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Abstract— In this paper, we present new statistical sam-
pling techniques for performing power estimation at the cir-
cuit level. These techniques first transform the power es-
timation problem to a survey sampling problem, then ap-
ply stratified random sampling to improve the efficiency of
sampling. The stratification is based on a low-cost predic-
tor, such as zero delay power estimates. We also propose a
two-stage stratified sampling technique to handle very long
initial sequences. Experimental results show that the effi-
ciency of stratified random sampling and two-stage stratified
sampling techniques are 3-10X higher than that of simple
random sampling and the Markov-based Monte Carlo sim-
ulation techniques.

I. INTRODUCTION

With the continuing reduction in the minimum feature
size, chip density and operating frequency of today’s 1Cs
are increasing. As a result, power dissipation has become
an important concern in IC design. To minimize power, one
needs to estimate it first. As a result, there is an increasing
need for accurate and efficient power estimation tools.

Existing simulative power estimation techniques [1], [2],
[3], [4] explicitly simulate the circuit under a “typical” in-
put vector Their main shortcoming is however that they
are very slow. To address this problem, a Monte Carlo
simulation technique was proposed in [5]. This technique
uses an input model based on a Markov process to gen-
erate the input stream for simulation. The simulation is
performed in an iterative fashion. In each iteration, a vec-
tor sequence of fixed length (called sample) is simulated.
The simulation results are monitored to calculate the mean
value and variance of the samples. The iteration termi-
nates when some stopping criterion is met. This approach
suffers from four major shortcomings. First, since the sim-
ulation vectors are generated internally based on statistics
of the input stream, a large number of vectors needs to
be examined to extract reliable statistics. Second, when
the vectors are regenerated for simulation, the spatial cor-
relations among various inputs cannot be adequately cap-
tured, which may lead to inaccuracy in the power esti-
mates. Third, the required number of samples, which di-
rectly impacts the simulation run time, is approximately
proportional to the ratio between the sample variance and
square of sample mean value. For certain input sequences,
this ratio becomes large, thus significantly increasing the
simulation run time. Finally there is a concern about the
normality assumption on the sample distribution. Since
the stopping criterion is derived based on the normality
assumption, if the sample distribution significantly deviate
from normal distribution, the simulation may terminate
prematurely. Difficult distributions that cause premature
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termination include bi-modal, multi-modal and distribu-
tion with long or asymmetric tails.

In this paper we address the power estimation problem
from a survey sampling perspective. We assume a sequence
of vectors are provided to estimate the power consump-
tion of a given combinational circuit with certain statistical
constraints, such as error and confidence levels. We trans-
form the power estimation problem to a survey sampling
problem by dividing the vector sequence into small units,
e. g. consecutive vectors, to constitute the population for
the survey. Power consumption is the characteristic un-
der study. The average power consumption is estimated
by simulating the circuit by a number of samples drawn
from the population, a procedure referred to as sampling,
using a simulator such as PowerMill [4] or VERILOG-XL.
Our objective is to design a sampling procedure that will
significantly reduce the number of simulated vectors while
satisfying the given error and confidence levels.

Stratified sampling techniques have been widely used for
surveys because of their efficiency. The purpose of stratifi-
cation is to partition the population into disjoint subpopu-
lations so that the power consumption characteristic within
each subpopulation is more homogeneous than in the orig-
inal population. The partitioning is based on a low-cost
predictor that needs to be efficiently calculated for each
member in the population. In this paper, we use the zero
delay power estimate as the predictor. Compared to the
technique proposed in [5], the proposed technique offers
the following advantages: 1) It performs sampling directly
on the population and the estimation results are unbiased,
2) Tt is more efficient, and 3) The sample distributions are
more likely to be a normal distribution. When the popula-
tion size is large, we propose a two-stage stratified sampling
procedure to reduce the overhead of predictor calculation
and stratification.

The organization of the paper is as follows. In Section
2, we describe the basic principles of survey sampling and
its connection with power estimation. In Section 3 and 4,
we present a stratified sampling technique for power esti-
mation and discuss its design issues. A two-stage stratified
sampling technique is presented in Section 5. Experimen-
tal results are presented in Section 6 followed by concluding
remarks which are given in Section 7.

II. BACKGROUND

We first give some useful notation and definitions:
the population

N number of units in the population

U; the ith unit in the population

Yi value of the characteristic under study for u;
Y mean value of y; in the population

n sample size



We are given a collection (called population), U =
{ur,us, ..., un} of objects (called elements or wunits), of
which some property (called characteristic) y; is defined
for each w;. The survey sampling problem deals with ways
of selecting samples, i.e., sequences (or collections) of units
from the population, to estimate the mean value of the
characteristic under study in the population, denoted by

Y, where
| XN
Y=L
3

For the sake of the simplicity, we will refer to Y as popula-
tion mean. The variance of the characteristic under study
in the population 1s simply referred to as population vari-
ance and is denoted by V(y). The relative variance is de-
fined as the ratio between the variance and square of the
mean value of a statistic. Number of units included in a
sample is referred to as the sample size and is denoted by n.
An estimator (of population mean) is defined as a function
of sample characteristic values that estimates the popula-
tion mean. An estimator is a random variable and may
take different values from sample to sample. The differ-
ence between the estimator ¢ and Y, is called error. t is
said to be an unbiased estimator for Y if E(t) = Y, oth-
erwise biased. If an estimator is biased, the bias is given

by:

B(t) = E(t - ).

The estimator variance of ¢ is defined as:
V(t) = B[t - E(t))’].
The mean-square error (MSE) is defined as:
MSE(®t) = E[(t-Y)%].
The relation among MSFE(t), V(¢), and B(t) is:
MSE(t) = V(t) + B*(t).

Given two estimators t; and to, f1 is said to be more
efficient than 5 if the mean-square error of ¢; is less than
that of t5. The relative efficiency of t; as compared to
is defined as the reciprocal of the ratio of their estimator
variance when the same number of samples are taken in
both estimators. Therefore the ratio between the number
of required samples is roughly equal to the reciprocal of
their relative efficiency.

A. Power Estimation Problem

We are given a vector trace (v1,vae,...,vp) to estimate
the average power consumption of a combinational circuit
using an accurate simulator. This problem can be easily
transformed into a survey sampling problem by grouping a
fixed number [ of consecutive vectors with overlap occur-
ring only at the group boundaries, and each group becomes
an element (unit) of the population in the survey. For ex-
ample, if ] =2 and M = N + 1, the grouping will be:

(vlaUZ)a(v2av3)a"'a(vN31UV+l)

The power consumption estimated for the vector sequence
in each group becomes the characteristic under study. The
mean value of the characteristic in the population gives the
average power consumption.

B. Simple Random Sampling(SRS)

Simple random sampling is a method of selecting n units
out of a population by giving equal probability to all units.
.., uy with characteristic
, Yn, Y 18 estimated by

n
ysr = Zyl/na
i

where the subscript sr denotes simple random sampling

Given a sample of n units, w1, us, .
values y1,y2, ...

and ¥, 1s referred to as the sample value.

Theorem I: In simple random sampling (wr), the sample
value 7,, is an unbiased estimator of ¥ and its sampling
variance is given by:

v, = "0 )

Equation (1) shows that the sampling variance is in-
versely proportional to sample size. In addition, if we select
k samples and use the mean of the sample values as the esti-
mator ¢, the variance is further reduced by k as each sample
selection is independent of the other. Thus, the sampling
variance of this estimator is inversely proportional to nk,
the total number of units drawn from the population. In
the following discussion, for the sake of generality, we as-
sume that our estimator ¢ 1s the mean value of k samples,
each with sample size n. When the population variance is
not known, one may use t-distribution with degree (k — 1)
to derive the number of required sample k that achieves a
given confidence level, (1 — «), and a relative error level, ¢,
provided that the samples follow normality, as given below:

ta/zs
[aes

k> (=—) (2)
where #,/5 is defined so that the area to its right under a
t-distribution with degree (k — 1) is equal to /2, and &
and s are the mean and standard deviation of the simulated
samples, respectively. When the population size is infinite,
this procedure is also commonly known as the Monte Carlo
simulation approach [5].

In general, the efficiency of simple random sampling is
not very high. This can be explained in the context of
power estimation as follows. Consider the case where the
distribution of the population characteristic (i.e., power
consumption) is bi-modal — that is, the characteristic of
half of the population is distributed around a right peak,
and the characteristic of the other halfis distributed around
a left peak. Since the selected unit could either come from
the right peak or the left peak, the sampling variance is
very high.

If, on the other hand, we divide the population into two
halves, those units whose characteristic values are around
the right peak are put into one subpopulation while the
remaining units are put into the other subpopulation, and
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Fig. 1. The plot that shows the power variation after stratification

using zero-delay power estimate as the predictor.

select the samples in such a way that half of the units
in a sample are selected from each of the subpopulations,
then the sampling variance will be significantly reduced.
In order to divide the population into subpopulations, a
predictor is often used. This predictor need not have a
linear relationship with the characteristic under study, as
it is only used to divide the population into subpopulations
and is not directly used to calculate the power estimates.
In the following sections, we will describe a more efficient
sampling procedure based on stratified sampling.

ITI. STRATIFIED RANDOM SAMPLING(STS)

In the stratified random sampling, the population U is
partitioned into k disjoint subpopulations, called strata.
The main objective of stratification is to give a better cross-
section of the population so as to gain a higher degree of
relative efficiency. The stratification should be done in such
a way that strata are homogeneous within themselves w. r.
t. the characteristic under study.

For power estimation, we use the following procedure to
construct the strata. The zero delay power estimate is used
as the predictor. Let the predictor value of unit u; be x;.
Population U is first sorted according to the z; value of
each unit. Let the new order be uy, us, ..., u,. Then K —1
separators, p1, pa, ..., PK_1, are selected such that

T <pr<p2<...<pg_1<xnN

All the units whose z; values are between two consecutive
separators are put into the same stratum, and the strata
disjointly cover the whole population. Let the size of each
stratum be N;, then

Ni4+Noy+...+Ng=N

Units in a sample are drawn from each stratum indepen-

dently so that the sample size within the ¢th stratum be-

comen; (i=1,2,...,K) and
n+ne+...+ng=n

If the sample is taken randomly from each stratum, the
procedure is known as stratified random sampling.

One way to tell how well the z; behaves 1n relation to y;
is from the scatter plot of y; and z;. In Figure 1, we show
the scatter plot for each consecutive vector pair in a biased
sequence (i.e. non-random) for C'1355 circuits (ISCAS85),
where z; and y; are the zero delay and the PowerMill esti-
mates of each consecutive vector, respectively. As we can
see, the zero delay power estimation produces poor accu-
racy on a vector-by-vector basis. However, in the stratified
sampling, z; is only used for forming the strata so that
units of close y; values can be put in the same stratum,
slight inaccuracy of the zero delay power estimates is ac-
ceptable.

An intuitive account for how stratified random sampling
improves sampling efficiency can be best explained in the
context of the scatter plot for biased sequence in Figure 1.
In Figure 1, the vertical lines represent the separators. If
we apply simple random sampling to this population, the
range of variation that we observe from each drawn unit
i1s from 0mW to 15mW. However, when using stratified
random sampling, the units drawn from each stratum have
a much smaller range of variation due to stratification. For
instance, units drawn from the first stratum in Figure 1
now only vary from OmW to 4mW. Similarly for units from
other strata. This result leads to a much smaller sampling
variance.

A. Population Parameter Estimation

In this subsection, we mainly focus on the derivation of
an estimators for population mean and study of its prop-
erties. We first give some useful notations and definitions:

number of strata

size of the ¢th stratum

N; /N, stratum weight of ith stratum

number of units in a sample falling in ¢th stratum
¥ij  characteristic y of jth unit in +th strata in a sample
Y; stratum mean of the ith stratum, ¥; = Zj\f’ yij /N
S?  stratum variance of the ith stratum,

SP = ENl(ym Y;)?/Ni

Z y”/nz, sample mean within strata 7

The stratification estimator U, 1s formulated as:

K
yst = Z VVZ?Z
7

where the subscript st denotes the stratified sampling
method.

Theorem 2: If units in a sample are drawn independently
in different strata, then %, is an unbiased estimator of the
population mean and its sampling variance is given by

Z W2 (3)

IV. STRATIFICATION SCHEME DESIGN

From Equation (3), V(9y,,) depends on n;, W; and S;.
Our objective is to minimize V(7,,) for a given value of n.
The problem of selecting n; for the ¢th stratum is referred

==

yst



to as the sample size allocation problem. W; and V(7;)
are related and they are determined by strata separators
pi, ¢t = 1,2..., K — 1, when the strata are formed. The
problem of finding the optimal values of the separators p;
is referred to as the stratum selection problem. These two
problems collectively will be referred to as the stratification
scheme design problem.

A. Sample Size Allocation in Strata

We adopted a variation of the minimum variance alloca-
tion scheme proposed by [6]. It was shown that allocating

n; = nvf’i;’s will give the minimum variance among all

possible allocation methods. The difficulty in using the
above criterion is that S; i1s not known before sampling.
One solution is to use the variance of z; as an approxima-
tion of S?. However, this places a condition on the choice
x; since 1t implies that z; must be selected judiciously so
as to exhibit a variance proportional to that of y;.

B. Stratum Selection Problem

In general when we increase K, V(¥,,) decreases. How-
ever, in practice, after K reaches a certain value, the re-
duction on V(7,,) becomes less significant and sometimes
could even increase slightly. Some statisticians [7] have
suggested that an increase in K beyond 6 would seldom be
profitable.

After determining the value of K, we need to find the
strata separator values p;’s. Several selection criteria have
been proposed in the literature. Among them, Danlenius
and Gurney [8] suggested that the construction of strata
on the basis of equalization of W;5; and equal sample size
allocation to the strata would lead to optimum stratifica-
tion. Again, this method is not convenient as it requires
the knowledge of S;. Our method is based on a variation
of this scheme as described next. The stratum variances
SZ, where i = 1,..., K, is approximated by the variance
zero delay power estimate in each stratum. The units of
the population are first sorted according to their zero delay
power estimates and put in a large number of bins. Ad-
jacent bins are next merged iteratively until K strata are
formed and W;S; are within 25% of each other.

C. Normality of Sample Distribution

As we have mentioned earlier, the objective of stratifica-
tion is to make the strata homogeneous within themselves.
Thus, 1t is easier to make the sample distribution follow
a normal distribution in stratified random sampling com-
pared to simple random sampling. For example, in bi-modal
or multi-modal population distribution, if the population
modes are widely separated and if we assume that the pre-
dictor behaves relatively well, stratification can break up
the modes by using a number of strata to cover each mode.
Even when one of the strata happens to remain bi-modal,
the modes are less likely to be as widely separated as in the
original population. In any case, the bimodality behavior
only effects the sample units drawn from this stratum and
not the whole. Similar arguments hold for population dis-

tributions with long or asymmetric tails.

D. Cost Comparison

The cost of simple random sampling is due to the calcu-
lation of y; for all units in the samples, that 1s, nk times the
average simulation time of PowerMill for one vector pair.
If we assume the latter to be Cpyrm,, then the cost of simple
random sampling can be written as:

Cop = agp + nkcpwm

where ag, 1s a constant overhead for simple random sam-
pling.

For stratified random sampling, the cost comprises of two
parts: 1) the calculation of #; (zero delay power estimate)
for all units in the population and stratification (such as
sorting and strata selection), and 2) the simulation time of
PowerMill for all units in the samples. If we assume the
amortized cost of x; calculation is C'y and the number of
samples is selected so as to achieve the same variance as
that of simple random sampling, then the cost of stratified
random sampling can be written as:

1
Coy=as +NC1 + ;nkcpwm (4)

where 7 1s the relative efficiency of stratified random sam-
pling vs. simple random sampling and ag; is a constant
overhead for stratified random sampling.

The constant overheads of both sampling methods are

small. Therefore the stratified sampling is more cost-
effective if )
N> T _mo
nkCpuwm

. Ci o~ 1
In practice, we find that = — = oo If we assume

N = 4000 and nk = 200, we conclude that when n > 1.005,
stratified random sampling is more cost-effective than sim-
ple random sampling.

When the population size is very large, the overhead of
calculating the predictor may become significant. To re-
duce this overhead, a two-stage stratified sampling is pro-
posed in the next section.

V. TwWO-STAGE STRATIFIED SAMPLING

In the first stage, a sub-population of size M < N is
first randomly sampled from the original population U. In
the second stage, stratified sampling is applied to this sub-
population to select a sample of size n. Since stratified
sampling is applied to the second stage only, the overhead
of calculating @ is restricted to the sub-population size. If k
samples need to be selected, k subpopulations are randomly
selected, and a sample of size n is drawn from each of the
selected subpopulation.

The selection of a sample in two-stage sampling consists
of two steps. The first step is to select a subpopulation.
Once a subpopulation is selected, the selected sample from
this subpopulation is an unbiased estimator of the sub-
population mean. Therefore, to calculate the variance of



a two-stage sampling, one needs to consider the variance
introduced in both steps. The following theorem can be
applied to derive the variance of a two-stage estimator.

Theorem 3: [9, p.109] The variance of a random variable
X 1s the sum of the variance of the conditional expected
value and the expected value of the conditional variance.
Symbolically,

V(X) = Vi(E2(X]2)) + E1(V2(X]2)) (5)

where Ey stands for expectation of X over the space Z, F
stands for the conditional expectation of X for a given Z,
V1 stands for the variance of X over the space Z, and V5
stands for the conditional variance of X for a given Z.

Using the above theorem and conditioning on the sub-
populations, the sampling variance of a two-stage sample
can be written as the sum of 1) the variance of the subpopu-
lation means between all possible sub-populations (the first
term on the right hand side of (5)), and 2) the mean value
of the sampling variance within each subpopulation. The
former is referred to as the first stage variance, denoted as
S? and the latter as the second stage variance, denoted as
S2  where b’ stands for “between” subpopulations and "w’
stands for “within” subpopulations.

The difficulty in deriving the sampling variance in a two-
stage stratified sampling is that there is a dependency be-
tween the stratification and the subpopulation selection.
As a result, there is no closed-form expression for the sam-
pling variance in a two-stage stratified sampling. However,
the dependency decreases when M increases. When M is
large, the probability distribution within a subpopulation
will be very close to the original population. Therefore we
can assume the relative efficiency 7 of stratified sampling
over simple random sampling is nearly the same in all sub-
populations, and can thus approximate the sampling vari-
ance using 7 and the sampling variance in two-stage simple
random sampling, in which simple random sampling is em-
ployed at both stages.

The S? in two-stage simple random sampling is exactly
ﬁV(Y). If the sampling size is 1, the two-stage simple ran-
dom sampling is equivalent to a single-stage simple random
sampling with sample size 1, in which the sampling vari-
ance will be V(Y'). Therefore

S = (1= 3pV)

If the sample size 1s n and &k samples are drawn, the esti-
mator variance can be written as:

1— L

—HV(Y)

V(t) = —

= V() +

Therefore the estimator variance of a two-stage stratified
sampling can be approximated by:

1 1- L
Vtas) = m”y” nké”V(Y)
1 1
= (m—i—n—m])V(Y) for large M (6)

TABLE I
RESULTS OF 100,000 SIMULATION RUNS ON THE RANDOM SEQUENCE.

exp. simulated vec. pairs improvement of

rel. SRS STS STS vs. SRS

ckts eff. max avg max avg
C432 1.76 960 408 690 271 1.50
C880 2.06 720 305 450 201 1.51
C1355 1.57 360 155 270 135 1.15
C1908 1.32 540 226 450 196 1.15
C2670 1.67 420 164 300 139 1.18
C3540 2.14 600 244 450 171 1.43
Cb5315 1.57 360 150 270 131 1.15
C6288 1.49 360 160 300 141 1.13
C7552 3.53 900 367 450 180 2.04
apex6 4.92 930 422 420 170 2.48
dalu 4.71 990 421 420 173 2.42
des 6.27 480 203 240 114 1.78
110 2.02 570 225 390 165 1.36
18 7.32 1080 568 240 118 4.81
pair 3.82 450 180 240 119 1.51
t481 3.51 1050 468 360 146 3.20
avg 1.86

where 2st denotes the two-stage stratified sampling.

In the next subsection, we describe how to select M val-
ues to maximize the efficiency of the two-stage stratified
sampling techniques.

A. Selection of Subpopulation Size

A simple formulation of the sampling cost of the pro-
posed two-stage stratified sampling technique can be writ-
ten as :

C=asy+EMC) + kncpwm

where as, is the constant overhead cost, € and Cpypm is
the same as in (4). Compared with (6), one may notice that
V(yast) decreases with an increase in k, M, and n, while
the cost increases. To maximize the sampling efficiency
under a given cost constraint, we need to find the optimal
values for M| and n. If we apply the Lagrange multipliers
method, the optimal ratio of M and n 1s:

M nChum
n o 01

The ratio of the costs in the first stage (kM C1) and the
second stage (knCpym) is given by:

EMCy
EnChum o

nC1
prm

EMCy o~ 1 5
s EnCya = 35 There

fore the impact of M on the total cost is insignificant when

the ratio of C”C% is large. So is its impact on the estimator

If we assume n = 2, then % =90

variance.

VI. EXPERIMENTAL RESULTS

The proposed techniques have been implemented in C
and tested on ISCAS85 benchmarks and a set of mid-size
to large-size circuits from MCNC91 benchmarks. We re-
port results of two experiments. In the first experiment,
we compare the efficiency of the stratified and simple ran-
dom sampling on a random and a biased sequence. In the
second experiment, we compare the efficiency of two-stage
stratified sampling with the technique proposed in [5] for
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TABLE II
RESULTS OF 100,000 SIMULATION RUNS ON THE BIASED SEQUENCE.

exp. simulated vec. pairs improvement of

rel. SRS STS STS vs. SRS

ckts eff. max avg max avg
C432 4.9 4530 2765 1770 1169 2.3
C880 22.2 4650 2955 540 221 13.2
C1355 16.2 2580 1293 450 177 7.3
C1908 7.6 2370 1241 570 252 4.9
C2670 16.0 3900 2328 570 234 10.0
C3540 23.1 3450 1989 450 182 10.9
Cb5315 39.9 3690 2094 330 152 13.8
C6288 23.8 8730 6141 780 333 18.4
C7552 7.7 4140 2418 1230 755 3.2
apex6 20.9 4320 2554 540 211 12.1
dalu 12.0 4290 2467 720 287 8.6
des 19.1 3240 1648 450 182 9.0
110 18.4 3930 2420 540 220 11.0
18 25.3 4710 2932 510 206 14.2
pair 51.0 4080 2441 330 147 16.6
t481 38.2 3630 2103 360 153 13.7
avg 10.5

TABLE III
ERROR VIOLATION PERCENTAGES.

error violation (> ¢%) percentage

biased seq. random seq.
ckts SRS STS SRS STS
>5% >20% >5% >20% >5% >5%
C432 1.46 0.07 0.95 0 1.55 0.75
C880 1.35 0.09 0.39 0 1.05 0.22
C1355 1.96 0.02 0.12 0 0.02 0.00
C1908 2.02 0.01 0.64 0 0.44 0.23
C2670 1.48 0.06 0.50 0 0.03 0.01
C3540 1.70 0.05 0.14 0 0.58 0.07
Cb5315 2.70 0.07 0.06 0 0.06 0.01
C6288 1.03 0.10 0.86 0 0.03 0.01
C7552 2.16 0.06 0.85 0 1.89 0.18
apex6 1.48 0.07 0.31 0 1.73 0.07
dalu 1.41 0.05 0.90 0 1.80 0.08
des 1.81 0.04 0.13 0 0.25 0.01
110 1.51 0.06 0.37 0 0.45 0.07
18 1.36 0.08 0.30 0 2.05 0.01
pair 1.45 0.07 0.01 0 0.13 0.01
t481 1.68 0.04 0.03 0 1.94 0.01
TABLE IV
REsuULTS OF MONTE CARLO SIMULATION VS. TWO-STAGE STRATIFIED
SAMPLING.
simulated error violation
vec. palrs percentage
Markov two-stage Markov — two-stage
ctks based STS based STS improve-
max avg max  avg 5% 5% ment
C432 1890 1083 1020 467 2.3 0.9 2.3
C880 1230 726 540 193 1.8 0.3 3.8
C1355 600 246 330 171 0.3 0.3 1.4
C1908 1510 729 660 307 2.6 0.7 2.4

C2670 510 254 210 126 0.7 0.0 2.0

C3540 1230 694 480 257 2.1 0.4 2.7
C5315 540 256 270 152 1.1 0.0 1.7
C6288 1230 442 420 195 2.0 0.4 2.3
C7552 1320 558 270 144 2.3 0.0 3.9
apex6 1950 995 240 138 2.2 0.1 7.2
dalu 2100 1106 450 192 1.9 0.1 5.7
des 540 261 180 111 0.6 0.1 2.3
i10 1110 546 540 273 2.1 0.8 2.0

i8 2730 1824 510 204 1.8 0.1 8.9
pair 690 305 240 132 1.0 0.1 2.3
t481 2670 1569 660 248 1.8 0.9 6.3
avg 3.6

infinite-size population (i.e., only the signal and transition
probabilities at circuit inputs are given). The results are
presented as follows.

A. Fzxperiment [

We performed this experiment on two type of sequences,
each of length 4000. The first sequence (random sequence)
is generated randomly by assuming 0.5 signal and tran-
sition probabilities for every circuit input. The second
sequence (biased sequence) is a non-random sequence ob-
tained from industry. The circuits were mapped to a library
with NAND, NOR, inverter and XOR gates. Since per-
forming simulation on PowerMill is very time-consuming,
we simulate whole sequence once to extract the power con-
sumption for every pair of consecutive vectors. The zero
delay power estimates are calculated using a bit-parallel al-
gorithm. The average run time of this algorithm on a Sun
SS-20 is bM gate-vector/sec. Figure 2 shows typical power
histograms for both sequences.

The stratification scheme is as described in Section IV-
B. The sample size allocation 1s equal-size allocation. n is
set to 30 for both sampling methods. The results are sum-



marized in Tables I, IT and ITI. We first evaluate the ‘theo-
retical’ (expected) efficiency improvement based on Equa-
tions (1) and (3) when K = 10, as shown in the “exp.
rel. eff.” columns. After performing more experiments we
found that the improvement on relative efficiency is not
very significant when K is increased beyond 10. Therefore,
we used K = 10 in the simulation runs. We performed
100,000 simulation runs with a confidence level of 0.99 and
an error level of 5% for each circuit. The maximum and
average numbers of required vector pairs that satisfy Equa-
tion (2) are reported.

We also show the projected run time improvement over
PowerMill based on the ratio of the average number of sim-
ulated vectors and it 1s listed the last column of Table 1
and II.

We observe two different error violation characteristics.
One for violating the specified error level. The other one is
intentionally set to a higher level to detect the long tails in
the sample distribution. We set this level to be 20% and
the error violation of this level is referred to as high-error
violation. The percentages of error violation are summa-
rized in Table TII. Tt shows that the high-error violation
does not exist for this set of circuits when using stratified
random sampling (although, for biased sequence, simple
random sampling results show high-error violation). This
demonstrates that stratified sampling can handle difficult
population distributions. As expected, there is no high-
error violation observed in the random sequence.

The efficiency improvement of stratified sampling for
the random sequence is much smaller than that for bi-
ased sequence. This is because the transition probability
of each circuit input was assumed to be 0.5; From the law
of large numbers, the distribution of the number of input
bit changes has a high peak around a value equal to half
of the circuit input count. Since the number of input bit
changes has a direct impact on circuit power consumption,
the power distribution is already very homogeneous in this
case. Stratification is less effective in homogeneous popu-
lations.

B. Ezperiment I1

In this experiment, we compare the efficiency of the pro-
posed two-stage stratified sampling technique to the tech-
nique proposed in [5], which is based on a Markov process
model. Since this experiment cannot be performed in a
reasonable time with PowerMill, we use a real-delay gate-
level power estimator instead. The signal and transition
probabilities at the circuit inputs was assumed to be 0.5
and 0.25, respectively. The subpopulation size and the
sample size for the two-stage sampling approach was set
to 4,000 and 30, respectively. In the first stage of the two-
stage sampling approach, the random number generator
is run twice for each circuit input to generate the vector
sequence for each unit in the selected subpopulation. The
first run determines the initial input value while the second
run determines if the input changes. In the Markov-based
approach, only the initial value of the first unit in a sample
i1s randomly generated, the initial values of the remaining

units are assumed to follow the previous unit, as described
by the Markov process.

We performed 1,000 simulation runs with 0.99 confidence
and 5% error levels. Results are summarized in Table V.
There is no high-error violation observed in either tech-
nique. The proposed two-stage stratified sampling tech-
nique is more than three times as efficient as the Markov-
based technique.

VII. CONCLUSION

We have presented new statistical sampling techniques
for circuit-level power estimation. Compared with existing
statistical power estimation techniques, not only the effi-
ciency of sampling is improved, but also difficult population
distributions can be handled more effectively. Although
we have used zero delay power estimates for stratification,
other predictors can be used, depending on the trade-off be-
tween computation overhead and efficiency improvement.
The proposed two-stage stratified sampling technique can
be easily extended to multi-stage sampling. However, the
predictors used at different stages should be as uncorrelated
as possible.
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