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Abstract
Producing large enough quantities of high-quality transcriptions
for accurate and reliable evaluation of an automatic speech
recognition (ASR) system can be costly. It is therefore desir-
able to minimize the manual transcription work for producing
metrics with an agreed precision. In this paper we demonstrate
how to improve ASR evaluation precision using stratified sam-
pling. We show that by altering the sampling, the deviations
observed in the error metrics can be reduced by up to 30% com-
pared to random sampling, or alternatively, the same precision
can be obtained on about 30% smaller datasets. We compare
different variants for conducting stratified sampling, including
a novel sample allocation scheme tailored for word error rate.
Experimental evidence is provided to assess the effect of differ-
ent sampling schemes to evaluation precision.
Index Terms: speech recognition, evaluation, stratified sam-
pling, bootstrapping

1. Introduction
Being able to reliably evaluate automatic speech recognition
(ASR) performance is essential for developing and monitoring
such systems. The data to evaluate on must be chosen such that
it is as realistic and representative as possible, and it must be
transcribed carefully. To minimize the manual work involved
in the process, there is an urge to carry out the evaluations with
as little data as possible, as long as evaluation reliability is not
compromised.

In this paper, evaluation reliability or precision refers to the
fluctuation of the extracted metric, caused by the random effects
of sampling the data from the overall population. Sampling is
explicit when we have a large pool of data, and only a part of it is
chosen for manual labeling. Sampling can also occur implicitly,
e.g. when a limited set of users participate in data collection for
evaluation purposes. This paper concentrates on the former: we
assume that there is an abundance of data, but labeling it is the
bottleneck in the evaluation process.

Evaluation set size plays a critical role in evaluation relia-
bility. The more data there is for evaluation, the better estimates
we can obtain for the true performance of the system. When de-
signing data collection and manual labeling, we should have an
idea about how accurate the estimates should be. By analyzing
the existing evaluation data, it is possible to state the variance
or deviation which the evaluation metric exhibits. Such an anal-
ysis can help in choosing the appropriate size for the evaluation
sets.

As the main method for improving ASR evaluation preci-
sion, we investigate using stratified sampling [1, 2], with model
probability scores guiding the partitioning of the data. The same
idea has been applied earlier in other machine learning tasks
[3, 4], but here we show concretely how to apply the method
in ASR, using real data and models to quantify the benefits of

the method. We also derive a new sample allocation scheme to
optimize word error rate evaluations.

We start in Section 2 by describing the ASR task and met-
rics used for the analysis. Section 3 describes how to quan-
tify the reliability of the evaluation. In Section 4 we introduce
stratified sampling and different variants used in this paper. Ex-
perimental results on applying stratified sampling for ASR are
provided in Section 5. Conclusions are provided in Section 6.

2. Evaluation task and the model
This paper studies how to improve the precision of evaluation
metrics in ASR. In particular, we will analyze the evaluation
of a production-level German media voice search system. To
conduct the analysis and simulations, we use an internal dataset
of about 90000 transcribed utterances (about 60h of speech),
from over a thousand speakers. The evaluation data had not
been used for training the ASR models.

2.1. Metrics for speech recognition accuracy

In this study, we use two metrics typical for assessing ASR
accuracy: Sentence Error Rate (SER) and Word Error Rate
(WER). The former is simply the ratio of the number of erro-
neous utterances to the total number of utterances. WER pro-
vides a finer resolution for the errors by counting the number
of word-level edit operations (insertions, deletions, and sub-
stitutions) needed for changing the true transcription to match
the observed recognition output. Unlike SER, WER cannot be
computed as an average over the WERs of the utterances in the
evaluation set. Instead, one needs to sum all the errors of the
dataset and reference transcription lengths separately, and com-
pute WER as their ratio.

2.2. Model confidences and error rates

The ASR system used for this paper produces utterance-level
confidence [5, 6] values in range 0–1. They represent the
model’s view of the probability that the recognition output is
correct. An utterance-level confidence is computed as a product
of word-level confidences, which again are derived from a con-
fusion network. Similar to [7], a piecewise polynomial mapping
is applied to word posterior probabilities to improve their usage
as word-level confidences.

As we intend to use the utterance confidences to partition
the data for stratified sampling, their distribution and relation
to recognition errors are of interest. Figure 1 shows that in our
case, the confidence values are in fact distributed very unevenly:
most of the utterances are recognized with a high confidence.
On the other hand, Figure 2 illustrates that our confidence val-
ues correlate very well with the true error rates. Figure 2 also
shows the standard error of the utterance-level SERs in 10 uni-
formly distributed confidence bins. The shape of the standard
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Figure 1: Histogram of utterance confidence values.
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Figure 2: WER, SER, and the standard error of SER, computed
over 10 uniformly spaced confidence bins.

error curve derives from the fact that SER of an utterance is a bi-
nary variable. Hence each bin i can be modeled as a Bernoulli
process with a success probability pi = SERi and a sample
variance s2

i = pi(1− pi).

3. Analyzing evaluation metric reliability
In typical real-life scenarios, we cannot afford to label all the
data that is available. Instead, we need to work with a subset,
a sample of the data, which we call a dataset. The random se-
lection of the dataset utterances affects the evaluation results
computed over it. A metric extracted over the dataset is in fact a
random variable, and may deviate from its true value (that cal-
culated over the whole population). In this section, we investi-
gate ways to formalize this sampling effect and how to analyze
the precision of a metric.

3.1. Variance of mean estimator

Many metrics of interest can be obtained as an average over
individual data instances. The sample mean x̄ is an unbiased
estimator of the true population mean E(X):

x̄ =
1

N

N∑
j=1

xj , (1)

where xj are data instances, randomly sampled from the popu-
lation, and N is the sample (dataset) size. In ASR tasks, a data
instance xj could represent e.g. the SER of an utterance j. Due
to the random selection of xj , sample mean is a random vari-
able, with variance inversely proportional to the sample size:

Var(x̄) =
s2

N
, (2)

where s2 is the sample variance of the data instances xj .

3.2. Bootstrapping

Eq. (2) can be used to study the variance of evaluation metrics
such as SER. However, the distribution of the deviations with a
finite dataset size remains unknown. Furthermore, metrics such
as WER cannot be computed as an average of the instance val-
ues, in which case (2) cannot be directly applied. To allow flex-
ible analysis of sampling effects, we used Bootstrapping [8, 9].
It resamples the original dataset with replacement to form ”sam-
ples of datasets”, with desired dataset sizes. These new datasets
can be used to produce empirical distributions and statistics of
the evaluation metrics. The advantage of using bootstrapping is
that it does not set strict assumptions on the distribution of the
data, as long as the population variance of the metric in interest
is finite. Using bootstrapping we can also derive the 95% quan-
tiles of the error estimates, which we will use to quantify the
precision of the estimates.

4. Stratified sampling
Stratified sampling [1, 2] is a well-known method to ensure suf-
ficient coverage of different types of events in the sample. The
idea is to partition the population into groups called strata, and
randomly sample from each group (stratum) separately. The al-
location of the samples into strata can be varied, and it is taken
into account to normalize the final statistics computed from the
sample, so that unbiased estimates are produced. The method
can be used to minimize estimator variances of sample statis-
tics, or to produce representative samples out of various subsets
of the population while maintaining an unbiased estimate of the
overall sample mean.

4.1. Formulation

In stratified sampling, the mean of a random variable is com-
puted as a weighted average of the means over each stratum:

x̄s =

m∑
i=1

Ni

N
x̄i =

m∑
i=1

Ni

N

∑ni
j=1 x

j
i

ni
, (3)

where Ni is the number of instances for stratum i in the whole
population, N =

∑
Ni, ni is the number of instances ran-

domly drawn for stratum i, m is the number of strata, and xj
i

is a data instance in stratum i. The variance of x̄s acquires the
following form:

Var(x̄s) =
∑
i

N2
i

N2
Var(x̄i) =

∑
i

N2
i

N2

s2
i

ni
, (4)

where the last equality uses (2) with s2
i as the sample variance

of ith stratum.

4.2. Defining the strata

The prerequisite for applying stratified sampling is that all the
data can be uniquely and exhaustively assigned to the defined
strata. The strata can be defined based on category variables
known before the sampling. This is especially useful if one
wishes to analyze the subsets defined by the category, as strati-
fied sampling can improve the precision of the subset statistics.
Another option is to use a continuous variable and discretize it
into different bins defined as the strata. This is the approach
adopted in this paper.

Eq. (4) suggests that by choosing the strata in such a way
that s2

i are smaller than the overall s2 (that is, xj
i of different
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strata are not identically distributed), the estimator variance be-
comes smaller. In addition, by altering the strata allocation ni,
we can control the sample mean variances and reduce the esti-
mator variance further.

With statistical classifiers, a useful way to partition the data
is to use the classifier score as the stratification variable [3]. By
defining the strata as non-overlapping ranges of the score, the
model itself defines the partition in an unsupervised manner.
As mentioned in Section 2.2, the model confidence values of
our ASR system correlate well with the error metrics of the pre-
dictions. Hence different confidence ranges have different dis-
tributions of the error metrics, which makes them a good choice
as the strata.

When defining the partitioning based on a continuous vari-
able, one has the freedom to choose the desired number of
strata, as well as ranges of values corresponding to each strata.
The strata are defined prior to sampling, so we do not have ac-
cess to the sample distributions, although we may have histor-
ical data to derive expectations from. The strata should be de-
fined such that we can trust the estimates of the strata frequen-
cies Ni/N .

A simple way for data partitioning with a continuous strat-
ification variable is to use uniform ranges over the values of
the stratification variable. However, if the stratification variable
is not uniformly distributed, it might be better to use variable
ranges, in such a way that approximately the same number of
instances are expected to be observed in each stratum. We will
investigate both of these strategies in this paper.

4.3. Sample allocation

To apply stratified sampling, we need to define the sample allo-
cation ni, the number of instances drawn for each stratum. In
proportional allocation strategy, ni is defined to be proportional
to the probability of observing a data instance in the stratum:

ni

n
=

Ni

N
for i = 1 . . .m, (5)∑

i

ni = n. (6)

However, ni doesn’t have to be strictly proportional to real fre-
quencies of the strata. In fact, it is beneficial to set sample allo-
cations ni such that the variance of the sample mean estimate is
minimized. This strategy is called optimal allocation.

Optimal allocation uses the sample variances of each stra-
tum to guide the allocation. It can be derived from (4) using
e.g. Lagrange multipliers [10]. This leads to so called Neyman
allocation, which states that the sample size for stratum i is

ni = n
Nisi∑
j Njsj

. (7)

Optimal allocation assigns more samples to strata with large
sample variances, hence minimizing their contribution to the
total variance of the mean estimate. If the sample variances
are not known prior to sampling, sampling and labeling can be
done incrementally [3]. When considering optimal allocation,
the number of strata poses a trade-off: large number of strata
may provide lower variances, but the less samples there are for
each stratum, the harder it is to estimate the variance within each
strata, leading to deviations from the optimal strategy [11].

WER cannot be computed as a weighted sum of the stratum
estimates. Instead, stratum errors and reference lengths need to

be summed separately:

W̄s =

∑ Ni
N
ēi∑ Ni

N
r̄i
, (8)

where ēi and r̄i are the sums of errors and reference lengths
in stratum i, respectively. Due to this formulation, using (7)
directly is not possible. Instead, we propose a novel strategy
which provides approximately optimal sample allocations for
WER. We start by considering the 1st order Taylor approxima-
tion of (8) and derive the total variance of WER as

Var(W̄s) ≈
∑
i

[(
∂W

∂ēi

)2

Var(ēi) +

(
∂W

∂r̄i

)2

Var(r̄i)+

2
∂W

∂ēi

∂W

∂r̄i
Cov(ēi, r̄i)

]
. (9)

We will use the following partial derivatives:

∂W

∂ēi
=

Ni

Nravg
, (10)

∂W

∂r̄i
=
−Nieavg
Nr2

avg

, (11)

where eavg and ravg are the average number of word-level er-
rors and number of reference words in an utterance over the
population, respectively. After substituting the variances in (9)
with sample estimates (2), we can use Lagrange multipliers to
solve the sample allocations ni which minimize (9), subject to
constraint (6):

ni =
kNi

r2
avg

√
r2
avgs

2
ēi

+ eavgs2
r̄i
− 2ravgeavgsēi,r̄i , (12)

where k is a constant such that the constraint (6) is satisfied, and
sēi,r̄i is the sample covariance between ēi and r̄i.

5. Experiments
In this section we provide experimental evidence on the advan-
tage of using stratified sampling for evaluating ASR systems.
Throughout the analysis in this section, the deviations of eval-
uation metrics are measured as symmetric 95% quantiles, ex-
pressed relative to the absolute error metric.

5.1. Deviation of SER with different sampling methods

Figure 3 illustrates the effect of the sample size, when using
random sampling or stratified sampling with 10 uniformly dis-
tributed confidence bins, using proportional or optimal sample
allocation. As expected, increasing the sample size increases
the precision of mean estimates. Comparing the quantiles of
random and stratified sampling shows that for the same devi-
ation, stratified sampling requires about 30% fewer utterances.
Optimal allocation slightly but consistently outperforms propor-
tional allocation strategy.

Table 1 shows the 95% quantiles of SER estimates over
evaluation sets of 10000 utterances using different stratifica-
tion strategies. We can observe that already the simplest strat-
ification scheme, uniform confidence ranges and proportional
allocation, improves the precision significantly over the random
sampling. As in Figure 3, optimal allocation always outper-
forms the proportional one. Variable confidence ranges do not
seem to be beneficial, and may even degrade the precision com-
pared to uniform ranges. This is likely to be a property of the
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Figure 3: The effect of sample size on the SER deviation, mea-
sured as a symmetric 95% quantile relative to the observed SER
value. Random sampling shows 28–34% wider quantiles than
stratified sampling with optimal allocation (10 uniform bins).

Table 1: Relative SER deviations as 95% quantiles when using
different stratification strategies: Number of strata, definition of
strata (as uniform or variable ranges), and different allocation
strategies (proportional or optimal). The number of samples
was kept fixed at 10000 utterances. The 95% quantile for ran-
dom sampling in this case is ±4.7%.

# of Uniform bins Variable bins
strata Proport. Optimal Proport. Optimal
5 3.9% 3.7% 4.0% 3.8%
10 3.9% 3.6% 3.9% 3.7%
20 3.7% 3.5% 3.9% 3.6%
30 3.8% 3.6% 3.9% 3.7%
40 3.8% 3.5% 3.9% 3.7%

particular task and the model at hand. With the very good cor-
relation between the confidence values and the error rates pro-
vided by the model, uniform confidence ranges match better
with the differences in the distributions of errors. Variable con-
fidence range strategy, on the other hand, results in too much
pooling for the less frequent low-confidence utterances.

Increasing the number of strata is seen to be beneficial up to
20 strata. Using more strata does not provide additional gains.
As lower number of strata is preferred, due to more robust esti-
mates of strata frequencies and error variances, 20 strata with
uniform confidence bins is considered to be optimal for this
task.

5.2. Stratification using acoustic measures

Ideally stratification could be defined independently of the
model, such that model updates would not change the optimal
sample allocation. To achieve this, we tried using purely acous-
tic measures instead of model confidences to define the strati-
fication. Low signal-to-noise ratio (SNR) and extreme funda-
mental frequencies F0 are known to degrade recognition accu-
racies, so both of them were tested as stratification variables.
Tests were run with 10 and 20 strata, using both uniform and
variable ranges, with dataset size of 10000 utterances. In ad-
dition, SNR and F0 were tested in combination to define 25
strata as a uniform 5x5 grid. In all the cases, utterances without
speech contents were assigned to a dedicated stratum, as esti-
mating SNR or F0 for them would not be possible. F0 contours
were extracted using the Summation of the Residual Harmon-
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Figure 4: Deviation of WER metrics as relative symmetric 95%
quantiles. Stratification used 20 bins with uniform ranges.

ics (SRH) algorithm [12]. SRH was also used for voice activity
detection, in a method similar to [13, 14].

Despite the various configurations, none of the tested
acoustic-based stratification methods provided gains over ran-
dom sampling. Although low/extreme values for SNR/F0 in-
dicate higher error rates, majority of the errors in the evalua-
tion set occur in utterances with typical values of the two mea-
sures. Using model confidences is therefore a superior method
for stratification. Furthermore, gradual model updates may not
pose such a problem, as sample allocation optimum has been
shown to be flat in the sense that small deviations in the alloca-
tions cause only small variations in the variance [10].

5.3. Measuring WER with stratified sampling

In Section 4.3 we introduced an approximation for optimal sam-
ple allocation applicable for WER. Figure 4 shows WER 95%
symmetric quantiles for random sampling, proportional alloca-
tion, and the optimal WER allocation, computed with 20 uni-
form bins. Stratified sampling and optimal allocation outper-
forms other two methods. As an alternative, one could consider
using SER as a proxy to define the sample allocation with (7),
even though WER is computed over the strata. However, our
experiments showed that this approach produces 6–8% larger
WER quantiles, compared to using (12).

6. Conclusions
This paper has demonstrated how stratified sampling can be
used to optimize the evaluation of ASR, by reducing the devia-
tions observed in the error metrics such as WER or SER. Strat-
ified sampling with model confidences as stratification variable
allowed using about 30% fewer utterances than random sam-
pling would require for a given precision of SER. This can be
directly translated into reducing the labeling cost of the evalua-
tion sets.

Various configurations for stratified sampling were experi-
mentally compared. Optimal allocation was shown to provide
the best precision, provided that we have prior knowledge on
the distribution of the error metrics over confidence ranges, so
that the strata can be define sensibly. Defining the strata as uni-
formly distributed ranges of the model confidence scores was
shown to work well when confidences correlated well with the
error metrics. Finally, we introduced a novel method for defin-
ing approximately optimal sample allocations for WER evalu-
ations, and showed that it outperformed other allocation meth-
ods.
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