration four. If we refer to Fig. 2, we realize that up to iteration four predominantly vertices with degree greater
than ten are sampled, whereas low-degree vertices are not sampled in a decisive amount yet. In contrast, in the plot
with bias correction (Fig. 3b) the estimates’ median value approximates the real mean degree very well already in
iteration two.

Like many other real-world networks the arxiv.org co-authorship network follows a power-law degree distri-
bution P(k)∼ k−γ . The degree exponent γ can be extracted using the maximum likelihood estimator [3]

γ
(i) = 1+

1
1

n′(0...i) ∑
v∈V ′(0...i)

ln
kv

kmin

(3)

where V ′(0...i) denotes the set of all vertices sampled before or in iteration i that follow the power-law distribution,
which is of size n′(0...i) and kmin is the smallest degree for which the power-law holds. The evolution of γ(i) is
shown in Fig. 3c. Due to the bias of the snowball sampling the tail of the power-law distribution develops much
faster when compared to the remaining part of the distribution. Consequently, the γ exponent is underestimated
in the first iterations. We can make use of Eq. 1 to take the sampling probability into account and modify the γ
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Figure 3: Mean degree: a) as measured from the sampled network, b) obtained with Eq. 2. Power-law exponent:
c) obtained with Eq. 3 and d) with Eq. 4.

estimator to
γ

(i) = 1+
1

1

∑
v∈V ′(0...i)

1/P(i)
kv

∑
v∈V ′(0...i)

(
ln

kv

kmin

)
/P(i)

kv

. (4)

With this estimator, the decrease of the degree exponent is not that pronounced (Fig. 3d), however, the estimations
for iteration four and five are much better with Eq. 3 (Fig. 3c) compared to Eq. 4.

3.2 Clustering, mutuality and degree correlation
For the clustering coefficient C of a network we use the average of the vertices’ local clustering coefficients Cv.
The clustering coefficient of a vertex is defined as

Cv =
2yv

kv (kv−1)
(5)

where yv denotes the number of edges between v’s neighbours. In words, the clustering coefficient can be seen as
the probability that a friend of one’s friend is also one’s friend, or the probability that a connected triple centered
at v is closed to a triangle.

At this point we introduce the notion of anonymous vertices. Consider an outgoing edge of a sampled vertex
v1. We know that at the opposing end of this edge another vertex v2 must exist even if v2 has not been sampled
yet. Imagine the following situation: Vertices A and B are sampled. A names C, D and F as its alters and B names
F, G and H as its alters. Even if vertex F has not been sampled yet, we know that A and B have an alter in common
and that there is at least one path from A to B. We denote F as “anonymous” since we know of the existence of F
without having sampled it. Anonymous vertices can help to provide a better estimate of statistical properties of the
sampled network. In the case of the clustering coefficient, the quantity y may be better approximated by including
anonymous vertices. However, note that when averaging over the compete population anonymous vertices are
excluded since they do not count as sampled vertices. In that manner C(i) = 1

n(0...i) ∑v∈V (0...i) Cv.
From a theoretical point of view, it should be possible to determine the clustering coefficient within two

iterations since, within two iterations, the snowball sampling is able to detect if a connected triple is closed to
a triangle or not. The ratio of closed and open triples should provided a reasonable estimate of the clustering
coefficient. However, in Fig. 4a it can be observed that the clustering coefficient is underestimated for the first
iterations and about four iterations are required to approximate the real value.
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Many real-world networks exhibit a correlation between clustering and degree, which is shown in Fig. 4c for
the arxiv.org network. This correlation causes the bias of the snowball sampling to also affect the estimation of the
clustering coefficient since high-degree vertices with potentially low clustering coefficients are preferably selected.
Consequently, we apply the same probability weighting mechanism as for the mean degree to the clustering
coefficient:

C(i) =
∑v∈V (0...i) Cv/P(i)

kv

∑v∈V (0...i) 1/P(i)
kv

· (6)

Figure 4b depicts the clustering coefficient obtained with Eq. 6. It shows a much better approximation to the
real clustering coefficient. As expected above, the values in the first iteration are already are reasonable estimates.
A calculation of the clustering coefficient in the 0th iteration is meaningless.
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Figure 4: Clustering coefficient: a) as measured from the sampled networks, b) obtained with Eq. 6 and c)
clustering-degree-correlation.

Beside triangles, relationships that form squares are also important structural properties. The density of squares
in a network is measured by the quantity called mutuality which is defined as

µ
(i) =

∑v∈V (0...i) n2,v

∑v∈V (0...i) σ2,v (w)
(7)

where n2,v denotes the number of second neighbours of v, i.e., vertices that are two steps away form v, and σ2,v (w)
denotes the number of paths of length two to v’s second neighbours denoted with w. If M = 1, there exists only
one path to a vertex’s second neighbour (e.g. in a tree-like network). As M decreases, the amount of squares in
the network increases, i.e., there exists more than one path to a vertex’s second neighbour.

We can include probability weighting also for mutuality which leads to

µ
(i) =

∑v∈V (0...i) n2,v/P(i)
kv

∑v∈V (0...i) σ2,v (w)/P(i)
kv

. (8)

In principle, one can expect to need two iterations for a reasonable estimate of the mutuality. However, since
the snowball sampling has been initiated with multiple seed vertices it is possible that some ego-centric networks
already connect in the first iteration. In such cases a computation of the mutuality is already possible in the first
iteration. Figure 5a depicts the mutuality values obtained by Eq. 7. The results scatter around the real value and a
good estimate can be made from iteration four on. If we use Eq. 8 the estimation slightly improves (Fig. 5b) and
iteration two already provides a reasonable median value.

Degree correlation, also known as assortativity, is defined as the Pearson correlation coefficient of the degrees
of two vertices connected by a common edge. For a given network, the degree correlation can be calculated with
the formula [11]

r =
M−1

∑m jmkm−
(
M−1

∑m
1
2 ( jm + km)

)2

M−1 ∑m
1
2 ( j2

m + k2
m)−

(
M−1 ∑m

1
2 ( jm + km)

)2 (9)

where ji, ki are the degrees of the vertices at the ends of edge m and M is the total number of edges. The value
of r lies in the range [-1,1], where positive values mean that vertices with high degrees tend to connect to other
vertices with high degrees. Positive degree correlations, also called assortative mixing, is observed in many social
networks including the arxive.org collaboration network.

Figure 5b depicts the degree correlation. Overall, the sampled networks show to be less assortative than the
original network. Reasonable estimates cannot be made until iteration five.
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Figure 5: a) mutuality obtained with Eq. 7, b) mutuality obtained with Eq. 8 and c) degree-correlation of the
sampled networks.

3.3 Closeness and Betweenness
This section presents two further network statistics, closeness and betweenness. These statistics are defined in a
non-local manner, which complicates the previously applied correction of the snowball-sampling induced degree
bias. While an important aspect of our ongoing research is the design of a proper bias correction logic even for
these statistics, in this article, we constrain ourselves to an illustration of these statistics’ basic features and an
application of the hitherto deployed local correction logic.

The closeness of a vertex is its mean geodesic distance to all other vertices in the network, i.e., the average
shortest path length. Closeness is ill-defined on disconnected networks, which is the case for snowball-sampled
networks where the seed vertices’ ego-centric networks did not yet connect to a giant component. However, we
can calculate the closeness only for the vertices within a connected component. We denote the closeness of a
vertex v as CCv (closeness centrality) which is defined as

CCv =
∑w∈V ′\{v} dG (v,w)

n′−1
(10)

where V ′ is the set of all vertices reachable from v, n′ ≥ 2 the number of elements in V ′, and dG (v,w) the shortest
path from vertex v to w. The mean closeness of the network is calculated by averaging CCv over all sampled
vertices.

The closeness of the sampled networks increases with each iteration, i.e., with increasing system size (Fig. 6a).
We can assume that the closeness values will increase if the seed vertices’ ego-centric networks start to connect
to larger components. If the ego-centric components connect the amount of distant vertices escalates. This would
explain, why the closeness already increases to approximately four in the first iteration. Note the there are some
simulation runs in which the average closeness is greater than one even in the 0th iteration. In these runs some
sub-networks already connect in the 0th iteration (via anonymous vertices).

Figure 6c depicts the correlation between closeness and degree. Vertices with higher degrees tend to be closer
compared to vertices with lower degrees, which is intuitively plausible. In this regard, we apply the weighting
approach as done for degree and clustering also to closeness

〈CC〉(i) =
∑v∈V (0...i) CCv/P(i)

kv

∑v∈V (0...i) 1/P(i)
kv

(11)

However, the results show only improvements of minor magnitude (Fig. 6b).
Betweenness is an other centrality measure of a vertex within a network and tells us something about the

importance of a vertex. The betweenness centrality of a vertex v is defined as

BCv = ∑
s 6=v 6=w,s 6=w

σv (s,w)
σ (s,w)

(12)

where σv (s,w) denotes the number of shortest path between vertex s and w that pass through v and σ (s,w)
denotes the total number of shortest paths between s and w. The mean betweenness of the network is estimated by
averaging BCv over all sampled vertices.

Figure 6d depicts the mean betweenness values for the arxiv.org network. The picture resembles Fig. 3a of
the mean degree where the values are overestimated in the first iterations. Figure 6f shows that there is also a
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Figure 6: Centrality measures for the arxiv.org network. a) closeness b) closeness with probability weight-
ing (Eq. 11) c) closeness-degree-correlation, d) betweenness, e) betweenness with probability weighting and f)
betweenness-degree-correlation.

betweenness-degree-correlation. Vertices with higher degree tend to have a higher betweenness while vertices
with low degree tend to have lower betweenness values. For Barabási-Albert-type1 networks, this correlation has
been shown analytically [4], while for assortative networks (such as the arxiv.org network), the analytical solution
only holds for vertices with low degrees [5]. Figure 6e depicts the results when probability weighting is applied
which leads to the expression

〈BC〉(i) =
∑v∈V (0...i) BCv/P(i)

kv

∑v∈V (0...i) 1/P(i)
kv

. (13)

Figure 6e shows now a completely different course. The betweenness appears to scale nearly linearly with the
number of iterations.

4 Discussion
In this article, we pointed out an issue that arises when conducting a snowball sampling on social networks. The
snowball sampling technique over-represents vertices with high degrees in early iterations. As a consequence, the
estimate of the degree distribution and all statistical properties that correlate with the degree distribution are biased.
We introduced a method to compensate this bias. Our proposed estimator of the sampling probability can be easily
calculated since it only depends on the considered degree and on the number of sampled vertices in the previous
iteration. We showed that this approach to compensate the bias leads to reasonable results in the estimation of the
mean degree and the clustering coefficient. However, further investigations of bias-corrections for measures of
closeness and betweenness are necessary that account more properly for the nature of these statistics.

Furthermore, an open question is if the results obtained with the specific social network used in this work
can be applied to other social networks. The available large-scale network data often represents some kind of
collaboration network, e.g., among authors or actors, which only is one specific type of social network. Two
further issues should be addressed in further research: (i) how does the number of initial seed vertices affects the
sampling process, and (ii) what happens if some vertices are non-responding, i.e., respondents reject to participate
in the survey.

1Barabási-Albert networks are models of networks with preferential attachment and follow a power-law degree distribution.
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