
Snowball Sampling a Large Graph

William Cohen

Out March 20, 2013
Due Wed, April 3, 2013 via Blackboard

1 Background

A “snowball sample” of a graph starts with some set of seed nodes of interest,
and then repeatedly adds some neighbors of the seed nodes and their incident
edges. The idea is to come up with some version of the “local neighborhood”
of a node so that one can do analysis of, say, the Facebook friend graph of
a small subcommunity. Doing this is unfortunately tricky for a large graph.
This assignment uses some of the ideas in a 2006 FOCS paper “Local graph
partitioning using PageRank vectors” by Andersen, Chung, and Lang to do
a sort of snowball sampling of a large graph—one which you have on disk.

Some notation first.

• G is a graph, V the vertices, E the edges, n = |V |, and m = |E|.

• I’ll use indices i for vertices when convenient, so vi has index i.

• d(v) is the degree of v ∈ V , and D is a matrix with Di,i = d(vi).

• χv is a unit (row) vector with all weight on vertex v.

• A is an adjacency matrix for G.

• W = 1
2
(I + D−1A) is a “lazy random walk” matrix, where there is

probability 1/2 of staying at vertex v, and probability 1/2 of moving
to some other vertex u connected to v.

1

• We consider a “lazy” version of personalized PageRank, which is the
unique solution to

pr(α, s) = αs+ (1− α)pr(α, s)W (1)

where s is a “seed” distribution (row vector), α is a “teleportation
constant”.

• It is easy to see that pr(α, s) is a linear function of s

pr(α, s) = α
∞∑
t=0

(1−α)tsW t = s[α
∞∑
t=0

(1−α)tW t] = sα[I− (1−α)W]−1

(2)

• It’s easy to show that

pr(α, s) = αs+ (1− α)pr(α, sW) (3)

Note the subtle difference from Eq 1 - this statement is true, but not
obvious.

2 Approximating PageRank with “pushes”

The personalized PageRank (row) vector pr(α, s) can be incrementally ap-
proximated as the following.

We maintain a pair of vectors p (the current approximation) and r (the
“residual”). Initially r = s and p is an all-zeros vector. This guarantee that
the following equality is satisfied

p+ pr(α, r) = pr(α, s) (4)

Now we repeatedly apply Eq 3 to move probability mass from r to p, but
maintain the equality in Eq 4.

We define a push(u, p, r) operation as

p′ = p+ αru

r′ = r − ru + (1− α)ruW

where u is a node with non-zero weight in r and ru is a vector which is
zero everywhere except with weight r(u) on node u. A push operation move

2

α of u’s weight from r to p, and then distributing the remaining (1 − α)
weight within r as if a single step of the random walk associated with W
were performed. This operation maintains the equality in Eq 4. Notice that
to do a “push” on u, we need to know d(u) and the neighbors of u, but we
don’t need to know anything else about the graph.

Let apr(α, ε, v0) be an “approximate PageRank” which is the result of
performing “pushes” repeatedly, in any order, until there is no vertex u such
that r(u)/d(u) ≥ ε (and then using p as the approximation). Then you can
show that

• Computing apr(α, v0) takes time O(1
εα

)

• ∑
v:p(v)>0 d(v) ≤ 1

εα

It can also be shown that if there is a small, low-conductance set of vertices
that contains v0, then for an appropriately chosen α and ε, the non-zero
elements of p will contain that set.

3 Approximating PageRank on a very large

graph

This suggests a scheme for approximating PageRank on a very large graph
— one too large for even a complete vertex-weight vector to fit in memory.
Compute apr(α, ε, v0) by repeatedly scanning through the adjacency-list of
the graph. Whenever you scan past a node u with neighbors v1, . . . , vk in the
stream, push u if r(u)/d(u) > ε, and otherwise ignode u.

In more detail, let the graph be stored in a file where each line contains

u, d(u), v1, . . . , vk

where the vi’s are the neighbors of u. The algorithm is then

• Let p = 0 and r = χv0 .

• Repeat the following until no pushes are made in a complete scan:

– For each line in the graph file

∗ If r(u)/d(u) > ε then let p, r = push(u, p, r)

Finally, take the nodes that have non-zero weight in p, and include all
the edges that are incident on these nodes. Since both p and r are sparse,
they can be kept in memory.

3

4 Building a low-conductance subgraph

Some more notation:

• The “volume” of a set S is the number of edges incident on S, i.e.

volume(S) =
∑
u∈S

d(u)

• The “boundary” of a set S are the edges from a node u ∈ S to a node
v 6∈ S.

boundary(S) ≡ {(u, v) ∈ E : u ∈ S, v 6∈ S}

• The “conductance of S” for a small set S is the fraction of edges in S
that are on the boundary.

Φ(S) =
|boundary(S)|
volume(S)

More generally

Φ(S) =
|boundary(S)|

min(volume(S), |E| − volume(S))

Intuitively, if a node u is in a low-conductance set S that contains a seed
node v0, then it’s plausible that u would have a high score in pr(α, χv0). If
that’s true one way to find such a set would be the following.

• Let S = {v0} and let S∗ = S

• For all nodes u 6= v0, in decreasing order of the personalized PageRank
score p(u):

– Add u to S.

– If Φ(S) < Φ(S∗), then let S∗ = S.

• Return S∗.

Andersen, Chung and Lang call this is operation “sweep”, and show
that it will find a small, low-conductance set S if one exists. Note that
boundary(S), and hence Φ(S), can be computed incrementally: boundary(S+
{u}) is the edges in boundary(S), after removing the set of edges that enter
u, and adding the edges from u to any node v 6∈ S + {u}.

4

5 Data

An adjacent matrix of wikipedia concepts is available at /afs/cs.cmu.edu/
project/bigML/wikiGraph. The file outlink.adj contains an adjacent ma-
trix of wikipedia graph. Each line is a tab-separated list of wikipedia pages,
where the first page has links to each one of the following pages. For debug
purpose we provide another file test.adj, which is an subset of wikipedia
graph.

6 Assignment

In this assignment we are going to implement the snowball algorithm and
visualize the result of a few seeds.

A visualization software (Gephi) is available for download 1. You may
use other visualization tool as you like. Figure ?? gives an example result by
using “Machine learning” as seed node. You are expected to produce similar
graph for this seed and other seeds.

Hint 1: to load data into gephi I find GDF format is the easiest2

Hint 2: Gephi’s UI is a little bit confusing. I find ‘ForceAtlas 2’ with
scaling=500 and gravity=500 gives reasonably good result. You can export
figures from the preview tab.

Overall your program may have the following 4 steps:

• run approximated PageRank with a seed page s, and parameters α, ε.

• create a subgraph that involves nodes in pr(α, s)

• do the “sweep” operation and find a small, low-conductance subgraph

• convert the low-conductance subgraph into the GDF format required
by Gephi. For a node v use max(1, log(p(v)/ε)) as its node size.

7 Deliverables

Submit a compressed archive (zip, tar, etc) of your code. With it, include a
makefile so that

1https://gephi.org/users/download
2https://gephi.org/users/supported-graph-formats/gdf-format

5

• The command make pagerank generates PageRank vector p for test.

adj. Print out two tab-separated columns— nodes with non-zero weights
in p, and their weights. Here we use seed=“A”, α = 0.3 and ε = 10−5.
Don’t include the data file in your archive.

• The command make snowball generates the snowball subgraph for test.
adj. Print out two tab-separated columns– nodes in the corresponding
low-conductance subgraph, and their p values.

In addition, please include a pdf document with the output of your “make
demo” command. Also include pdf documents containing a visualizations for

1. the seed “Machine learning” with α = 0.3 and ε = 10−5

2. two other seeds of your choice, with α and ε of your choice.

BONUS question: how sensitive is the result graph to parameters α and
ε?

8 Marking breakdown

• Code correctness and makefile functionality [70 points].

• Question 1, 2 [10+20 points]

• BONUS question [10 points]

6

