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I. lOTRDDUCriON AND REVIEW OF LITERATURE 

Most of the theory of sampling from finite populations pertains to 

point estimation of desired parameters such as the finite population mean 

and variance. Researchers and practitioners have generally been reluctant 

to make any assunptions about the distributions of the relevant random 

variables. This may be due to the very wide variety of finite populations 

met in practice, and the inherent lack of "smoothness" of many finite 

populations. Thus, the literature contains very little discussion about 

the foimaticn of confidence intervals, tests of significance, etc., vdien 

sampling is from a finite population. Most of this (limited) literature 

pertains to simple random sampling and the use of normal approximations 

for the sampling distributions of the estimators (and, often, approxima

tion of the distribution of a test statistic by a t-distribution). (For 

a general treatment, see Cochran [1963, Sections 2.7 and 2.13].) In nc 

case will the confidence coefficient associated with such (approximate) 

confidence intervals be kncwn exactly, and the validity of the normal 

approximations may be questioned (at least) for many of the extremely 

skewed finite populations encountered in practice--especially if sample 

sizes are small. When one ençloys a sample design more complex than 

simple random sampling, the validity of using normal (and "t") approxima

tions for the sampling distributions of the estimators has received even 

less attention than for the case of simple random sançling. This is well 

illustrated by Cochran [1963, Section 5.4] in his discussion about confi

dence intervals for the finite population mean when stratified simple 
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randan sampling is used, and his lack of such discussion for sample 

designs such as single- and multi-stage cluster sançling. 

It is clear from the considerations noted above that even for simple 

random sançling, the development of confidence intervals having known 

confidence coefficients requires an alternative approach. For the more 

complex sample designs used in practice, theoretical investigations of 

the use of noimal [and "t") approximations appear to be quite formidable, 

and the validity of approximate confidence coefficients would, again, 

depend heavily on the type of finite population being sampled. Further, 

the validity of these approximations may depend on more assumptions (e.g., 

the random variable Y has a normal distribution in each stratum) than 

one would ordinarily wish to make. 

In this thesis we suggest confidence interval procedures for any 

specified quanti le having the propert>' that one may determine the exact 

associated confidence coefficient for any finite population. Although 

quanti les (e.g., the finite population median) are of great interest to 

many practitioners (because, for example, of the highly skewed distribu

tions encountered in applications), estimation of such parameters has not 

received much attention in the sample survey literature. Perhaps this is 

due to the difficulty of determining the properties of appropriate point 

estimators when sampling is from a finite population. However, it will be 

shown that if either simple random or stratified simple random sampling is 

employed, it is feasible to determine a confidence interval for any 

quantile with known confidence coefficient. It is apparent that the 

procedures to be described can be extended to other sample designs. These 

confidence interval methods are very simple to apply since the içper and 
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Icwer confidence limits are either given by a pair of order statistics 

or are derived frcm the sample cumulative distribution function (C.D.F.). 

Given the sample design and confidence interval procedure, it is straight

forward to tabulate, using an electronic computer, the possible confi

dence intervals and associated confidence coefficients. Given this tabu

lation, the simplicity of the confidence interval procedure should 

make its use attractive in places where sophisticated personnel and 

machines are not available, and for applications where preliminary esti

mates of specified parameters are required very quickly. For two of the 

confidence interval procedures, a ccmputer program to evaluate the exact 

confidence coefficients has been written for use of the UNIVAC 1108 

canputer at the University of Wisconsin Computing Center or the 1^1 1130 

computer at Cornell College. 

Wilks [1962, Section 11.4] has suggested a confidence interval 

procedure if simple randan sampling from a finite population is used. 

c cfvno 9rmy> 1 n-F-t r* o ̂  i rm o-P çnT»o 

generalizations, including joint confidence intervals and expected lengths 

of confidence intervals are discussed in Chapter II. In Chapter III, 

stratified sinçle random sampling is considered, for the case of L = 2 

strata and the three confidence interval procedures are introduced. In 

each case an expression for the exact confidence coefficient is derived, 

and (v^iere appropriate) an approximation is suggested. Brief tables are 

included, and the three techniques are compared, both theoretically and 

by Monte Carlo methods. 
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A parallel development for two of the methods is given in Chapter IV 

for L = 3 strata; these results suggest hew extensions to four or more 

strata can be made. When L strata are foimed by utilizing the known 

distribution of a concomitant variable, X [;Aich is closely related to 

the variable of interest, Y), considering only two or three strata may 

not be restrictive. Given the stratification and a general knowledge of 

the relation between X and Y, it may be reasonable to assert, a priori, 

that the [t/N)-th quanti le of the finite population (e.g., the finite 

population median) is a variate value fran one of only two or three of the 

L strata. Then, the methods described in Chapters III and IV may be 

used. 

In Chapter V, several extensions and applications of the preceding 

diapters are explored. These include tolerance regions, the "best" 

finite population problem, and an extension of the previous work to 

cluster sançling. 

In order to get the main ideas contained in this thesis ; the reader 

may first wish to examine Sections A through C of Chapter II, and then 

turn to Sections A through D of Chapter III, to follow the three proposed 

methods. 

The problem we are dealing with was given by Thompson [1936, pp. 122-

128], in which he gives an equation for the probability of coverage of the 

median of a finite population by two selected symmetric order statistics 

of a single random sample of size n drawn from the population. 

Savur [1937, pp. 564-576] derives what he calls a "new test of sig

nificance", using the median. In his paper he first gives justification 
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for considering the median, he then suggests the symbol "T for it, and 

finally gives symmetric confidence intervals for the median and, from 

these, gets his tests of significance. He restricts his work strictly 

to a continuous C.D.F. 

Nair [1940, pp. 551-558] takes the work of Thompson and Savur, and 

tabulates, for a continuous distribution, the probability that given 

symmetric order statistics fron the sample will cover the median. He 

assîmes an infinite population, and also points out a slight discrepancy 

in Savur's work. 

Wilks [1962, p. 333] gives a brief description of confidence inter

vals for quantiles in finite populations, again, in the manner of 

Thcnçson, but generalizing to any pair of order statistics. We illustrate 

the work of Thompson and Wilks in Chapter II. 

McCarthy [1965, pp. 772-783] discusses non-parametric methods for 

confidence intervals fron stratified populations. In his work he derives 

a Iwer bound for the confidence coefficient, if proportional allocation is 

used. He assîmes a cmtinuous C.D.F. in his work. We consider his 

results in Chapter III, Section B.7. 

Woodruff [1952, pp. 635-646] proposes a method using the sançle 

C.D.F. to obtain a confidence interval for quantiles, utilizing general 

sampling plans. He also assîmes a continuous C.D.F., and gives approxi

mate confidence coefficients for his intervals. We describe his work in 

more detail in Chapter III, Section C.4. 

Finally, it may be noted that Loynes [1966, pp. 497-512] investi

gates various aspects of point estimation of population quantiles when 
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random and stratified randan sampling are aiçloyed. For random sampling, 

distribution-free estimation procedures are obtained, and the admissible 

estimators are identified. Throughout, the population is assmed to be 

infinite. 
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II. THE NŒ-STRATIFIED SITUATION 

In this chapter we investigate confidence intervals for the t-th 

ordered value in a finite population, when sinçle randan sampling is 

used. 

A. Definitions and Statement of Problem 

Let be a population of N elements, whose elements have 

distinct Y-values associated with them. These Y-values can be singly 

ordered as 

^Cl) ̂  ̂ C2) ̂  < ^CN) • (2.1) 

Let t be a fixed integer in the range 1 _< t ̂  N. We may then regard 

Y^^^ as the (t/N]-th quanti le of the population li^. In general, we 

define the X-th quanti le of our population to be Y^^^^ if Nx is an 

integer, and to be ^^[^xl+l) other&fise, vAiere [•] denotes the greatest 

integer function. 

A simple randan sançle of size n is drawn without replacement 

fran We denote the values associated with the sample elements, 

after ordering, by 

y(l) < ̂ (2) < < y(n) ' (2.2) 

We wish to consider two-sided confidence intervals for Y^^^ of the 

foiTT. tyQ^)> y(r)^ ' 1 _< k < r _< n and k £ t. We first turn our 
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attention to the ccnputation of the confidence coefficients of these 

observable randan intervals: 

P(yck) -y(r)) ' (2.3) 

B. Calculation of the Confidence Coefficient 

In conputing the confidence coefficient, we first note that 

p(ycic) - pty(r) • (2.4) 

This follows frcsn the facts that 

fy® i^(t) 1 >'(%)) u(yM < 

' <y(k) i^(t) u tycr) (2.5) 

and the latter events are disjoint. 

Therefore, to evaluate [2.4], it is sufficient to arrive at an 

expression for _< 

1. The first approach 

Our first approach uses a teclmique suggested in Hogg and. Craig 

[ 1970. p. 3521. If we define the e\'ent 

{Aj^} = {exactly i sample elements have values less than 

or equal to 

we then have 
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{At least k sample elements have values less than or equal to Y} 

= U {A,} . (2.6) 
i=k ^ 

Hence, 

min[t,n] 

• 113(::# -

By virtue of the definition 

= 0 if k < 0 or k > N (2.8) 

we can eliminate the maximum and minimun expressions in the limits of the 

summation. 

Equations (2.4) and (2.7) lead to the following theorem. 

Theorem 2.1: Using the notation in Section A, 

Hyfk, 

• [(ÏÎ)(Ï;) • S fâesj/fâ • 

Proof: Using (2.4) and (2.7) we have 

' I (i) (n-i) - X ("1 fn-I') 

' 2 (i) (::i) ' ,1 (i) ("i) - • 

(2.9) 
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Using the readily derivable combinatorial identity 

J, 0 (::) • L (")(";•) • PDM 

on the last two terms yields the desired result. 

An alternative method of looking at Theorem 2.1 is as follows: 

Pt/fk) = T P«l' " • (Z.ll) 

Writing the above expressions in their hypergeanetric forms yields the 

conclusion. 

2. The second approach 

Our second approach to the problem of evaluating P{yQ^^ _< } is 

suggested by Wilks [1962, p. 333]. The event {y^^^ _< } is written 

as the union of the disjoint events 

<y(k) ° - 'frt-l)' 

(2.12) 
We then have 

i=max[in-k^t-N} ><-1 y W 

This yields the confidence coefficient 

P(y(k) 1 y(r)} 
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• [t  ("')(-') • fsirs")]/» • <"« 

The equality of (2.9) and (2.14) can be demonstrated algebraically. 

3. One-sided confidence intervals 

It may, on occasion, be infractical to utilize a two-sided confi

dence interval. This would be especially true if we were attempting to 

estimate a very low or high population quanti le. In such circonstances, 

one-sided intervals of the form (-«, y^^^] or [y^^^, =) could be much 

more practical. 

In the case of forming a one-sided confidence interval for 

t small, t > 1, the confidence coefficient associated with (-«, y^^^] 

is given by 

= 1 -

' i - fiy(r) 

Similarly, for t relatively large, 

H/fk) 1 < -) - (2.16) 

C. Symmetric Confidence Intervals for the Median 

As a special case of the above derivations, we consider confidence 

intervals of the form [y^^^, tor the median of an odd-sized 

population (N = 2m - 1) with distinct variate values. Such confidence 
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intervals are called symmetric and were studied by Hiompson [l9Jô, 

p. 122]. Our reason for looking at an odd-sized population is that the 

median is well-defined, since = Y^^y 

Theorem 2.2; If N is odd, and if m = [N + l)/2, 

- y(n-k+l)) ' 2 (i)(n-iV(n) " ^ 

Proof: From Theorem 2.1, we have 

(n) -^Cm} -^(n-k+1]^ = (n-k)(k-l) " (i)^-i) 

Applying identity (2.10), this becomes 

(' t~r "••V* a -î ^ oxr a ^ 

% Ci'XA) • 1 

and the result follows directly. 

Thompson [1936, pp. 126-128] investigates the case of using symmetric 

confidence intervals for the median. He defines a function 

Then he denonstrates that 
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1 Y} = ^Ck-l,n-k,t-k, k+N-t-n-1) , (2.19) 

which reduces to equation (2.7), and 

l^(in) -^(n-k+l)^ * 1 " 2^Ck-l,n-k,m-k,k+N-m-n-l) . (2.20) 

This latter tern is in error; the correct result is the negative of 

( 2 . 2 0 ) .  

For conçleteness we consider the case where our population is of 

size N = 2m. In this situation, we define = ^(m) ̂  ̂ (m+P^'^^"' 

hence Since "median" is not integral, 

Theorem 2.2 does not apply. 

However, 

^^^(k) — \ied — ̂ (n-k+1)^ 

" (k) - \ed^ " (n-k+1) ^ ̂ med^ 

" ̂^^(k) -^(m)^ • P"y(n-k+l) -^(m)^ 

• [ j, et.) • .X. 8(.# 

• % (;)(n"i)/(:) • « »: 

D. Non-distinct Values in the Population 

We now examine the situation where the elements in our finite popu

lation do not necessarily have distinct Y-values. 
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Theorem 2.3: Let be defined as in Section A of this chapter. For 

fixed n, k, r, and t, we denote P{y— ̂(t) — ̂ (r)^* ^ given in 

Theorem 2.1, by 1 - . 

Let be a population of size N in which sane of the associated 

Y*-values may be equal. Order the population values as 

^Cl) -^C2) - ' " - • 

A simple randan sarple of size n is drawn without replacement from 

n^* and ordered as 

^CD - ••• -^(n)* • 

Then 

• (2.22) 
r 

* * 
Proof: Let P {•} indicate probabilities associated with , and 

\ 1 4 "hi AC "?.r4 TT Wci 

We first note that, if then 
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* * 
Similarly, if ' 

' Yet)"' = PO^Crj ' Yft)» ' 

Y(t-l)* ' ^Ct)*' 

p (y(r) < Y(t) ) < p(y(T) < Y,.;)} -

Therefore, 

* * * * 
p (ŷ  i y M > 

* * * * * * 

' P (yck) > - F fy(r) < Y(t) > 

- -Y(t)' • P'^Cr) " "'(t)' 

' -\t) 

= 1 - agir"'' • 

E. Systematic Sançling 

Since systematic sampling has certain practical advantages (Cochran 

[1963, Chapter 8] and Sedransk [1969, p. 39]), we show in this section 

that the confidence coefficient associated with P{y — "^(t) — ̂ (r)^ 

is the same if the sample is a simple randan sample frcm n^, or if the 

sample is a systematic sanple, where the population is in "randan" order 

(Sedransk [1969, p. 40]). 
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Theorem 2.4: Using the notation of this chapter. 

= Pcvç{y 
'sYS^^Ck) -^(t) -^Cr)^ 

(2.23) 

where, by } we mean the probability v^en simple random sampling 

is enployed, and by Pgyg{ •} we mean the sample is drawn by systematic 

sampling from a population in "random" order. 

Proof: It is sufficient to prove that a particular sample is equally 

likely to be drawn under either sampling design. 

Let (e- , e. ,—, e. ) = e be any n specified elements, for 
H ^2 \  ~ 

i- e (1, 2,..., N), i. ̂  i, . Under single randan sampling, 
J J -K 

since P{e_l starting point of sampling is i} = (N-n) i nl/N! by counting. 

For systematic sampling, 

k 
P{e_} = I P{e_l starting point of sample is i} P{i} 

i=l 

k 

F. Sampling fron a Continuous C.D.F. 

We now consider the situation where our sample is drawn from a 

population with continuous oinulative disxribution function F(x). 
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More specifically, let 1 ••• — ̂ (n) ^^epreseat the 

values of a randan sample of size n from a population with continuous 

C.D.F. F(x). It is well known (IValsh [1962b, pp. 137-138], Wilks [1962, 

pp. 329-331], Thonpson [1936, pp. 122-128], Savur [1937, pp. 564-576], 

Nair [1940, pp. 551-558], David [1970, p. 14]) that 

" Ip(k,n-k+13 - Ip(r,n-r+l) 

= T (i) Cl-Pf" (2.24) 

where X denotes the p-th quanti le of the population, defined as 

f j f(x) dx = p, and I^[k, n-k+1) is Karl Pearson's Incanplete Beta 

function 

y r(v^+ v^) v^-1 Vg-l 
lyfvi.v-p = J ) X (1-x) dx 0 < y < 1 . (2.25) 

0 -

David [1970, p. 14j gives an approximation for the symmetric con

fidence interval for the median with confidence coefficient 1 - a . 

His technique, using the normal approximation to the binomial, is to 

count off 1/2 \/n~ u^ observations frcm the sample median and round

ing to the nearest integer, where u^ is the upper a/2 significance 

point of the standard normal distribution. 

David also cites other work related to confidence intervals when 

a continuous C.D.F. is assuned. 
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G. Sançling frcm a Discrete C.D.F. 

In the case where our distribution function is discrete, we have 

the following. 

Let ^ ̂(2) — ^(n) denote an ordered random sample of 

size n on a variate X Wiich may take on the values 0, 1, 2,... 

with probabilities p(0), pCl), p(2),..,, respectively, where p(a) _> 0 

and ^p(a) = 1. When X takes on only a finite nimber of values (say 
a 

0, 1,..., M) let p(M+ct) = 0, a = 1, 2,... . 
[X] 

Let P(x) = I p(ct) be the distribution function of X. Let p 
a=0 

be a fixed real number such that 0 < p < 1. Define g to be that 

integer such that 

P(6 - 1) < p ̂  P(S) . 

Now, 

= P{x^^ 1 3} - P{x. . < g} 

= < 6} - P{X(r) < g-1} . 

Khatri [1963, p. 168] gives 

P{X(^^ < 6} = k I ^ = Ip(g)Ck,n-k+l) . 

Therefore, 

1 " Ip(-g) G^,n-k+l) - Ip( g _ i)[r,n-r+l) . (2.26) 
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This teim is greater than or equal to 

Ip(k,n-k+l) - Ip(r,n-r+l) , 

the corresponding result for the continuous case. 

Furtheimore, 

Hxc,^) < Xp < 

= P{X^^ < 8-1} - < 6} 

= Ip(;g-l)Ck,n-k+l) - Iprg)Cr,n-r+l) 

± IpCk,n-k+l) - Ip(r,n-r^-l) . (2.27) 

This result, with a different proof, is given in a theorem by 

Scheffe and Tukey [1945, pp. 187-192] and is also noted by David [1970, 

p. 14] and Noether [1967, p. 39]. 

Finally, we note by Khatri [1963, p. 170], 

r-l 00 or M-1 , \ _ 
= I I • [PW] [1 - , (2.28) 
p«k x=0 

a result analogous to the Xp approach of K. Pearson [1901, p. 391]. 

H. Tables and Charts for P{yQ^^ — ̂ (t) — ̂ (r)^ 

No direct tabulations for Pfy^^^ - ̂(t) -^(r)^ with respect to 

simple randan sançling fran are, in general, available. 
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Hcvrever, for the continuous case, Nair [1940, pp. 556-557] tabulates 

the smallest symmetric confidence intervals for the median, where by 

smallest he means [(n - k + 1) - k] is minimized. To be precise, Nair 

tabulates, for samples of size n = 6 (1) 81, k and (n - k + 1) such 

that k is maximized, subject to 

-^(t] 1 1 - a , 

where 1 - a takes on the values .95 and .99. 

Chung and DeLury [1950], in their book of charts, are concerned 

with the following problem: Given x defectives in a sample of size n 

from n^, what are the confidence intervals for k, the nunber of 

defectives in They use population sizes of N = 500, 2500, and 

10,000, and confidence coefficients of (1 - a) = .90, .95, and .99. 

Their charts are based on "equal tail" probabilities, and d-je to the 

nature of the charts, and the large population sizes, only approximate 

CUiOinrV:^XO WCUX L/C VCLi. Xii CLU.U^ C X i ̂  CUi Cil Vi illClLiC JUl WiC O C X UV^ L.XUli 

of the charts, as explained in an errata sheet, makes the charts more 

difficult to use. However, for the limited cases N = 500, 2500, and 

10,000, it is possible to utilize the Chung and DeLury charts to find 

k and r such that 

-^(t) 1 - a , 

where 1 - a = .90, .95, and .99. 

In view of the absence of published tables, in Tables 1, 2, and 3 

we give a limited tabulation of the confidence coefficients 
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P{yQ^^ — ̂ (r)^ for populations of sizes 39, 99, and 199, samples 

of size 10, and two values of t, corresponding to approximately the 

25-th percentile and the median. The tables were coiçuted using the 

UNIVAC 1108 computer at the Uhiversity of Wisconsin Computer Center. 

Table 4 tabulates the confidence coefficients under the assimptions 

of a continuous population being sampled. For aid in comparison with 

the first three tables, the sample size chosen was 10 and the 25-th 

and 50-th percentiles were picked. A more complete table for the median 

of a continuous population can be found in MacKinnon [1964, pp. 937-947]. 

It is of interest to compare Tables 1-3. We see that the confidence 

coefficient decreases as N increases for the usual type of interval--

approximately symmetrical for the median, skewed to the left for the 

25-th percentile. 

Coiparing these tables with Table 4, we note that a similar comment 

holds and that, for the usual types of intervals, the continuous C.D.F. 

gives a Ic.cer bound to the confidence coefficient, and that it estimates 

the confidence coefficient quite well in the case of N = 199. In 

general, for n/N small, the continuous C.D.F. would yield a reasonable 

approximation for the confidence coefficients, and has the advantage 

in a slight ease of tabulation, havdng only to tabulate for k, r, n, 

and t. 



Table 1. 1 N - 39, n - 10 

r 
k t 1 2 3 4 5 6 7 8 9 10 

1 10 
20 

.0158 

.0001 
.2183 
.0052 

.5497 

.0390 
.8187 
.1572 

.9364 

.3935 
.9646 
.6771 

.9683 

.8839 
.9685 
.9742 

.9685 

.9968 
.9685 
.9997 

2 10 
20 

.0608 

.0023 
.3922 
.0361 

.6612 

.1543 
.7789 
. 3906 

.8071 

.6742 
.8107 
.8810 

.8110 

.9713 
.8110 
.9939 

.8110 

.9968 

3 10 
20 

.0884 

.0136 
.3574 
.1317 

.4751 

.3680 
.5033 
.6516 

.5069 

.8584 
.5071 
.9487 

.5072 

.9713 
.5072 
.9742 

4 10 
20 

.0628 

.0413 
.1804 
.2777 

.2087 

.5612 
.2123 
.7680 

.2125 

.8584 
.2125 
.8810 

.2125 

.8839 

5 10 
20 

.0235 

.0709 
.0518 
.3545 

.0554 

.5612 
.0556 
.6516 

.0556 

.6742 
.0556 
.6771 

6 10 
20 

.0047 

.0709 
.0083 
.2777 

.0086 

.3680 
.0086 
.3906 

.0086 

.3935 

7 10 
20 

.0005 

.0414 
.0007 
.1317 

.0007 

.1543 
.0007 
.1572 

8 10 
20 

.0000 

.0136 
.0000 
.0361 

.0000 

.0390 

9 10 
20 

.0000 .0000 

.0023 .0052 



Table 2. P{y,%. < N = 99, n = 10 

k t 1 2 3 4 
r 
5 6 7 8 9 10 

1 25 
50 

.0071 

.0001 
.2006 
.0080 

.4995 

.0485 
.7573 
.1667 

.8947 

.3828 
.9417 
.6421 

.9522 

.8488 
.9537 
.9569 

.9539 

.9923 
.9539 
.9989 

2 25 
50 

.0232 

.0014 
.3221 
.0419 

.5800 

.1601 
.7173 
.3762 

.7644 

.6355 
.7749 
.8422 

.7764 

.9503 
.7765 
.9858 

.7765 

.9924 

3 25 
50 

.0319 

.0065 
.2897 
.1246 

.4271 

.3407 
.4742 
.6001 

.4847 

.8068 
.4862 
.9148 

.4863 

.9503 
.4863 
.9569 

4 25 
50 

.0241 

.0165 
.1614 
.2326 

.2085 

.4920 
.2190 
.6987 

.2205 

.8068 
.2206 
.8422 

.2206 

.8488 

5 25 
50 

.0110 

.0259 
.0581 
.2853 

. 0686 

.4920 
.0701 
.6001 

.0702 

.6355 
.0702 
.6421 

6 25 
50 

.0031 

.0259 
.0136 
.2326 

.0151 

.3407 
.0153 
.3762 

.0153 

.3828 

7 25 
50 

.0006 

.0165 
.0021 
.1246 

.0022 

.1601 
.0022 
.1667 

8 25 
50 

.0000 

.0065 
.0002 
.0419 

.0002 

.0485 

9 25 
50 

.0000 

.0014 
.0000 
.0080 



Table 3. 1'^(t) ^ " 199, n = 10 

k t 1 2 3 4 
r 
5 6 7 8 9 10 

1 50 
100 

.0037 

.0000 
.1942 
.0089 

.4841 

.0512 
.7381 
.1690 

.8802 

.3793 
.9331 
.6318 

.9463 

.8378 
.9486 
.9507 

.9488 

.9904 
.9488 
.9985 

2 50 
100 

.0114 

.0008 
.3013 
.0431 

.5554 

.1608 
.6974 
.3712 

.7503 

.6237 
.7636 
.8297 

.7658 

.9426 
.7660 
.9823 

.7660 

.9904 

3 50 
100 

.0155 

.0034 
.2695 
.1211 

.4115 

.3315 
.4644 
.5840 

.4777 

.7900 
.4799 
.9028 

.4802 

.9426 
.4802 
.9507 

4 50 
100 

.0119 

.0082 
.1539 
.2186 

.2068 

.4711 
.2201 
.6771 

.2223 

.7900 
.2225 
.8297 

.2225 

.8378 

5 50 
100 

.0057 

.0126 
.0586 
.2651 

.0719 

.4711 
.0741 
.5840 

.0743 

.6237 
.0743 
.6318 

6 50 
100 

.0018 

.0126 
.0150 
.2186 

.0173 

.3315 
.0175 
.3712 

.0175 

.3793 

7 50 
100 

.0004 

.0082 
.0026 
.1211 

.0028 

.1609 
.0028 
.1690 

8 50 
100 

.0000 

.0034 
.0003 
.0431 

.0003 

.0512 

9 50 
100 

.0000 .0000 
.0008 .0089 



Tabic 4. P{y0^^ ^ t Continuous C.D.F., n = 10 

r 
k t(%) 1 2 3 4 5 6 7 8 9 10 

1 25 
50 

. 1877 

.0098 
. 4693 
.0537 

.7196 

.1709 
. 8656 
.3760 

.9240 

.6221 
.9402 
.8271 

.9433 

.9443 
.9437 
.9883 

.9437 

.9980 

2 25 
50 

.2816 

.0439 
.5318 
.1611 

.6778 

.3662 
.7362 
.6123 

.7525 

.8174 
.7556 
.9346 

.7559 

.9785 
.7560 
.9883 

3 25 
50 

.2503 

.1172 
.3963 
.3223 

.4547 

.5684 
.4709 
.7734 

.4740 

.8906 
.4744 
.9346 

.4744 

.9443 

4 25 
50 

. 1460 

.2051 
.2044 
.4512 

.2206 

.6562 
.2237 
.7734 

.2241 

.8174 
.2241 
.8271 

5 25 
50 

.0584 

.2461 
.0746 
.4512 

.0777 

.5684 
.0781 
.6123 

.0781 

.6221 

6 25 
50 

.0162 

.2051 
.0193 
.3223 

.0197 

.3662 
.0197 
.3760 

7 25 
50 

.0031 

.1172 
.0035 
.1611 

.0035 

.1709 

8 25 
50 

.0004 

.0439 
.0004 
.0537 

9 25 
50 

.0000 
.0098 
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I. Best Confidence Intervals 

Up to this point we have been interested in the confidence coeffi

cient }, where k and r have been predetermined. 

We may look at the t rob Ian fran a different standpoint: find those 

subscripts {k,r} which satisfy 

1 ̂(t) -^(r)^-^ " ° (2.29) 

^^ere (1 - a) has been fixed. This is Nair's [1940, pp. 551-558] 

approach which we discussed earlier. This leads to the difficulty that 

there may be many pairs (k,r) satisfying (2.29), and the problem then 

becomes one of picking the "best" of these pairs. 

We will adopt the following criterion for the "best" confidence 

interval. 

Definition: The best confidence interval of the form [y » y ] of 

level least (1 - a) is that interval which satisfies (2.29) and has 

shortest expected length. If there are ss\*sral inte-v-als which have 

equal shortest expected length, choose the interval with largest confi

dence coefficient. 

Since, in every case for k < r, 

E(yQ^O ^ E(yÎ (2.30) 

we have the result that, if there are two confidence intervals, I^ and 

l2> vjhich satisfy (2.29), and if I^ Cl ̂ 2' ^^^n the expected length of 

I^ is less than the expected length of I^. By our definition of best 
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confidence interval, we can eliminate frcri further consideration. 

In the remainder of our work in this section, we will assvme such "initial 

eliminations" have been performed. 

Pratt [1961, p. 549] suggests another "natural measure" in place of 

expected length for testing the desirability of a confidence interval 

procedure. He suggests "a natural measure of the extent to which the 

confidence interval procedure includes a particular false value is the 

probability of including that particular value. To "a^-erage" this over 

all the values, one might simply integrate it over all the false values. 

This gives an apparently different measure of the "average extent" of the 

false values Jicluded". However, Pratt goes on to prove that the two 

measures are equal. Hence we will concern ourselves only with expected 

length. 

In order to find the best confidence interval, we must find the 

expected lengths of the confidence intervals. To do this, we must make 

zn assunpticr.. about the Y-value s in our population. 

Let F(x;0) be a continuous cumulative distribution function. We 

can consider to be a randan sairple of size X drawn frcsn an. infinite 

"siç>er-population" with distribution function F(x;e). QVilks [1962, 

p. 195]). Note that will have elements with distinct Y-values with 

probability one. This technique of using a "siçer-population" is suggested 

in Cochran [1963, pp. 214-216] in deriving results in systematic sampling. 

As a result of the assunption, we cannot prove results which apply to any 

single finite population--that is, to any specific values Y^, Y2,..., Y^, 
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--but our results apply to the average of all finite populations which 

can be drawn from the infinite population. 

Using this assunption about the "super-population", we are able to 

bypass >4ien working with Efy^^^ - y^^) since the distribution of 

^^(1)'"''* ^» the order statistics of a randan sançle of size n 

drawn fron a population with C.D.F. F(x*,e), is the same as the distribu

tion of z, the order statistics of a simple randan sample 

of size n drawn from n^, where is a simple randan sample of size 

N drawn from a population with C.D.F. F(x;e). 

As an exançle of hw a change in the "siç)er-population" assunption 

may change the interval to be chosen, consider a 70% confidence interval 

for v^ien N = 199 and n = 10. We see fran Table 3 that 

'•^(1)' ̂ (4)^ snd [7(^2)' ^(6)^ both yield intervals with confidence 

coefficient > 70%. We then have the following (Hastings, et ^., [1947, 

p. 417]): 

Siper-population ECy^.^^ - y^^^l E(y^^^ - y^2)3 

Iftiiform (- /3 , ys ) .945 1.260 

Noimal (0,1) 1.163 1.124 

Hence, under the unifoim assunption, we would use ^(4)^' 

under the noimal assunption, ^>"(2)' ^(6)^' 

For a discussion of the expected values of order statistics, refer

ence can be made to David [1970]. 
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J. Joint Confidence Intervals 

In this section we consider the construction and confidence coeffi

cient for a joint confidence region for and (t < t') of 

the foim 

^(r)]' k < k', r < r', k < r, k' < r' . 

In Figure 1 we represent this region graphically. 

y 

y 

y 

y 

Figure 1. Joint confidence region 
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The confidence coefficient for this region can be calculated as 

follows : 

-^Ct) -^(r) 

" -^Ct) ̂  ^Oc') -^(t')^ 

- P{y(r] < (̂t)̂  (̂r'] ̂  ̂ (t')̂  

- Pf/Ck) n /Q,,) 1 Y(tn} - < Y(t)} 

- PtTcr') < ^Ct']) + Pf/Cr) < ycr') < Yet')} 

= P{A} - P{B} - P{C} + P{D} . [2.31] 

We first turn to the calculation of P{A}. Let (k + i) be the 

exact nunber of observations in the sample with values less than or equal 

to Y; and let (k' + j) be the exact nunber of observations in the 

sample less than or equal to We then have 

"^p'] 

/ 0 1 f 0 Ak-V 

(2.32) 

minl^il 
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minf j / 

• i; P{C} = ) ( ."II M/liM (2.34) 

° j^O Jo (ï*i){cr'*j)-Cr»i))(tyij)y(n) ' (2.35) 

Clearly, the confidence region given above can be used to form 

confidence intervals for parameters such as Further, if 

t' - t is not too large, one may prefer to have an "outer confidence 

interval" for Y^^^ and The confidence coefficient associated 

with the "outer confidence interval" given by [y^^^ — '^''t') f ̂(r)^ 

may be determined by using the same approach enployed in the beginning 

of this chapter. 
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III. CONFIDENCE INTERV.US WITH WO STRATA 

In this chapter we investigate confidence intervals for the t-th 

ordered value in a finite population, when the population has been strati

fied into two strata. Three distinct methods are proposed. The first 

method, called the "conbined method" takes sangles from both strata, 

combines and orders the sample values, and then uses two of the combined 

sanple values for the endpoints of the confidence interval. The second 

method, called the "C.D.F. method", ©nploys the empirical cumulative 

distribution function to find the endpoints of the desired interval. 

The third method, called the "separate method", uses one value from each 

of the strata samples to form the interval. Exact confidence coefficient 

foimulas are derived for each method. Comparisons of the three tech

niques are given, both by theoretical work and Monte Carlo studies. 

Brief tables are also given for the Combined and Separate methods. 

A. Definitions and Notations 

Let n^. be a population of N elements whose elements hsve distinct 

Y-values associated with them. These values can be s imply-ordered as 

^(Ij ^ ^(2) < < ^ONJ • CS.lj 

Assune that has been divided into two strata, with Stratum I con

taining elements with values 

^l(l) ^ ̂ 1(2) < ' ' < ^l(N^) (3.2) 
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and Stratm II containing N2 elements 

^2(1) ̂ ^2(2) ̂  ^ • (3.3) 

Of course, ~ ^ 

A simple random sa 

ordered observations in the sample are denoted by 

A simple random sample of size n^ is drawn from Stratim I. The 

^ICD ^ ^1C2) < < ^l(np • (3.4) 

Similarly, a simple random sample of size n^ is drawn from Stratun II, 

yielding 

^2(1) ̂  ^2(2) < < XzCn^) . (3.5) 

Combining and ordering the two samples yields the combined sample 

yCI) ^ y(2) < < y(n) ' (3.6) 

where n = n^ + n^. 

B. The Combined Method 

Turning to the first of our three methods, we are interested in the 

Xlll confidence coefficients of confidence inter'.'-als for of the fo 

[y»)' ̂ (rP-

We note here that if ties are permitted among our population Y-values, 

the proof given in Chapter II that the confidence coefficient is at least 

as great as when our population has all distinct Y-value s holds without 

change for the stratified situation. 
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1. Derivation, of the general formula 

Since we are considering distinct population values, we have, as in 

Chapter II, 

-^(t) -^(r)^ " -^(t)^ ' P{y(r) - ̂(t-1)^ ' 

Let be the event "exactly i observations in the combined sam

ple have values less than or equal to 

let be the event "exactly i observations in the conbined sam

ple have values less than or equal to 

let A^j j be the event "exactly i observations in the combined sam-

pie have vaiues less than or equal to Y^^^, 

given that ^ = 1,2"; 

and let Bj be the event 

We then have 

mini.t,nj 

min[t,N,] , min[t,N-] -
= I I p{Aj.} + y T 
1 j=max[l,t-N2] ^ i j*=max[l,t-N^] ^ 

' I I P{A^|j)P{B^) * I Î P{A?,. (3.8) 

We first turn to the evaluation of P{,A^ ij }. Let m represent the 

nunber of elements in the sample frcm the first stratun with values less 
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than or equal to that is, values less than or equal to 

For a fixed m, the number of cases favorable to A?"i - can be obtained 
i| J 

directly: 

/ A K  -

\mj In^ - ml I i - m 11 n^ - [i - m) 

where the range on m is given by 

' 0 

i - n. 
max < 

j + n, - N. 

2 

1 

• < m < mm 

i + j - t 

1 

j 

n. 

- (t-j) - n? + i 

C3.9) 

(3.10) 

Adding (3.9) over all possible values of m, as given in (3.10), 

and dividing by yields 

m vm jxn^-mi \ i-m v n^- li-mj | \n^-m} y \^2- } 
(3.11) 

Similarly, 

^ m* ̂  n2-m* j ̂ i-m* j ( n^- (i-m*) j 

n. 

m: 

n-

(3.12) 



36 

\Aere the range on m* is given by 

i - n 
max < 1 

j* + n2 - N2 

i + j* - t 

> < m* < mm < 
T* 

n-

N. - (t - j*) - n, + i 

• . (3.13) 

At this point, it remains to arrive at expressions for P{B.} and 

2 
In order to do this, we must make an assmption concerning the 

stratification. To illustrate the possibilities, two different assump

tions are considered in this chapter. The first we call "random stratifi

cation" and the second "^^.(s) ^2(u)"' intended that each of 

these assimptions represents a type of stratification found in practical 

applications. However, for a particular finite population, other postu

lates may be more appropriate and these, of course, should be used. 

2. Random stratification 

Follwing the notation of Section A, we will say that the stratifi-
/N\ 

cation is random if Stratum I is equally likely to be any one of the^^ j 

possible subsets of size of lï̂ . 

This assunçtion of "random stratification" may be appropriate vdiere 

strata are foimed primarily for administrative convenience. For example, 

administrative districts may be used as separate strata, even though 

there is little difference among the strata in the distribution of the 

Y-values. 

In order to arrive at an expression for PCsj} we note that the 

event B^ can be thought of as putting into Stratum I (i - 1) units 
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out of the first (t - 1) population units, then putting the t-th 

population unit into the j-th position in Stratim I, and finally putting 

- j) units into Stratim I out of the last (N - t) population 

1\ /N - t 
units. This can be done in 

j - 1|\1/\N^ - j 

Hence, under randan stratification, we have 

P{Bt} = 

't-l\ / N-t 

J-i/v 
if max 4 

1 

t-N. 

otherwise 

ways. 

< J < mm 4 
t 

N, 

(3.14) 

Similarly, 

P{B%} = 

I 0 

if max r ] It-N,/ 

otherwise 

< j* < min. 

L^2J 

(3. IS) 

Conbtning (3.8), (3.H). (3.12), (3.14), and (3.15) yields 

î''>'(k) l̂ (t)» = 
N! -1 

n^!n2UN^-n^J ! ! 

X I 
i 

^4 

t-11 

z ' 
j \j-l] 

/ v  

^N^-j/ m ^ jyi-mj^n^-mj^n^- (i-m) 

/ t - i  N-t 

I. 

(3.16) 



38 

where the limits on the summation of i and j are given in (3.8) 

on m in (3.10), and m* in (3.13). 

It can be shown algebraically that (3.16) reduces to (2.7). That 

same if either (1) single randan sampling or (2) stratified single random 

sampling with "random" stratification is assimed. In the following 

theorem we prove this result holds for any number of strata. It may be 

noted that this equivalence does not necessarily hold for the other 

types of confidence intervals discussed later in this chapter. 

Theoran 3.1: Let be a population of N distinct units {u^, U2,..., 

Uj^}. Assime has been divided into L strata of sizes N^, 

stratifications is equally likely to occur. Fran each stratun a simple 

random sample of size n^^, i = 1, —, L, is drawn. Then if S = 

[(u- , u. ,..., u. ), i. e {1,..., N}, i. ^  L y  j  ^  k] is any fixed 
il I2 ^n ^ J K 

- \  

sample, the probability of obtaining it is 

Proof: P{obtaining S} 

is, the confidence coefficient associated with [y^^^, y^^g] is the 

i = 1 L, in such a way that any one of the 

= P{n^ elements of S are in Stratun i, i=l. L} 

X P{drawing those n^ elements, i=l y • • • y L} 

-1 
(3.17) 
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In the previous chapter we shewed that systematic sampling with the 

elements in "randan" order was equivalent to simple random sampling. 

Hence, in this chapter, if we apply systematic sampling to each strata, 

under the assimption of "random" stratification, it would be equivalent 

to simple randan sampling fron each strata, and we conclude that this 

would be equivalent to simple randan sampling without stratification. 

3. Ordered stratification 

In many surveys the stratification variable, X, is closely related 

to the variable under study, Y. For example, X may denote the value 

of Y at sane previous time. Then, the usual stratification consists of 

placing those units with the smallest values of X in Stratun I, those 

with the next smallest values of X in Stratun II, etc. Knowledge about 

the relation between Y and X, and the method of stratification may 

enable the investigator to assert that, for example, Y^^^^ < For 

instance, in sane situations it may be reasonable to as sins that the 

median among the variate values in Stratun I is less than the median 

among the variate values in Stratum II. Note that although in the 

ensuing analysis the only restriction made is Y^^^^ < ^2^^^ other 

restrictions of the same type may be added. 

^iCs) ̂  ^2(u) ̂  ^lCs+1] 

For simplicity, it is assuned at first that Y^^^^ < ^2^^^ < 

vihere 1 ̂  s ̂  N^, 1 ̂  u _< N2, and Y^^^, = + » . Note that this 
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specification includes the possibility of asserting that ^ ^2(1)' 

such an assertion may be a reasonable approximation v/here, for exançle, 

there are only a small number of very "large" units and these are all 

included in a single stratim. 

In order to conçute ^ Y} under these specifications, we 

note that equations (3.8), (3.11), and (3.12) still hold. It therefore 

remains to compute P{Bj} and It may be of assistance to 

consider Figure 2 which represents the population in both the canbined 

and stratified foims under our specification. 

4 H 4 1-

1(1) 
I 

I 
I 

(1) 

Y 1(5) 

I 

I 

-I 1_ 

•l(s+l) 

4 k 

-2(1) 2(u) 

Y (s+u) 

4—4- Stratim I 
Y 
KN^) 

4—1 St rat on II 

'2(K.) 

Y 
Population 

(N) 

Figure 2. Stratification under Y^^^^ < '^2(u) ^i(s+l) 
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We break iç our analysis into three cases: 

Case I: t < s+u 

Case II: t = s+u 

Case III: t > s+u , 

1 2 
and arrive at expressions for P{B^.} and by counting techniques. 

The total ntmber of possibilities for distributing the ordered units 

among the two strata, given ^ is 

s+(u-l^\ /i\/n- Cs+u)̂  

N.-s 

Case I: t < s + u. There are 

(3.18) 

't-l\/s+(u-l)-tl 

s-j 

stratify favorable to Y = Y^^. Therefore 

N-Cs+u) I 

Nl-s 

ways to 

P{Bt} = { 

ft-l\ /s+(u-l)-t 

ij-l/\ s-j 
rs+Cu-i)> r:i if max < > £ 3 £ min < 

t-(u-1) 

otherwise . (3.19) 

Also, there are 
t-l\ 

H*-lj 

's+(u-l)-t\ 

y U-l-j* 

'N- (s+u)̂  

N^-u 
\ 2 

ways to stratify favor

able to Y = Y2 0 . Therefore 

t-l\/s+(u-l)-t^ 

1 

t-s 
• < j* < min 4 

t 

u-1 

otherwise (3.20) 
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Case II: t = s u. In this case, we necessarily have 

P{Bj} = 0 for all j (3.21) 

and 

1 if j* = u 
P{B- } = • 

•' ' 0 otherwise . 

Case III. t > s + u. There are 
+ (u-l) Wt-Cs+u)-iyN-t \ 

s A j-s-l )\N^-jj 

(3.22) 

ways 

to stratify favorable to Hence 

P{B1} = < 

^t- (s+u)-lUN-t 

j-s-l 

N- (s+u) 

N^-s 

if .?.ax 
s+1 

t-N-

otherwise 

< J < mm 4 
^1 

t-u 
> 

C3,23'> 

Finally, there are 
s+(u-l)' 

u-l 

t- (s+u)-l\/N-t 

2 j*-u-l /\No-j*' 

favorable to Y^^^ = Y^ ̂  ̂. Therefore 

ways to stratify 

t-(s+u)-iyN-t ^ 

N- (S+UJ1 
if max 4 

u+1 

t-N^ 
< j* < min 

N-

t-s 

0 otherwise (3.24) 



43 

It is easily shown that, for each of the cases, 

I P(B<) + I P(BL> = 1 . (3.25) 
3 5 3» : 

Conbining (3.8), (3.11), (3.12), and the expressions (3.19) - (3.24), 

we have P{yQ^^ } for the following cases: 

Case I. t < s + u. 

'''y») ' 

min[t,n] min[s,t] 

I I I 
i=niax[k,t-(N-n)] j=iiiax[l,t-(u-1)] m 

s+(u-l)-t t-jWN2-(t-j) 

^i-mj^n^- (i-m) 

min[(u-l),t] /j 

^  I  
i j*=max[l,t-s] m* \in* n-,-in' 

N^-ct-j*)yt-i Ws+(u-i)-t^ 

n.-T 1\ -i *-111 Tij- ll-i* 
, 1 - f V > \ - ' J 

's+ (u-1)^ 

V ' 

(3.26) 

v^iere the limits of the simmation of m and m* are given by (3.10) 

and (3.13) respectively. 

Case II. t = s + u. 

n,-(i-m*) 
(3.27) 
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where the range of the sunmation of m* is 

max 

0 

i - n. 

"2 » " - %2 

1 - S 

• < m* < min , 

1 

u 

N, s - n^ - 1 (3.28) 

Case 111. t > s + u. 

min[N^,t-u] ^ 

i j=max[s+l,t-N2] m 

N.-Ct-j] 

n2-Li-m) 

t- (s+u)-l\ 

j-s-1 

(N-t 

i*\ ^  m i ^ [ N 2 , t - s ]  ^  j  

i 3*=max[u+l,t-N^] m* 

N^-j^ 

n--m* 

--Î* t-j 

i-m* 

j(t-j*)^jt-(s+u)-l\/ N-t \ 

'^n^- (i-m*) I ^ j*-u-l 

N-(s+u) -1 

(3.29) 

where again the ranges on sunmation of m and m* are gix'en by (3.10) 

and (3.13). 
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^iÇs) ̂  ^2Cu) 

It would appear that the assumption. < '^]^(^s+l) 

rather unrealistic and unduly restrictive. Hence we turn to the more 

realistic and general assuiption that Y^^^^ < '^2(u)' ^ 1 ̂ 1 

and 1 ̂  u _< N2. 

As in the previous section, equations (3.8), (3.11), and (3.12) are 

1 2 
still valid. It remains to coiçute P{Bj} and under our new 

assimptions. 

Let d be an integer in the range 0 ̂  d _< - s such that 

^Ks+d) ' ̂2(u) " ̂Us+dnr s + d + 1 . N; + 1. let *<-y 

We then have 

N^-s 

Jo ^l(s+d) ^^2(u) ' ̂l(s+d+l) 

N'l'S 
V ry /T)-̂  Iv c"»' <;•" 

d=o ^ ' 'Ks+d+D '2(u) 'l(s+d+l) ' 

^ P^^l(s+d) ^2(u) " ̂l(s+d+l) ̂ 

Letting 

P{C^|d}- PCBj I ^i(s+d) ^^2(u) ̂  ^l(s+d+l)^ 

and 

P®^} ^^i(s+d) ̂ ^2(u) ̂ ^1 (s+d+1)^ 
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we then have 

P{Bj} = I P{cjj^} P{Dj} . (3.33) 

All of these probabilities are, of course, conditional on < ^2^^^ 

Evaluation of P{Dj}. Consider N^, N^, s, u, and d fixed. There 

are then 

s+d+ (u-1) Y N- (s+d+u) \ 

s+d j[ N^- (s+d) I 
(3.34) 

ways to stratify so that < Yg,. < ^1(5+4+1)- It follows that 

the total nimber of possible arrangements such that Y^^^^ < ^2^^^ is 

/s+d*(u-l)\/N-(s+dtu)\ 
I .  (3.353 

d=0 y s+d jy N^- (s+d) j 

Considering each of these arrangements (stratifications) equally likely. 

tliCi L ûciVc 

^s+d+(u-l)W N- (s+d+u) \ 

s+d II N - (s+d) 
' r • (3.36) 

^ 1 ̂  /s+d+(u-l)yN-(s+d+u) ̂ 

I , 
d=0 \ s+d 

I (s+d) 

Evaluation of P { c j | A s  i n  t h e  p r e v i o u s  s e c t i o n ,  w e  b r e a k  o u r  

work IÇ) into three cases. 
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Case I: t < s + d + u. Fran the previous section, 

p(ci|d)M 

jt-1 Ws+d+ (u-1) -1^ 

ij-l/l 5+d-i 
/s+d+(u-lj\ 

V s+d I 

if max' 
1 

t- (u-1) 
• h r < J < minS 

Is+dJ 

otherwise . (3.37) 

Case II: t = s + d + u. As before 

P { C j =  0  f o r  a l l  j  (3.38) 

Case III: t > s + d + u. 

= < 

t- (s+d+u)-iyN-t 

^ j-(s+d)-l 

IN- (s+d+u) \ N^-(s+d) 

if max 
s+d+r 

t-N-
^ <_ j _< min, 

t-u 

N, 

otherwise . (3.39) 

Evaluation of Pfsj}. We define an indicator function a by 

1 if t ̂  z 

0 otherwise . 
(3.40) 

Putting (3.36) - (3.40) into (3.33), we have 
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P{Bp = 
ft-l' 

. I 
ij-11 d 

N-t 

Nn-j 

(s+d+ (u-1) -1\ /N- (s+d+ (u-1) ) -*L 1 

s+d-j jyN^-(s+d) 

t . 
°s+d+(u-l) 

/s+d+ (u-1)\ It- (s+d+ (u-1) ) - 2\ / ^ \ 

S.d Hj-Cs.d)-1 

/s+d+(u-l)\/ N- (s+d+u)\ 

a ^ s+d (s+d) I 

-1 

if mini 

}, 

max< 
"̂ 4? i 

1 

min 
ft-u 

Vi 

otherwise (3.41) 

Evaluation of Turning now to Stratum II, we have, 

corresponding to (3.33), 

P{B?,) . I PiDj} , (3.42) 

P{D^} is as in equation (3.36). The evaluations of are very 

similar to equations (3.37) - (3.39). Putting these into (3.42), and 

recalling the definition of the Kronecker delta: 

a,b 

1 if a = b 

0 otherwise 
(3.43) 

we nave 
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p{BL> 
ft-1 \ 

I 
d 

fs+d+(u-l)-t^ 

(u-l)-j* 

fN-(s+d+(u-l))-ll 

N^- (s+d) 
Ps+d+Cu-l) 

't-l\/ N-t 

1 t-u /\n̂ - (t-u)j 
5_.. 
]",U 

'N-t 

M*' 

/s+d+(u-l)^ 

s+d 

/s+d+ (u-1) W N- (s+d+u)\ 

d \ s+d j^N^-Cs+d) j 

t-(s+d+(u-l})^ 

-1 

1  - a  
t \ 
s+d+u J 

inax< 
it-N, 

for min^ 

I' 

otherwise . 

, I <j*< max< 

Hï-y " 
iTan< %) 

(3.44) 

Thus, under the assixnption that , one may determine 

Ply^,^ by using (3.8), (3.11), and (3.12) together with (3.41) 

and (3.44). 

6. Tables for 1 ^ ' 'l(s) ' '2^)' 

A FORTRAN program was written for use on the UNIVAC 1108 computer 

a t  t h e  U n i v e r s i t y  o f  W i s c o n s i n  C o n p u t e r  C e n t e r  t o  e v a l u a t e  P { y < _  

Y^^j — ̂ (r) I ^l(s) ^ Y2(u)^" variable parameters are , N^, n,, 

n2, t, s, and u. The results were printed in tabular form, giving the 
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above probabilities for 1 ̂  k <_ r ̂  n. Tables S through 9 present seme 

typical results. In all cases presented, = 10, and the values 

assimed for the Cs,u) parameters are (1,1), (1,5), (1,10), (5,1), 

(5,5), (5,10), (10,1), (10,5); and (10,10). Tables 5 and 6 are for 

n^ = n2 = 3 (proportional allocation), and t = 4 and 8, respectively. 

Tables 7, 8, and 9 deal with non-proportional allocation. In Tables 7 

and 8, n^ = 2, n^ = 4, and t = 4 and 8, respectively. Table 9 has 

n^ = 4, n2 = 2 and t = 8. For comparative purposes, in each table we have 

UTiderlined the entry for (s,u) = (1,10), which is essentially equivalent 

to "randcm" stratification. 

Sane interesting patterns emerge as we study the tables. For 

proportional allocation (Tables 5 and 6) the probability of coverage 

remains essentially constant for (s,u) = (1,1), (1,5), (1,10), (5,5), 

(5,10), and (10,10) and this probability is equal to that of "randan" 

stratification. In Table 5, for t = 4, we see a slight improvement in 

coverage probabilities in the other (s,u) entries for (k,r) = (l,r), 

r = 3, 4, 5, 6. That is, as the strata become "more ordered", those 

confidence intervals which include y have a higher probability of 

coverage. Also, for all other intervals, we have no gains, and some 

losses in probability over the probabilities for "random" stratification. 

In Table 6, for proportional allocation and t = 8, we see improvements 

in coverage probability, sane substantial, for (k,r) = (l,r), (2,r), 

and (3,r) as the strata be cone "more ordered". 

In Table 7 (non-proportional allocation), we have no improvement 

in the probability of coverage for fixed (k,r) and every pair (s,u) 
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differing from "randan" stratification. Hence, this would indicate 

that, for ijnprovement, a different allocation of sample sizes should be 

used. In Table 8, we have gains for those intervals which include 

the intervals "shift to the right", (e.g., fron 

'•^'(1)' y(4)^ '"^(2)' y[5^]' the coverage probabilities drop. However, 

in Table 9, the probabilities improve as the intervals "shift to the 

right". This indicates that, if we seek improvement of coverage proba

bilities by using the "ccmbined" method, and an assumption of the type 

(u)"' sampling fractions and intervals used must be 

selected carefully. 

7. Bounds and approxLûations for tlie combined method 

a. McCarthy's coniecture. McCarthy [1965, pp. 772-783] has consid

ered the type of procedure we have just discussed. He assumes an arbitrary 

number, L, of strata, a continuous C.D.F. in each stratum, and propor

tional s?.mple size allccaticn. He proves that any pair of symmetric 

order statistics from the combined stratified randan sample of size n 

provides a confidence interv^al for the population median, whose confi

dence coefficient is not less than the confidence coefficient associated 

with the interval determined by the corresponding order statistics in a 

random sample of n observations drawn from the entire population. He 

proves (by counterexample) that the result necessarily holds only when 

proportional allocation is employed, tmd also notes that his main result 

can easily be extended to any other quantile of the population. Cur 

approach differs from that of McCarthy in that (11 we give the probability 



Table 5. 1/^ I ^l(s) ^^2(u)' " Combined Met),od, 

= 10, = n2 = 3, t = 4 

r = 3 r = 4 r = 5 r = 6 

k s u= 1 5 10 1 5 10 1 5 10 1 5 10 

1 1 .776 .775 .776 .793 .793 .793 .793 .793 .793 .703 .793 .793 

S .825 .776 .776 .833 .793 .793 .833 .793 .793 .833 .793 .793 

10 .825 .784 .776 .833 .800 .793 .833 .800 .793 833 .800 .793 

?, 1 .325 .325 .325 .343 .343 .343 .343 .343 .343 .343 .343 .343 

5 .325 .325 .325 .333 .343 .343 .333 .343 34T .333 .343 .343 

10 .325 .325 .325 .333 .341 .343 .333 .341 .343 .333 .341 .343 

3 1 .043 .044 .043 .061 .061 .061 .061 .061 .061 .061 .061 .061 

S .025 .043 .043 .033 .061 .061 .033 .061 .061 .033 .061 .061 

10 .025 .041 .043 .033 .057 .061 .033 .057 .061 .033 .057 .061 

4 1 .003 .003 .003 .003 .003 .003 .003 .003 .003 

s .000 .003 .003 .000 .003 .00% .000 .003 .003 

10 .000 .002 .003 .000 .002 .003 .000 .002 .003 



T£j)le 6. -^(t) - ̂(r) ' ^l(s) ^2(u)^ "" Combined Method 

Ni = N2 = 10, n^ = n2 = 3, t = 8 

k s u= 1 

r = 3 

5 10 1 

r = 4 

5 10 1 

r = 5 

5 10 1 

r = 6 

5 10 

1 1 .640 .640 .640 .899 .898 .898 .969 .969 .969 .976 .976 .976 
5 .663 .640 .640 .930 .899 Tm .982 .969 .969 .985 .976 .976 
10 .708 .653 .640 1.000 .915 .898 1.000 .978 .969 1.000 .982 .976 

2 1 .477 .477 A l l  .735 .734 .735 .805 .805 .805 .813 .812 .813 
5 .514 .477 ~ W  .780 .735 .735 .833 .805 .805 .835 .812 .812 

10 .642 .500 A l l  .933 .762 .735 .933 .824 .805 .933 .829 .812 

3 1 .119 .119 .119 .377 .377 .377 .448 .448 .448 .455 .455 .455 
5 .132 .119 .119 .399 .377 .377 .451 .448 .448 .453 .455 .455 
10 .175 .124 .119 .467 .387 .377 .467 .449 .448 .467 .454 .455 

4 1 .060 .060 .060 .130 .130 .130 .137 .137 .137 
5 .061 .060 .060 .114 .130 .130 .116 .137 .137 

10 .000 .055 .060 .000 .117 .130 .000 .122 .137 



Table 7. P{y^^ - ̂(t) - ̂(r) ' ̂ l(s) ^2(u)^ "" Combined Method 

= N2 = 10, n^ = 2, n2 = 4, t = 4 

r = 3 r = 4 r = 5 r = 6 

k s u= 1 5 10 1 5 10 1 5 10 1 5 10 

1 1 .752 .774 .776 .764 .791 .793 .764 .791 .793 .764 .791 .793 
5 .667 .750 .776 .667 .764 .793 .667 .764 .793 .667 .764 .793 
10 .667 .725 .770 .667 .734 .786 .667 .734 .786 .667 .734 .786 

2 1 .291 .322 .352 .302 .339 .342 .302 .339 .342 .302 .339 .342 
5 .133 .289 .325 .133 .302 .342 .133 .302 .342 .133 .302 .33? 
10 .133 .250 .316 .133 .260 .333 .133 .260 .333 .133 .260 .333 

3 1 .036 .043 .043 .047 .060 .061 .047 .060 .061 .047 .060 .061 

5 .000 .034 .043 .000 .047 .061 .000 .047 .061 .000 .047 .061 

10 .000 .024 .041 .000 .033 .058 .000 .033 .058 .000 .033 .058 

4 1 .002 .003 .003 .002 .003 .003 .002 .003 .003 

5 .000 .002 .003 .000 .002 .003 .000 .002 .003 

10 .000 .001 .003 .000 .001 .003 .000 .001 .003 



Table 8. P(y^^ < | -- Carbined Method 

Nj = N2 = 10, = 2, 1^2 = 4, t = 8 

r = 3 r = 4 • r = 5 r = 6 

k s u= 1 5 10 1 5 10 1 5 10 1 5 10 

1 1 .663 .643 .640 .906 .899 .898 .967 .969 .969 .972 .976 .976 

5 .800 .686 .641 .946 .912 .899 .959 .963 .969 .959 .966 .976 
10 .978 .744 .652 .978 .929 .902 .978 .959 .967 .978 .961 .974 

2 1 .486 .478 .477 .729 .734 .735 .790 .804 .805 .796 .811 .813 

5 .548 .487 .477 .694 .713 .735 .707 .764 .805 .707 .767 .812 

10 .622 .505 .480 .622 .690 .729 .622 .720 .795 .622 .722 .801 

3 1 .120 .119 .119 .362 .376 .377 .424 .445 .448 .429 .452 .455 
5 .127 .108 .119 .273 .334 .377 .286 .385 .447 .286 .388 .454 

JO 000 .095 .116 .000 .280 .366 .000 .310 .432 .000 .311 .438 

4 1 
5 

10 

.056 .059 .060 .117 .129 .130 .123 .136 .137 

.034 .045 .059 .046 .096 .130 .046 .099 .137 

.000 .028 .056 .000 .058 .121 .000 .059 .128 



Taille 9. P{y^^ -'"'(t) - ̂(r) ' ^l(s) ^ '^2(u)^ Combined Method 

= N2 = 10, = 4, n2 - 2, t = 8 

k s it= 1 

r - 3 

5 10 1 

r = 4 

5 10 1 

r = 5 

5 10 1 

r = 6 

5 10 

1 1 .617 .638 .640 .891 .898 .898 .971 .969 .969 .979 .976 .976 
5 .484 .594 .640 .856 .885 .898 .983 .975 .969 .995 .986 .976 

10 .333 .540 .623 .833 .871 .895 1.000 .981 .970 1.000 .993 .978 

2 1 .467 .476 .477 .742 .736 .735 .821 .807 .805 .829 .814 .813 
5 .410 .466 .477 .782 .757 .735 .909 .847 .806 .921 .858 .813 

10 .333 .452 .474 .833 .784 .741 1.000 .894 .816 1.000 .906 .824 

3 1 .118 .119 .119 .392 .379 .377 .472 .451 .448 .480 .458 .455 
5 .113 .130 TIW .485 .421 .378 .611 .511 .449 .624 .521 .456 

10 .200 .145 .122 .700 .476 .389 .867 .586 .464 .867 .598 .472 

4 1 
5 
10 

.063 .060 .060 .143 .131 .130 .151 .139 .137 

.086 .074 .060 .212 .164 .130 .225 .175 .138 

.167 .091 .063 .333 .200 .139 .333 .213 .147 
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of coverage (rather than, a lower bound) for our confidence intentais, 

(2) we consider a finite number of elements in each stratun (i.e., a 

strictly finite population), and (3) our stratum sample sizes are arbi

trary (i.e., we are not restricted to proportional allocation). We now 

shw (using a counterexample) that McCarthy's main result does not 

necessarily hold if sampling is without replacement frcm a finite popula

tion. (This result can also be observed by examining Tables 5 and 6.) 

Let Fg be a population of size 9 ,  where all the elements have 

distinct values. A sample of size 3 is chosen without replacement. The 

probability that x^^^] covers the median, of -g is, 

by (2.9), ^ . 

Suppose the population is stratified into two strata of sizes = 3 

and N2 ~ and we sample proportionally frcm each strata: n^ = 1, 

n2 = 2. There are seven types of stratification possible. In Table 10 

we list these, along with the probability that y^^^] covers 

the probability- of obtaining that particular stratification under 

the assinption of "randan" stratification, and the product of these two 

probabilities. In the Type column, a "-" sign indicates a value 

below the population median, "0" the median, and a "+" sign a value 

above the median. 
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Table 10. Counter-example 

Case Type P^{y,.j < Y^.,^ < y^3^) P^{obtaining case} ?2 

1 +++ 1 0"*" 1 4/84 180/3780 

2 0++ ++ 43/45 6/84 258/3780 

3 -++ , —0++ 40 / 45 24/84 960/3780 

4 -0+: —+++ 39/45 16/84 624/3780 

5 —H1--0+++ 40/45 24/84 960/3780 

6 - _0 1 —(•+++ 43/45 6/84 258/3780 

7 — i-0++++ 1 4/84 180/3780 

In Cases 3 through 5, the probability of coverage is less than the 

19/21 as found for the non-stratified situation. 

Hence we have shoun that using the combined sample order statistics 

may lead to a lower confidence coefficient than obtained sampling from 

the non-stratified population. Of course, in the case of random stratifi

cation, we know that the two expressions are equal. This is confirmed 

by our table, since the sum of the last column is 19/21. 

b. Theoretical lower bounds. We now explore ways of approximating 

P{y^%j the two strata situation. .As before, 

Pîy(k) i y \ r y  '  Purthemore, 

(3.451 
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Therefore, 

} > min^ 
(3.46) 

and 

} < max^ (3.471 

Using (3.11) and (3.12), we note that 

-^(t) I ^(t) ^^^Ck) l^Ct) I ^(t) Y2(t-j)) 

(3.48) 

and so the minimun values and maximim values in (3.46) and 3.47) are 

identical; if the minimun (maximun) occurs when j = p, the minimun 

(or maximun) will occur when j* = t-p. The only exception to tliis 

due to the fact that j (and 1*) cannot take on the value 0, whereas 

the possibility exists that j* (and j) can assune the value t. The 

graphical work to follow demonstrates why we do not need to concern 

ourselves with this fact. 

Unfortunately, it is extremely difficult to work with the convolutions 

of the h>-pergecrrietric distributions as they appear above. Hence we 

turn to the binomial approximation to the hypergeanetric as given in 

Johnson and Kotz [1969, p. 148]. 
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In this case. 

-^(t) 

n ^2" 

[3.49) 

In Figure 3 we present P{y Oc) ̂ ^(t) l^(t) =^l(j)» 

k = 1, 2,..., 10, = 20, N2 = 80, n^ = 2, ng = 8 (i.e., proportional 

allocaticn), and t = 50, plotted as a function of j. Figure 4 shows 

the binomial approximation to this same data, and Figure 5 plots the same 

probability, with n^ = n2 = 5 (non-proportional allocation). Figure 5 

also represents the binanial approximation. 

A stucfy' of plots of these types would indicate that for proportional 

allocation, well-defined maxima and minima do exist. Below, we prove a 

confidence coefficient of the type suggested by McCarthy. This is 

followed with another approach which yields approximate lower bounds for 

both proporticsnal and non-proportional allocation. 

We noiv turn to finding the maximim and minimun values for (3.48). 

Theorem 5.2: The maximm (minimum) of expression (3.49) occurs at 

j = (t/N) for k _> (nt/N + 1) (_< nt/N), assuning proportional allo

cation. 

icnccmmg thcrr.; tnis j.eads cO approximate ±ower oounos lor me 
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1.0 + k=0,l,2 
k=3 

0.9 -

0 . 8 -

0.7" 

0 . 6  - -

0.5 .. 

0.4-

0.3 --
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k=4 

k=5 

k=6 

0.1-
k=7 

k=8 
0.0-t—I—I t > I I 1 I I I I I I I I I I I f=f k=9,10 

10 15 20 

J  

Figure 3. P{at least k observations <_ j 

= 20, \'2 = 80, = 2, = 8, t = 50 
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Figure 4. P {at least k observations < i = Y, 
- Itj ItJ il]j 

= 20, ^2 = 80, n^ = 2, = 8, t = 50 (Binomial approximation) 
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P{at least k observations 

= 20, = 80, = n2 = 5, t = 50, (Binomial approxmation) 
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Proof : Not at icanally, 

BiCii,p;r) = I j | p^Cl-p)^"^ . (3.50) 
j=0 j 

For j = Nj^(t/N), expression (3.49) beccmes 

Â ("r 
• 1 (s)' ('- f"'" r • • 

n,+no-i /n^\/ng 

• i : R ('• SÏ 
Z  V £ .  / \ l - £ j  

\n-i 

=• 1 - Bi(n,t/N; k-1) . (3.51) 

Turning to Hoeffding's Theorem, as stated in Anderson and Samuels [1967, 

pp. 1-12]: 

"Let F(k) be the probability of not more than k successes in n 

independent trials where the i-th trial has probability p^^ of success. 

Let X = p^ + P2 +...+ p^. Then 

>_ F(k) for k jc X - 1 
Bi(n, Vn;k) ' 

_< F(k) for k _> X 

Equality holds only if p^ = ... = p^ = A/n." 

Applying this notation to the theorem we are proving, expressiœ 

(3.49) becomes 1 - F(k-1) ; p^ = ... = p^ = j/N^; Pj^ +2 " ••• " Pn ~ 
1 1 

n 
(t-j)/N-. Because of proportional allocation Z p- = n. j/N. + 

i=l ^ 1 ^ 
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^2(t-j)/N2 = nt/N. It then follows by Hoeffding's Theorem, 

r iFCk-l) for k-1 < (nt/N-1] 
Bi(n,t/N;k-1] { 

[ <_ FCk-1] for k-1 > nt/N . (3.52) 

Therefore, 

1 - FCk-1) < 
^ 1 - Bi(n,t/N;k-1) for k <_ ntA' 

<_ 1 - Bi(n,t/N;k-1) for k ̂  (nt/N) +1 , (3.53) 

with equality only if j/N^ = (t-j)/N2 so that j = N^t/N, thus proving 

our theorem. 

Hence, 

p(y(k) iY(t) < = Pt^ck) i^ct)' -

<Y(t, I Y(t) 

• I ^ct-1) =^10)' 

= 1 - Bi(n,t/N;k-1) - (1 - Bi(n, (t-l)/N;r-l)) 

= Bi(n, (t-l)/N;r-l) - Bi(n,t/N;k-1) 

provided k _< nt/N and r >_ (n(t-l) /N)+l . 

(3.54) 
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A second approach to this prol-)lem yields approximate lower bounds 

to the coverage probability for both the proportional and non-propor

tional allocation cases. The binomial approximation to the hypergeo-

metric distribution is also used in this derivation. 

Let 

^ j: 

[ 0 otheiwise . ^ (5.55) 

Let 

n^ 

Z = I + I Xfi - (3.56) 
i=l i=l 

Z is then the number of observations in the sample with associated Y-

values less than or equal to 

Then 

"ym l^(t) ->'(r) I °  

. H k i z <  r - 1  I  = ^ 1 0 ) '  

* = ^l(j) I \t) = ^10)' 

and 

-^ct) I ^(t) = 

P{k < Z ̂  r-1 1 Y^^j 

" ' ^(t) " • (3.58) 
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Hie re fore, 

P(y(jc5 < \ t )  y(r)) 

>|P{k^Z <r-l I P(Y(t) '  

* l ^ V f k < Z <  r - 1  I  =  Y z t j . ) }  P f Y ^ t ,  -  Y ^ ^ . . , }  

mln P{k < Z < r-1 | Y^^j = Y^yj } 

> min/ 3 

mm P{k < Z < T-1 I Y(;j = Y^^j.)} 
J X 

(3.59) 

Considering P{k <_ Z _< r-1 \ we have 

n n_ 
ECZ) - ^ j YT (t-j) • 

1 2 
(3.60) 

Switching to the binomial appraximation and applying Hoeffding's Theorem 

as stated in McCarthy [1965, p. 776], 

P{k < Z < r-1 I Y r-c^ 

r-1 /n^ 
= 2 I I 

i=k ^i 
Pn (1-Pn 

n-i 

where 

Pi ' ÏÏ i " > 

0 < k < < K < np^ ̂  < r-1 < n 

(3.61) 

(3.6?) 

Similarly, 

P{k < Z < r-1 I Y "li n-1 
(3.63) 
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where 

P2 = è "4^* 

0 _< k _< np2 _< r-1 _< n . (3.64) 

Thus, 

pty® t \ t )  < y ^ r ) ' >  

I' r-1 /Tlx - - r"l /Tlx -
(l-P}) ' (I'Pz) I* 13.65) 

In the case of proportional allocation, 

n "l 
N - N, - N, 

and 

P = Pi = P2 = § • (3.66) 

' I 'K O** 

i ̂(t) i /(T) > i X U 

provided 

1 < k < ^ < r-1 < n 

For non-proportional allocation, we find the minimun value which 

T>1 /n\ i 
f(p^) = T I (l-p^j can attain, recalling that p^ is a function 

r-l/n\ - -
of j. Similarly, we find the minimun value of f(po) = J I p^Cl-p^)* , 

^ i=klij ^ ^ 
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where p2 is a function of j*. Then P{y^^ — "^(t) — ̂ (r)^ greater 

than or equal to the smaller of these two minima. 

We nw turn to finding the minima of f(p^) and f (P2). Let 

r-1 In] 
= .1, .. 

i=k li 

nj 
Ck-1) ! Cn-k) ! 

nj 
Cr-1) ! (n-r) I 

0 

(1-x)^'^ dx . (3.68) 

Then 

^CP) 
= n 

fn-l\ 

lk-1 

pk-iji.pj„-k 
'""1P-

l-v 

ici-P)"-r (3.69) 

Setting (3.69) equal to zero and solving, the resulting polynomial has 

a root of multiplicity (k-1) at zero, a root of multiplicity (n-r) 

at one, so that, after removing these roots, we have the equation 

I (1-p)^"^ - = 0 . 
k-1 r-1 

Solving this equation for p, the only root in (0,1) is 

(3.70) 

•D = 

1 + 

ITFl^ • 
(3.71) 

m 
Hence, since f(p) is continuous on [0,1], f'(p) continuous on (0,1), 

f(0) = f(l) = 0, and there exists exactly one p* in (0,1) such that 

f' (p*) = 0, the minimum of f(p) must occur "near" zero or one. 
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Recalling that is a function of j, 

we have the following: 

n^ n-
If jr- > the smallest value p can assime is vàien 

 ̂̂  . "1 "2 
j = max {L, t-N? I Call that value of p, "p min". Also, if jj" > > 

the largest value p can assime is when j = min {t, . Call that 

value of p, "p max". 

^1 ^2 
Similarly, if ^ ̂  , the smallest value p can assune is v^ien 

j = min {t, } ("p min") and the largest value is when j = max {1, t-N2 } 

("p max"). 

At this point, evaluate f(p min) and f(p max), and compare them 

to obtain min f (p, ). 

^  1  r i  Repeating the same procedure for Stratun II, with P2 ~ n l~ ̂ 

•ri- n • - ^ 
j*j , we are able to find min f (P2) -

Finally, conparing min f[p.) and min f (p^), the smaller of these 
j j* 

will be an approximate j* lower bound for P — ̂ Ct) — ̂ (r) 

under the assimption of expressions (3.62) and (3.64). 

8. Sampling with replacement from a finite population 

Let our population consist of N = 2m - 1 elements, having distinct 

associated Y-values. Obviously, Y, . is the median. Using the notation 
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of the first section, and using proportional sampling with replacement 

frcm each stratun, McCarthy [1965, pp. 776-777] derives a Icwer bound 

for 17^)-

Let = N^/N. Then and 1 - are our strata weights. 

Let p^ be the proportion of elements in Stratum I with associated 

values less than or equal to ; p^ the corresponding proportion in 

Stratim II. We then have W^p^ + ̂ ^^2 ~ (2m-1) and n^^p^ + n2P2 = 

nm/(2m-l). If we let S^ = nunber of observations from the i-th stratim 

with, values less than or equal to , and S^ + S2 = S, E(S) = 

nm/(2m-1). Appealing to Hoeffding [1956, pp. 713-721], we then have 

P{k < s < r) = P(yp.) < } 

=i (:) w w" ^ 

In the case of an even-sized population, 

(3.73) 

This generalizes directly to more than two strata. 

' \ed ' /(rj) 

C. Confidence Intervals Derived fron the Sample C.D.F. 

1. Definition of the confidence interval 

The confidence interval procedure described in Section B may not be 

satisfactory in all situations. Given a stratified simple random with, 

for example, (n^/N^)»(n2/N2^ > a wide confidence interval of the foim 
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^(r)^ might be necessary to achieve a desired confidence coeffi

cient. (For example, with s large, u small, and the 

population median, both the ^pper and lower confidence limits would 

likely be variate values from Strat un I unless r were chosen to be veiy 

large.) Such possible difficulties nay be eliminated by deriving a 

confidence interval fran the sample C.D.F. defined by 

if y < y (1) 

FCy) = -

- ^1 ^ 2  
^ (i-j) Hp" 

^1 %2 

if 7(1) < y < yci+i) and y^^) = y^j^ 

if /(i) 1. y < yfi+i) and y^^) yz^^^ 

(3.74) 

The graph of F(y) is illustrated in Figure 6. Note that the "jwips" 

corresponding to observations fran Strata I and II are = (N^/n^N) and 

Jl ~ ' respectively. If proportional sample size allocation is 

used, these "junps" are equal. 

To each pair (a,6) where < a < g < 1 and = max{(N^/n^N), 

(^2^2^)}, there corresponds a unique pair of integers (k,r) where 

1 < k < r < n such that 

F(y(k)) 1 a < F(yck+1)) 

F(y[r-1)) < 6 < F(yr^,) 
-

(3.75) 

where F(y_^) = 0, F(y ) = 1. 
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F (y) 

1  --

-i 

a £ 

y 
CD 

- h - — I -
y 

(2)  

-I—^ 4-4?—I—h 

^Oc) ^Ck+l) y(r-l] ^(r) >"(11-1) y(n] 

Figure 6. F(y). (C.D.F. method) 



74 

For given values of a and 3 , the confidence interval for 

is given by where y^^y y^^^ are defined by [3.75). 

Of course, the integers k and r may vary in repeated sampling frcri 

n^. This confidence interval procedure is illustrated in Figure 6. For 

any value of S in the shaded region on the Y-axis, the uçper confidence 

limit is y^^g; similarly for any value of a in the shaded region, 

the lower confidence limit is • 

In the case of proportional allocation, the junps and j2 will, 

of course, be equal, and in this case, the integers k and r will not 

vaiy for fixed a and S. Hence, for proportional allocation, the C.D.F. 

method is equivalent to the combined method. 

2. A lower bound for the confidence coefficient 

Before determining the exact confidence coefficient associated ivith 

the confidence interval defined in the previous subsection, a lower bound 

for the confidence coefficient is deri\'ed. This ic.-.'sr bound should pro

vide a good approximation for the confidence coefficient. 

Hyfk, ' ̂Cr)' -

_> P{a <_ F(Yj.^^) < g} 

= < g} - PfFTYVt)) < a} (3.76) 

where the inequality in (3.76) follows from the definitions given in 

(3.75). 
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Then, 

min[t,N^] 

Tiiin[t,N2] 

(3.77) 

Let F(Y^^p = [m^(t)n^/n^n] + [m^ (t)N2/n2N] where m^(t) = 'denotes 

the nimber of observations in the sample fron St rat un i with Y <_ 

then 

PfFPft,) < S I =Yjy,) 

r fj \ i\-j yt-j\ 

m ̂,m2=0lmJ \^2"^lj m-

fNo-(t-j)\ 

n2-m2 

''l pi 

v^i/rz/ 

(3.78) 

where ^ denotes svnmation over all non-negative integers m^ and m2 

such that / • Oxjiij. j.ai ± y  y 

P(F(Y(t)) < 0 I Y(t) ^2(j*)^ 

i *\ 

m 

S* r V V :  

I,m2=0lin2* \ n2-m2 

/t-j*\/.\-,-(t-j*)\ //n \/x 
. X 

l\l*'2 

\ ̂ 1 j\ ^1-^1 

(3.79) 

Then, (3.77) and, finally, (3.76) may be obtained by determining 

P{Y(t) ~ "^l(j)^ = ^2(j*)^' several possibilities have been 

considered in Section B. 
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lu Table 11 we give examples of these lower bounds under the a:,sump

tion of "random" stratification for P{FiY^^^) < 6} for a) = 50, 

n^ = n2 = 5, t = 50; b) = N2 = 50, n^ = 2, n2 = 8, t = 50; 

c) = 20, N2 = 80, n^ = 5, n^ = 5, t = 50, for 6 = .2 (.1) 1.0. 

The results for = 20, N2 = 80, n^ = 2, n2 = 8, t = 50 are identical 

to case a). 

Table 11. P{FCY(5Q) < B) 

N^=50, N2=50 N^=50, N2=50 N^=20, N2=80 

S n^= 5, n2= 5 n^= 2, n2= 8 n^= 5, n2= 5 

.2 .0078 .0828 .0307 

.3 .0458 .1547 .1503 

.4 .1589 .3068 .2367 

.5 .3703 .4271 .5000 

.6 .6297 .6932 .6627 

.7 .8411 .8453 .8497 

.8 .9542 .9172 .9471 

.9 .9922 .9936 .9873 
1.0 .9994 .9994 .9994 

3. Derivation of tlie exact confidence coefficient 

For greater clarity, denote the uçiper confidence limit, by 

y y and the lower confidence limit, y , by y^. Tlien, 

To determine P{yy <_ } one must first enunerate the possible 
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"values" of U. Consider the set A of non-negative integers and 

U2 such that + ^2^2 L (^"1) ^ (of course) 

^(u^+u^) ^ ̂ l(u|)' the set B of non-negative integers u^' and 

u^' such that uj'j^+ u^'jz >. B,u^'j^+ (u^'-l)j2 < B and = 

72(-^,) where = N^/n^N. The sets A and B include all of the 

values of U = u^+ U2 as well as an identification of the stratum frcm 

which the (u^+ U2)-th order statistic (in the combined sample) canes. 

Thus, 

P{yi 

t-(u^+U^) 

° (U'?U^)SA i=0 

t- (u^'+u^') 

, ..I _ .1 PfYrijj i+ijin = 
luj',U2';Ea 1=0 " i z - " " 

'  ( u i ! u ; ) E A  J o  = ^ ( t - i ) l  

t-1 

i=o "'(t-i) ̂ 

^(t-i) " ̂2(j*)} P{Y(t_i) = ^2(j*)^ • (3.81) 
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Then, it is easily seen that 

" ̂(t-i) |Y(t-i] ^l(j) 

and, 

(3.82) 

- ̂ (t-i)'^(t-i) ^2(j*) 

n^-u^' // ' (3.83) 

Thus, —may be obtained fron (3.82) and (3.83) and a 

determination of } and = Y2(j*)) ' 

To find the components of the set A, note that for each value of 

^2 " 0,1,..., Rg), if 0 <_ {[(B-u^j^j'/j^l+l} n^, 

then ([(6-112^2^ /j^]+l,u^)cA. Similarly, for each value of u^ ' 

(u^' = 0, 1 , . . . ,  n^), if 0 < {[(s-u^'j^) /j2]+l} £^2, then 

(U-, [(6-u^'jp7j2]^l)eB. 

To determine Pfy, < Y,.^} one must enumerate the possible "value; 
L — 

of L. Consider the set C of non-negative integers and such 

that ^2^2 — ^2^2 ^ (of course), 

y ^  ^ l ( j i ' + l ) '  - ^ s o ,  s e t  D  c o n s i s t s  o f  t h o s e  n o n - n e g a t i v e  
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integers 2^' and such that ^i'^1 

and (of course), y(&^,+2^,+i) = sets C and D include 

all of the values of L = + &2 as well as an identification of the 

stratim from which the (a^+k^+l^-th order statistic (in the conbined 

sample) comes. Thus, 

t- ( ({+ %) N m 

PCyr = I I I I I 
(^>^)eC i=0 j=l m=t-i+l p=]+l 

P{y(%î+2^) = Y(t-i) " ̂l(j) 

nriUi^ii =Yi(p)nY^(^, 

t-i m 

I Z .1 I I 
C 1 j*=l m p=t-i-j*+l 

p{y(Al+2^) Y(t-i)'T^ 

^1(^^+1) " ̂ l(p)^ ̂ l(p) = 

m 

I  I I I  I  
(^^'j^-2')eD i j m p*=t-i-j+l 

p{y(&i'+&2') = ^(t-i) ̂  Y (t-i) " ̂i(j) 

^ y2(2^'+l) ̂  ̂ 2(p*r ̂ 2(p*) = ^(m)^ 
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m 

I I Z Z I 
D i j* m p*=j*+l 

H  ^ ^ ^ ^, 1 C 1 "1 m p 

j-l\/ N^-p ft-i-j y^2~ 

\ %2 /\ "2-12 

X ^iCp) ^0%)} 

I I I I I 
c i j* m p 

N'2- (m-p) 

"2-^2 

>! P'^2(j*) ^(t-i)'^ ^l(p) ° 

I I I I I /.-V^i-c-p' 

D i 3 m D^Uy-lJl n.-îU 
- \ 1 1\ 1 1 

/t-i-jW Nz-p* 

2% 

A À 1 I I 
D i j* m 

/i *-1\./ N̂ -p* \ / t - i - j  -  (r.-

4  
icV 

v'^ y 

*1-"] 

X PtYzCj*) " ̂ (t-i)'^ ̂ 2(P*) - ̂ Cm)) ' 
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To find the conponents of the set C, note that for eadi value of 2% 

= 0, 1,..., n2), if 0 [ (cx ^n^ - 1, tlien 

([(a - ^2^ E C. Similarly, for each value of 2!^ (2,^ = 0,1,..., 

np, if 0 _c [(a - £'^j^)/j2] jçn^ - 1, then , [(a " ^/j2) 1 ) e D. 

The conputational expressions for '^l(p) ~ "^(111/ ' 

etc., are now derived. They are rather involved, ccmputationally-wise, 

and no attempt has been made to program them. 

Simplifying our notation, we derive an expression for 

Yft') = YlCi)' ' etc-

under the assumption will not explicitly wite this 

assuiption dcwn; it is assuned to be implicit in each expression. 

Now, 

" ̂ 20)^ ̂(t'] = T&'Cj')) 

2, A' = 1, 2 . 

The first term has been derived earlier. 

For the second tern, we have 

<  Y o r .  . }  
^iCs) < ^ZCu) 
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f P{Yi(s+d)< Y2(u)< Yi(s+d+l]lY(t)=Y2[j)) 

^ ^£'(j')'^l(s+d)^ ̂ 2Cu)^ ̂ l(s+d+iyn Y(t) ^ 

(3.86) 
where 

r* - ^(^l(s+d)< ̂ 2(u)' Yl(5+d+l)lY[t)= _ (3,87) 

I P(Yi(s+d)< ^2Cu)^ ̂ lCs+d+l)'^(t)" 

Using a technique previously employed, we spell out the various cases for 

^^^Ct') " '^iCs+d) ^2(u) ^ ̂ l(s+d+l)^ ̂ (t) " 

Case I Case II Case III Case IV 

=YlCj) =Yi(j) Y(t] =^2(3) Y(t) =Y2[j) 

^(t')"^l(j') ̂ (t')"^2(j') ̂ (t')"^l(j') ̂ Ct')=^2Cj') 

j - J  - C  T  - p  - p  w O ' w* ' Si* i—< -» i-, « 

t' < S + u + d 2 J 4 

t < s + u + d Er E, E^ Eq 
t ' = s + u + d  ^  °  ^  

t < s + u + d  E n  E , „  E  TT 

t' > s + u + d 9 "10 11 "12 

t = s  +  u +  d  E ,  ̂  E  T: c 
13 "14 "15 "16 

t > s + u + d E^g E^g 

t' > s + u + d 

t > s + u + d 
t' > s + u + d 
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For each of these twenty cases we compute 

(f) 'îO)'' h(s*d)' ̂2Cu)' "lCs+d*lJ 
Y, 

= P{E.} . 

Case 1. P{E,} 
f-t-l' ̂s+d+Cu-l)-t'\ A+d+[u-l)-t\ 

s+d-j' s+d-j 

Case 2. P{E^} = | ii 
t'-t-l Ws+d+(u-l)-t'\ ̂ s+d+(u-l)-t\ 

(u-l)-j' |/\Cu-l)-Ct-j)j 

Case 3. F^E^} 

Case 4. P{E^} = 

/t'-t-l \ /s+d+Cu-l)-t'\ A+d+(u-l)-t\ 

-Ct-j)-]/\ s+d-j' l/\s+d-(t-j) 

ft'-t-l) 

ir-j-lj 

^s+d+(u-l)-t'\ /s+d+(u-l)-t^ 

(u-D-j'l/^ (u-l)-j 

Case 5. P{Eg} = 0 

Case 6. P{E^} = < 
1 if j ' = u 

0 otherwise 

Case 7. P{E^} = 0 

Case 8. P{Eg} 
1 if j ' = u 

0 otherwise 

Case 9. P{Eg} 
[f - (s+d+u) -l\ 

lj'-(s+d)-l 

N-t' \ //N-(s+d'^u)] 

//\V (s+d) 
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Case 10. P^E q̂} = 
/t ' - (s+d+u) -1^ 

j'-u-l 

N-t' fN- (s+d+u)\ 
(3.97) 

Case 11. P{E^^} = P{Eg} (3.98) 

Case 12. P{E^2^ = ^^^10^ (3.99) 

Case 13. = 0 (3.100) 

Case 14. P(=14} = 0 

Case 15. P{E^g} = = < 

t'-t-l \/N-t'\ 

^j'-(s+d)-lj^Nl-j^ 

N-t 

Ni-(s+d)j 

I 0 

' /f-t-lW N-t'\ // N-t\ 

1 _i n V _ i  I  /  Iv  _ -  I  
Case 16. P{E^^} =  < ^  V  • >  ' I V ' 2  y \"2 -'/ 

if j=u 

otherwise 

if j=u 

otherwise 

(3.101) 

(3.102) 

(3.103) 

Case 17. P{E^^} 

Case 18. P{E^g} 

Case 19. P{E,g} 

Jt'-t-V N-t'\ 

^%1-i 

N-t\ 

/ 

't'-t-l WN-t'WN-t \ 

,j'<t-j)-l (N2-j'j/(\^-(t-j)j 

= ( 

It- ' _ t-1 /  V-

V ' - C t - j ) - ;  

. ^ A  i  v _ ^  X-t'\„' N-t ^ 

l^i-j 

(3.104) 

(3.105) 

(3.106) 
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X-t 
Case 20. P{E2Q} = 

N-t 
(3.107) 

In order to find ~ must multiply 

each of the above by P{D^}/T P{D^} . In Section B we gave the expression 

for P{D^} . 

In the case of "Randan" Stratification, 

v-b-1 
(3.107a) 

^2(3') 

v-b-1 

j'-(b-j)-l/ \NVj' 

N-v 

7 ' 

(3.107b) 

^l(j') Y(v)) 

ib-j/\j'-(b-j)-l 
(3.107c) 

. M ' v-b-1^ N-v ̂ 

^r-rij 
(3.107d) 
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4. Woodruff's Technique 

As a special case of these results, wc refer to Woodruff [1952, 

pp. 635-646]. On page 642 of his article we read: 

"In conclusion, it appears that confidence intervals for the 
median and other quanti les can be approximated for any samp
ling design where the variance of itans less than a stated 
value can be acceptably estimated (in general, where large 
samples are involved)." 

The technique employed by Woodruff is similar to that i\h.ich we have 

been discussing, with the following exceptions. 

The discreteness of the empirical C.D.F. is ignored, and hence the 

inequality which we display in (3.76) is eliminated. 

Woodruff makes no statements concerning confidence coefficients for 

his intervals. Instead, his approach--using the median for an example--

is to pick for a and S the values (.5 - ka ) and (.5 + kc^) 

2 
respectively, where is the variance of the proportion of items in 

the sample less than the true median, and k is a positive constant. 

Hence, he talks about one, two, and three standard deviation confidence 

interv^als for a quanti le, but unless he makes an assumption such as the 

percentage of items in the sample which are less than the population 

quantile follows a normal distribution, no exact confidence coefficients 

can be given. 

2 
Also, since in most cases, can only be estimated, this also puts 

some variability into the choosing of a and B . 
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Table 12 lists the exact confidence coefficients for the median for 

(a,S) = (.5 - ko g, .5+ka g) where k = 1 and. 2, where we are taking 

a simple random sample of size 9 fran a population of sizes N = 15, 27, 

99, 198. 

Table 12. P{.5-kap _< < .S+ko^} 

N n t P{. 5-o^F (Y ) <. 5+Op} P{.5-2o <F(Y, N)<.5+2o } 
p— It J P 

15 9 8 .1091 .6853 .9594 

27 9 14 .1387 .5803 .8968 

99 9 50 .1597 .5130 .9692 

198 9 99 .1633 .5024 .9651 

Applying Woodruff's method to our C.D.F. technique, he would say 

P{-1.96 < ^ < 1.96} = .95 (3.109) 

or 

P{E[F) - 1.96 <F < E(F) + 1.96 Gp} = .95 . (3.110) 

That is, choosing 

a = E(F) - 1.96 Op 

(3.111) 

2 = E(F) + 1.96 cp 



would yield approximately a 95% confidence interval. Using for E(F) 

the quantile we are considering (e.g., E(F) = .5 for the median), we 

now must cane iç with a p. 

Now 

(3.112) F(y) = 
N 

where 

^£i ~ 

" i=l " "2 i=l 

0 otherwise , 

^S,(i) being the i-th sangle element frcm the 2-th stratum. Then, 

Var(x^) = (1 - n^^), where <.y}. Ignoring the F.P.C., 

Var[FCy)l ^ ^ (3.113) 

v^ere = proportion of elements in Stratum i (£.=1,2) with 

V , V 

"Ki) -'(tO" 

In Monte Carlo Study III (see Section E.7) the actual values for 

and ^2 ^ere .6 and .2, respectively. Hence, = .187. In note 7 

in Section E.7, we discuss the Monte Carlo findings in terms of the 

Woodruff technique. 

Of course, if P^ and P^ were unknown, would have to be 

estimated from the sangle data. 
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D. The Separate Strata Method 

When it is known that, for example, an alternative 

form of confidence interval may be advantageous in some situations. 

For instance, let and ^2 be odd and consider a confidence interval 

for j " (approximately) the finite population median. If 

+l]/2) ^2([N +l]/2) (i'G", the median within Stratum I is less 

than the median within Stratum II), it is easily shown that 

^([N^+N2]/23 -^lC[Nyi]/2) ^([N-+N2]/2) -^2C[N2-1]/2)- ^hen, a 

confidence interval for Y^^^ ^^2) the foim 'y2(r)^ niay be 

desirable. In Section D.l, the confidence coefficient associated with 

a scriev4iat more general form of confidence interval for Y^^^ is 

considered: If y^^^ < y2[r)' confidence interval is [>"1(1^)'>'2(r)^ ' 

whereas if yg< y^Q^ the interval is [73(r)'>^1 (k) ̂ ' 

1 irpf"? rvr* "f-T-ia 

The confidence coefficient associated with the confidence interval 

procedure defined in the previous paragraph is given by 

^^^iCk) -^(t) -^2(r)^ ̂  ̂ ^^2(r) -^'(t) -^Kk)' ' (3.114) 

Now, 

-^(t) -^2(r)^ ^^^2Cr) -^(t) -^'iCk) 

'̂1 

iil(ptn(k) - Y(t) - y2(r)iy(t) = YlCj) 
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= P(Yct) = ?!(])} 

^2 

•" ^^^2Cr) -^(t) -^l(k)l^(t) " ̂2Cj*)^^ 

^1 

-^Ct)I^Ct) ' -^Ct)!^Ct) = ^iCii 

" ̂^y2cr)-^ct)i^ct) = ^icj)^^^^ick] -^ct)'^ct) " 

^ " ̂ Kj)^ 

N, 

^2Cj*)}^^)'2M:^(t)l^ct) ^2rj*y' 

+ P{y2(r]:^(t)i'^(t)" ̂ 2Ci*]^^^:>'l(k)^(t)I^Ct)" ̂ 2Cj*)^ 

xP{Y^^^=Y2^j*^} ' 

Looking at these terms individually, P{Y^^^ = Y^^^^} and 

P{Y^^^ = Y^^j} have been given earlier in (3.14), (3.15), (3.41), and 

(3.44) under the assumptions of "randan" stratification and 

(^1(5) < Y2[u)f . 
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Also, 

i=max[k, j+n^-N^j 

^^^2 M ^icj)^ 

mi]i[t-j ,n] 

.1 
i=r 

t-j' 

\ i 

/>. 
Ng-Ct-j) 

\ ^2'^ 

^ • ̂ ^^ICk) -^l(j-l)^ 

min r i -1 .n 1 /-t-1\/\' - T 4 -11\ i 
=  1  _  r  -  I  I  -  -  • •  

i=k n^-i 

p(y2CT) - " Yici)} 

Similarly, 

p t y i c k )  - T 2 C j * ) )  

min[n^,t-j*] ft-j *\ 

i=k 

fN^-Ct-j*) 

n^-i 



minfjA.n?] 

i=k 

/j*\/N,-j*\ IIk\ 
1 Mn,-1 j j  y n ^ j  

(3.121) 

Pf^iCk) ̂  

= 1 - P{v (yifk) - ^2(j*)) (3.122) 

^"'^2(10 - ̂\t)|Y(t) = 

min[j*-l,n_] j*-l] 
= 1 - j 

i=r 

'\L-(j*-l) 

V ^2'1 

(3.123) 

If the probability that < y^^^^ is small, an approximation 

for the confidence coefficient, (3.114), is given by 

- ̂(t) - ̂2(r) ̂ Hfi 1 ^ • P(y?rTi ^ ^rtV'* (3.124) i(k) - (t) 2(r) '(t) 

Note that each of the terms of the right-hand side of (3.124) can be 

expressed in a relatively simple form. For the first term, 

//x,\ Î "1 l : \  

ikii ^n^-i;/ \n. 

t ^1 /t-i*\ik'.-(t-j* 

j  
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Similarly, 

t k  

2Cr Xt] 
rzf 

(3.126) 

2. A lower bound for the confidence coefficient 

One may obtain a lower bound for the confidence coefficient asso

ciated with the confidence interval ^2(r)^ "^(t) i^: 

is assimed that < Y2 . This lower bound may be evaluated very 

easily, and, therefore, should be useful in many applications. Three 

cases must be considered: 

Case I. u<_t£S + u-l. 

With u_<t_<s + u- 1, it is easily shown that Y,^^ >_ Y^ +2] 

^(t) -^2(u-l)* \ denote the event "Yifk) 1 ̂l(t-u+l)"' 

A2 the event "Y2(r) — ̂ 2 (u)"' it can be shown that A^, A2, and 

yiCk) •i>'2Cr) for ajiy value of 

in the intervals specified above. Thus, 

- ̂2(r)' - ̂l''2 (3.127) 

where Pj = PJAj) = i and = PfA^} = 

P{y2^r) — ̂ 2(u^^" should be noted that both and ?2 may be 



evaluated very easily (see (2.7)) since each of and refers 

to simple random sampling fran a single stratum. 

Case II. s + u + l^t^s+N^ 

With s + u + 1 £ t s + it is easily shewn that ^l(s+l) 

and - ̂2(t-s)" the event ^ ̂i(s)"' 

the event "y^ it can be shown that 

^l(s) ̂  '^2(u) ^'l(k) -^(t) -^2(r] 

Y^^x in the intervals specified above. Thus, 

P;>-lW£^'tt)i>'2(r)>lP^f2 (3.128) 

where = PfB^: . ! and I'j - PfBj) = P(y2(r) i ̂2(t-s)'• 

Again, P* and P* are easy to evaluate. 

Case III, t = s + u 

'.Vith Y^^_^ < Y2 , Y^^-, = Y^. Thus, a confidence inter^/al cf the 

form [y?, y?is appropriate for this case. 

3. Tables for the Separate Strata '^fethod 

In Tables 13-17 we tabulate the probability of coverage of Y^^^ by 

the interval determined by y^^^^ and y^^^., under the assumption 

Ts) ^2 (u) ' cases are completely anal ogous to Tables 5-9 in Sec-
V 

tion C on the Combined method. Notationally, "P{ {y^ . ,y^ , .} covers 
i (_Ky ^ ir J 

Y(t^ 1^1(5) }" means "the probability that the inter'/al determined by 

>'l(k) >'2(r) ==•••='•=' "(t)' S^ver. 
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Table 13. (k). Xzfj.) > =°veTS Y(t) < ^zCu) ' 

= N2 = 10, = n2 = 3, t = 4 

k s u= 1 
r = 1 

5 10 1 
r = 2 

5 10 1 
r = 3 

5 10 

1 1 .667 .664 .667 .619 .564 .560 .596 .520 .512 
5 .833 .667 .667 .833 .619 .561 .833 .596 .513 
10 .833 .695 .667 .833 .681 .575 .833 .671 .533 

2 1 .501 .556 .560 .174 .171 .174 .126 .092 .091 
5 .333 .502 .559 .333 .174 .173 .333 .126 .092 
10 .333 .447 .546 .333 .200 .174 .333 .176 .100 

3 1 .427 .506 .512 .057 .087 .091 .007 .007 .007 
5 .033 .427 .511 .033 .056 .091 .033 .007 .007 
10 .033 .327 .491 .033 .037 .083 .033 .011 .007 

Table 14. . yjfr) > covers Y(t) I^^Us) ' ̂2(u) ' 

= N2 = 10, = n2 = 3, t = 8 

V C 
r = 1 

c 1 n 1 
r = 2 

5 X  

r = 3 
5 _LU 

1 1 .434 .430 .434 .745 .716 .715 .838 .809 .805 
5 .637 .434 .433 .939 .792 .715 .960 .891 .806 
10 1.000 .531 .434 1.000 .882 .733 1.000 .943 .826 

2 1 .684 .711 .715 .549 .546 .549 .416 .382 .380 
5 .645 .637 .714 .682 .549 .548 .663 .480 .381 
10 .933 .627 .697 .933 .639 .549 .933 .617 .404 

3 1 .772 .803 .805 .344 .375 .380 .097 .096 .097 
5 .574 .719 .804 .248 .279 .379 .181 .097 .097 
10 .467 .611 .784 .467 .252 .356 .467 .159 .097 



Table 15. y2(^)} covers ) 

Ni = = 10, = 2, = 4, t = 4 

r = l  r  =  2  r = 3  r = 4  
k s u= 1 5 10 1 5 10 1 5 10 1 5 10 

1 1 .649 .677 .681 .499 .481 .482 .442 .384 .380 .439 .375 .369 
5 .667 .650 .681 .667 .498 .482 .667 .442 .381 .667 .438 .369 

10 .667 .638 .673 .667 .535 .486 .667 .507 .396 .667 .505 .386 

2 1 '.555 .635 .640 .141 .186 .192 .050 .044 .045 .046 .032 .032 
5 .133 . 556 .639 .133 .141 .192 .133 .050 .045 .133 .046 .032 

10 .133 .451 .619 .133 .115 .180 .133 .067 .046 .133 .066 .035 

Table 16. /zCr)' ^t) l^l(s) ' ''2(u) ' 

Ni = N2 = 10, Hi = 2, = 4, t = 8 

r  -  1  r = 2  r = 3  r = 4  
k s 11= 1 5 10 1 5 10 1 5 10 1 5 10 

1 1 .472 .486 .490 .653 .638 .639 .706 .681 .679 .694 .662 .658 
S .572 .445 .489 .844 .670 .639 .862 .751 .680 .860 .755 .659 

10 .978 .494 .480 .978 .770 .646 .978 .833 .696 .978 .835 .682 

2 1 .807 .835 .837 .550 .584 .589 .274 .280 .283 .180 .162 .161 
5 .650 .762 . 836 .439 .480 .588 .347 .258 .283 .340 .214 .161 

10 .622 .675 .818 .622 .440 .563 .622 .322 .277 .622 .308 .174 
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Table 17. ^i(yïck)' covers 
^(t) (u)^ 

II 

lO
 II 10, n. II 4^
 

= 2, t = 8 

r = 1 r = 2 
k s u= 1 5 10 1 5 10 

1 1 .508 .489 .490 .867 .840 .837 
5 .743 .534 .490 .983 .912 .838 
10 1.000 .642 .500 1.000 .958 .855 

2 1 .625 .636 .639 .628 .591 .589 
5 .722 .608 .639 .864 .697 .590 

10 1.000 .668 .632 1.000 .819 .615 

3 1 .652 .676 .679 .293 .282 .283 
5 .594 .608 .679 .475 .309 .283 
10 .867 .594 .663 .867 .431 .290 

4 1 .622 .655 .658 .142 .158 .161 
5 .422 .561 .657 .113 .108 .160 
10 .333 .457 .634 .333 .109 .148 

In studying these tables, we note sane interesting points. 

1. In Tables 13 and 14, for (s,u) = (1,10) (essentially random 

stratification), the probabilities associated with Ck,r) = (a,b) are 

equal to those for Ck,r) = (b,a), a = 1, 2, 3, b = 1, 2, 3. This is 

due to the fact that, for random stratification, _< 1 = 

Piy^Q^) ^(t)^ under proportional allocation. 

2. In Table 13, the entries for any fixed k and (s,u) pair are 

non-increasing as r increases. This is due to the fact that, while 

increasing r does increase the length of the confidence interval 

^^l(k) ' ̂2(r)^' ^3me time it decreases the length of [y2(r)'^l(k)^' 

Hence, since we are working with a low quantile (t = 4), the interval 
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'•^2(r)' ^iQc)^ will cover less often, and so decrease the proba

bility of coverage. Similar conments can be made for the remaining 

tables. 

3. The entries for a fixed Ck,r) pair differ considerably for 

various combinations of (s,u). Considerable gains (or losses) in con

fidence coefficients are possible. Hence, if good estimates of (s,u) 

are known, considerable gain can be made in the coefficients using the 

"separate" technique. 

4. Comparing Tables 16 and 17, in the entries for (s,u] = (1,10), 

for Ck,r) = (a,b) in Table 16 and (k,r) = (b,a) in Table 17, 

a=l, 2, 3, 4; b=l, 2; we have equality in confidence coefficients. 

Keeping in mind that (s,u) = (1,10) corresponds to random stratifi

cation, this result is not surprising. 

5. In all tables, the entries for (s,u) = (10,1) (complete order

ing of strata), the confidence coefficient is constant for k fixed, 

is greater than Y^^^ and the confidence interval depends only on y^^^^ 

E. Methods of comparing the alternative procedures 

Using any of the confidence interval procedures suggested in 

Chapters II and III one may obtain a confidence interval with known 

confidence coefficient. However, it is not apparent which of the methods 

to use. First, given that a stratified simple randan sample is to be 

selected, the "combined strata" approach, the sample C.D.F. method, and 

the "separate strata" approach should be compared. For instance, one 
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may wish to determine his "loss" by using the sirçler "combined strata" 

approach rather than the C.D.F. method when proportional sample size 

allocation has not been used. Second, it is desirable to coipare simple 

randan with stratified simple random sampling. 

Making assumptions comparable to those used in deriving the confi

dence coefficients, one may compare (1) simple random with stratified 

simple random sampling, and (2) the three confidence interval methods 

for stratified sampling. 

1. Simple random sampling vs. the "combined" method 

We first consider the comparison of confidence intervals obtained by 

using (a) sinçle random sampling, and (b) stratified simple random 

sampling with the combined method. For simplicity, we consider one-sided 

confidence intervals for let r be such that y^^^} = y ,  

in the simple random sampling method, and r' be such that 

2 y} = Y in the combined method. Then, 

Ihe first term has been derived earlier in this Chapter in (3.8) ff. 

Also, 

2. Simple random sampling vs. the C.D.F. method 

Turning to the comparison of confidence intervals obtained by using 

(a) simple random sampling, and (b) stratified simple random sampling 

X- fn-r) 

= ,1 P'y(T') - y(r)iy{r) = ^(v)' "^Cr) = ^v) > ' 

(3.129) 

(3.130) 
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with the C.D.F. method, we have: let r and g be chosen so that 

} - y and _< y^} = y . Then, to compare the two 

intervals (one-sided) one may use Pfy^ ̂  }• 

p'fu y(T)) ' °''(vj 

where is given in (3.130) and P{yy ̂  Y^^^} may be 

obtained fron (3.81). 

3. Simple random sampling vs. the Separate method 

Let r and r' be chosen so that PIŶ ^̂  _< Ŷ Ĝ ) = Y and 

P'Y(t) - fzCr')) = 

P^>'2Cr') i y(r) ' =  X  '  '  

(3.132) 

The latter tern is given in (3.130), and 

P{y2Cr.) = Z '''^2(r')l\v)l^(v)=^l(j)^ P(Y(v)=YlCi]} 

* j*^''y2(r'):y(v)iYCv)=Y2(j*)} . 

(3.133) 
1 O 

The latter terms correspond to P{B̂ } and P{BT*} as given in (3.14) 

and (3.15) for "randcm" stratification and (3.41) and (3.42) for 

'^l(s) is given in (3.117), 

and ''•''zcr") -''(y)'''(v) ° ̂2Cj*) is given in (3.121). 
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4. Combined method vs. the C.D.F. method 

Let be such that ^ ̂  ^ the combined method, 

and 3 such that ^ y^} = y in the C.D.F. method. We then have 

P{yu 1 ' I 1 Y(v)ly[T) = Pf^Cr) = ^(v)' • (3-134) 

Nc^r, 

= ^(v)> ' 1 : ^y-l)> ' (3.135) 

which can be found in Section B of this chapter. 

is given in (3.81). 

5. C.D.F. technique vs. separate strata method 

Let y^^^g be such that — ̂ 2 [r) ̂ ^ and 3 such that 

^ Yy} - Y. Then 

- ̂2(r) ̂ ^ - ̂Cv) '^2Cr) ^ ̂ (v) ' ̂̂ ^2(r) ̂  ̂ (v) ̂ ' (3-136) 

The first ten?, in the suz^nation is contained in (3.61), and 

^^2(r) ' "(V) > ' ""'zw = ^2(p) i^2(p) = ^(v)' P'^2(p) = 

= ir"' 
P I r-1, %')/0 

where P } is found in Section 9 of this chapter. 

6. Comparison of SRS confidence intervals with the separate strata 

technique ̂  2 sided 

We wish to compare the SRS confidence interval [y, y^^^] to 

the separate strata interval ygr^,)] or [yg^r'), >'i(k*)^'^ 
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where k, r, k', and r' are picked so that the confidence coefficients 

of the two intervals are approximately the same. 

In particular we want to find 

l^lCk') - y(r)fT' y^k) - ̂ZCr') -^(r)^ 

= P 
Ck) - y 

i(k') 

2(r') 

(3.138) 

This is interpreted as meaning the probability if the separate strata 

confidence interval is included inside the SRS confidence interval. 

fzCr') 
ycr)) 

% - - y(r)iyck) ^Cv)' 

r - u  .  
l U  ^  VJ  

2Cr') 

^ Ycb)^ y(r)= Yfv)} ' 

[3.139] 

Looking at the terms individually, we have 

'b-l\ /v-b-l\/ N-v\ //N\ 

P'^Ck) = ^(b)^ >'(r) = Y(v)' ' 
1 k-1/\r-k-l/\ n-r// \nJ 

(3.140) 



Il) 3 

^ICk') 

^2(r') 
-^Cv)' 

= I I. 1 
] 3 

^ICk'] 

yzCr') 

* ^Cb)'^^l(j') ^Cv)^ 

"  1 :  y^Cr') 
- ̂2(i')) 

X Yzcj,) 

fiCk') 

y2(r') 
-Yi(j')) 

y 
ICk^ 

y?r^i^ 
2 _  -  j  

X P %2(j) Yz^j,) Y(^g } (3.141) 

In this expression, the formulas for 

^^i(j) =^Cb)^^i'(jn = Y M ' • i' ' 

are derived in the Section C.3. under the assumption < "^2(u) 
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^ICk') 

^ZCr') 

PiVlQ^.) E Yi(j')]} 

* P'tTzCr'] ^ [^ZCb-j+l)' ̂ ZCv-j')]) 

Now, 

^^^'iQc') -^ICj')^ • ̂ ^^IQc') - ̂lCj-1)} 

P{y2(-J..) E [Y2[b-j+iy ^2(v-j')]) 

P(y2(r') -^2Cb-il 

Similarly, 

P{Y 
Uj) -

y 

y 
2(r') 

-^2 Ci')) 

= pp/v % V l_D'>r ^ V \ 
" »'l(k') - -l(v-j')^ * ^aCk') - 'l(j-l)' 



105 

y2(r') 

^ -^2(v-j')^ ' ̂̂̂2(r') -^2(j-l)^^ ' (3.146) 

and 

yi(k') 

y2(r') 

^^^^l(k') -^ICv-j')^ " ̂ ''^ick') -^iCb-j)'] 

X [P{y2[r'] ' ̂̂^2frM -( ] ' )  Y, 
^r') - '2(j-l) 

, > ]  [3.147) 

The expressions for each of the component parts of the form 

P{yi^a) — ̂ i(c)^ ^Te given in Chapter II. 

Comparing airemative methods by evaluating expressions such as 

P{yy_< y^^^} in (3.151) seems to be a formidable numerical task: for 

given values of t and Y> it is necessary to determine those values of 

(t) - 'I' 
y,,} = Y. Then r and g satisfying <_ y. .} = y and P{Y 

for each such (r,3), (3.131) must be evaluated. 

A conmon way of choosing among alternative (two-sided) confidence 

interval procedures is to compare their expected lengths. However, tliis 

requires that for each stratum the distribution of Y must be specified. 

Further, even for random sampling, simple (exact) expressions for 
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etc., are available only for a few distributions. Thus, it is 

even difficult to give general rules for choosing (in simple random 

sampling) among those values of k and r for which P(y,^. _< <_ 

y^^g} = y where y and t are specified. Hence, we turn to Monte 

Carlo studies to canpare the methods. 

7. Monte Carlo results--two strata 

Several Monte Carlo studies were performed to compare the teduiiques 

we have suggested. In Monte Carlo Study I, the fixed parameters were 

N = 20, n = 6, and t = 8. The population was = i, 

i = 1,..., 20. For the Simple Random Sample technique, discussed in 

Chapter II, a S.R.S. of size 6 was selected for and then for pairs 

Ck,r) = (1,3), (1,4), (1,5), (2,5), (2,6), and (3,6), the proportion of 

times the random interval covered Y, , = Y,.. = 8 was calculated, alon^ 
iLI LoJ 

with the mean interval length and the standard error of the mean length. 

Table 18 gives the results of this study for 1000 replications. 

- w ^ .w ^ w ia y ^ L. 1 Cl u i. X C i Ol. W IC L.i.Oi i VVcl^ 

required. In Monte Carlo Study II, this was achieved by first rajidcsnly 

1 2 
Stratifying in Study I into and for Strata I and II, 

respectively, and then checking if the stratification met the specifi

cation Y^^g^ < Y2fy\, s and u predetermined. If not, another 

random stratification was made, and the specification was checked again. 

Upon achieving the appropriate specification, simple randan samples of 

1 2 
sizes n^ = 4 and n2 = 2 were drawn from and respectively. 

The three techniques of the "Conbined", "Separate", and "C.D.P." methods 

were then applied, in each case recording the coverage or non-coverage 
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Table 18. Monte Carlo Study I - S.R.S. results 

Yjy • i, t . 8 

k r P* Pe 
ic s.d.d 

1 3 .642 .640 6.18 .090 
1 4 .904 .898 9.09 .092 
1 5 .971 .969 12.10 .094 
2 5 .803 .805 8.97 .095 
2 6 .808 .808 11.97 .095 
3 6 .460 .455 8.99 .095 

^proportion of coverages 

^^theoretical proportion of coverages 

'"mean length 

d 
standard error of mean length 

ITO 

I 
—. 7 

i = l 

999[1000) 

of = Y= 8, and the length of the interval. For each stratifi

cation schene the latter process was repeated five times, and then a 

new stratification was made. The entire process was repeated 400 times 

for each parameter pair for the three techniques. The parameters used 

for (s,u) were (1,10) (essentially randan stratification), (5,5), 

and (7,4). Tabic 19 gives the results of this study. 

In Monte Carlo Study III, we employed as data the population of 

the twenty largest cities in the United States in the 1970 census. Ihese 

were stratified into r.vc strata of sizes ten each by the 1940 census 

figures. In Table 20 we list these cities and their populations, as 



Table 19. Monte Carlo Stutly II 

Canlnnod Method 

u k r s.d.^ 

1 10 1 3 .648 .640 6.04 .061 1 1 
2 
1 
2 
1 
2 
1 

1 
2 
1 
2 
1 
2 
1 

^p report ion of coverages 

^theorctical prqiortion of coverages 

''mean length of interval 

^standard error of mean length 

1 
2 
1 
2 
1 
2 
1 

1 3 .648 .640 6.04 .061 1 
1 4 .904 .898 9.04 .067 1 
1 5 .971 .969 12.00 .068 2 
2 4 .730 .735 5.96 .060 2 
2 5 .806 .805 8.93 .068 3 
2 6 .809 .813 11.92 .068 3 
3 6 .445 .455 8.95 .066 4 

1 3 .598 .594 5.70 .060 1 
1 4 .882 .885 8.64 .067 1 
1 5 .973 .975 11.86 .068 2 
2 4 .753 .757 5.94 .061 2 
2 5 .854 .847 9.07 .068 3 
2 6 .864 .858 12.18 .066 3 
3 6 .530 .521 9.31 .068 4 

1 3 .541 .543 5.33 .055 1 
1 4 .880 .872 8.47 .064 1 
1 5 .978 .981 11.40 .069 2 
2 4 .782 .784 5.71 .059 2 
2 5 .895 .893 9.07 .066 3 
2 6 .905 .906 12.36 .066 3 
3 6 .592 .595 9.50 .066 4 

t = 8 

Separate Method C.D. F. Method 

P Pe a s.d. a 3 P X,  s.d. 

.492 .490 5.16 .084 .26 .51 .721 7.44 .073 

.836 .837 10.20 .111 .26 .63 .860 9.75 .077 

.637 .639 5.34 .076 .26 .76 .896 11.68 .077 

.586 .589 7.04 .094 . 26 .88 .918 13.84 .072 

.681 .679 7.15 .093 .38 .76 .745 9.64 .077 

.286 .283 5.40 .077 .38 .88 .752 11.49 .075 

.656 .658 10.19 .109 

.526 .534 5.75 .090 .26 .51 .727 7.30 .071 

.916 .912 11.56 .100 .26 .63 .856 9.81 .077 

.606 .608 4.97 .072 .26 .76 .893 11.55 .079 

.704 .697 8.34 .096 .26 .88 .910 13.39 .072 

.606 .608 6.06 .088 .38 .76 .745 9.64 .078 

.307 .309 5.78 .078 .38 .99 .755 11.33 .072 

.560 .561 8.72 .109 .38 .88 

.630 .636 7.12 .097 .26 .51 .745 7.19 .069 

.960 .961 12.96 .087 .26 .63 .857 9.32 .072 

.650 .656 5.64 .076 .26 .76 .921 11.72 .073 

.827 .823 10.06 .089 .26 .88 .925 13.04 .068 

.582 .580 5.09 .072 .38 .76 .722 9.23 .076 

.430 .420 7.02 .083 .38 .88 .734 10.96 .073 

.462 .454 7.16 .104 

I 
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stratified. One thousand replications of the following procedures were 

performed; the results are found in Table 21. A simple random sample 

of size 6 was drawn fron the entire (unstratified) population, and for 

given Qc,r), the coverage or non-coverage of noted, as well as 

the length of the confidence interval. Then single random samples of 

sizes 4 and 2 were drawn fron Strata I and II, respectively. For fixed 

[k,r) (for the combined method), (for the separate method), 

and (a,s) (for the C.D.F. method), the coverages and lengths were 

recorded. 

Table 20. Monte Carlo Study III - data 

City Stratum I Stratum 

Phoenix 580* 
New Orleans 586 
St. Louis 608 
Memphis 621 
Boston 628 
San Antonio 650 
San Diego 676 
San Francisco 704 
Milwaukee 710 
Cleveland 739 
Indianapolis 743 
Washington, D.C. 76: 
Dallas 836 
Baltimore sr.; 
Houston 1 -71 -

Detroit i'::c 
Philadelphia irc-
Los Angeles 2^82 
Chicago 
New Ynrk 

^populaticr' c"' in 
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Table 21. Monte Carlo Study III 

City Data, t = 8 

S.R.S. Method Combined Method 

r 1^ s.d.^ k r P 1 s.d. 

4 .892 342.10 12.73 1 4 .871 184.96 4.18 
5 .971 958.32 26.24 1 5 .982 569.37 19.13 
5 .807 907.70 25.96 2 5 .923 534.37 18.98 
6 .815 3336.63 82.09 2 6 .936 2572.94 76.43 

^proportion of coverages 

^mean length of interval 

^standard error of mean length 

Table 21. (continued) 

ki rj 

Separate Method 

P 1 s.d. a 

C. 

S 

D.F. Me 

P 

thod 

1 s.d. 

1 1 .620 415.95 20.75 .26 .51 .751 419.21 19.88 
1 2 .974 2573.22 77.79 .26 .63 .888 532.55 18.82 
2 1 .657 393.12 20.36 .26 .76 .931 2592.32 78.11 
2 2 .879 2516.98 77.78 .26 .88 .941 2569.12 75.97 

.38 .76 .699 2500.00 77.21 

.38 .88 .718 2588.81 76.86 



Ill 

Canparing the Monte Carlo studies, several points are obvious. 

1. The (s,u) = (1,10) stratification is essentially randan 

stratification, and the S.R.S. and conbined methods are, of course, 

equivalent. 

2. In the case of the C.D.F. method, the lowest ct that can be 

used is a > .25, since a > oq = ma)c{. Furthermore, because of 

the sizes of the possible jumps in our study (.25 or .125), the only 

"critical" points we need to look at are .25, .375, .50, .625, .75, and 

.875; hence the limits for a and 3 as they appear in Tables 19 

and 21. 

3. In Monte Carlo Study III, \\âth the highly skewed distribution, 

the average length "exploded" when using confidence interval limits that 

included "high" data values. Hence, in using any of the techniques with 

highly skewed data, care should be used to pick, if possible, intervals 

that will not include unnecessarily large (or small) data values. 

4. In ccnparing the S.R.S. and Conloined methods in Monte Carlo 

Study III, it is seen that large gains in p rob .ability of coverage and 

smaller interval length can be made using the Ccmbined method. 

5. In the case of a "uniform" distribution, the interval lengths 

for the Separate metliod and the "C.D.F." method are longer than for the 

ccmbined method, holding confidence coefficients approximately equal. 

6. In the Skewed distribution study, the ccmbined method was 

highly siçerior to the separate and the C.D.F. method in terms of interval 

length. 
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7. In considering the Woodruff method (see Section C.4), for the 

city data we have cr^ = .187. Hence, 2a^ confidence limits, in terms 

of a and 3, would be .4 _+ 2 (.187) = (.026, .774). Because of the 

.25 lower bound for a, the best approximation we have is (.26, .76), 

which yielded a coverage proportion of .931, indicating, in this par

ticular example, that the Woodruff technique may be quite accurate for 

even small samples and populations. 

8. Good agreement between the proportion of coverages by the Monte 

Carlo method and the theoretical proportion is found throughout the 

tables. 

9. Another comparison, obtainable from Tables 19 and 20, can be 

made by choosing a desired confidence coefficient and tabulating the 

intervals which most nearly achieve this number, along with their expected 

lengths. In Table 22 we do this for 65%, 90%, and 95% confidence le\'els. 

10. For the city data (Table 20), we have < "^'2 My Conparing 

the probabilities in Table 21 to those in Tables 18 and 19 for (s,u) -

(7,4), it is noted that they are in fairly good agreement. This would 

indicate that making "slight" errors in estimating the (s,u) appro

priate for a gi\"en situation would not seriously effect the resulting 

outcomes, and also that the actual confidence coefficients for 

< ^2^^^ apply to specific populations--the city size data is only 

o n e  p o s s i b i l i t y  o u t  o f  t h o s e  p e r m u t a t i o n s  r e p r e s e n t e d  b y  <  Y ^ .  



' lab L(.^ 22.  ( 'anparison of  intervais  for  f ixed confidence coefficients  

Method Strat  i  f i  cat i  on 
Specif i  cat  ion 

s II 

Ix^vcl  

I . imits  

:  ()5o 

Ix3ngth 

l /cvel  

Limits  

:  OO'L 

P I/C^ngth 

l icvc]  ;  95 

Limits  ])  

0 
0 

Ixîngth 

SRS -

" 1 
Combined 1 10 j 1-3 .640 6.18 1-4 .808 9.09 1-5 .969 J2.10 

Combi ned 5 5 n.  a .  ̂  1-4 .885 8.64 1-5 .975 ]  1.86 

Combined 7 4 n .  a .  2-5 .893 9.07 1-5 .981 11.40 

Se]iarate 1  10 2-1 .637 5.34 n.  a .  n .a .  

Separate 5 5 n.  a .  1-2 .912 J1.56 n.a .  

Separate 7 4 2-1 .  656 5.64 n.a .  ]-2 .961 12.96 

C.D.F.  1  10 .26-.51 . 1 1 1  7.44 .26-.76 .8% 11.68 n.  a .  

C.D.F.  5 5 .26-.51 .727 7.30 .26-.76 .803 11.55 n,  a .  

C.D.F.  7 4 .  38-.76 .722 9.23 .26-.76 .921 11.72 n.a.  

^none applicable 
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F. Joint Confidence Intervais--2 Strata 

Our notation for the population and sample is as defined earlier. 

We wish to find a joint confidence interval for and 

(t < t') of the form 

where k <_ k', r _< r' , k < r, k' < r'. 

Now 

^'^(k) ̂ -(t) -^(r)'^ ̂ Ck') -^(f) -^'Cr'3' 

" -^Ct)^ ̂ (k') -^(t')^ 

- P(ycr) < 

- P{y(r'] < 

+ P{y[r) < Y(t)n 

= P{A} - P{B} - P{C} + P{D} . (3.1483 

We see first that 

PW.P(y,^) 

and 

P{C)=P(y(^,, 

The formulas for computing these are given in Section B. 
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P{D} can be found frcm P{A} by replacing 

k by r 

k' by r' 

t by t-1 

t' by t'-l 

We nav turn to the evaluation of P{A}. We break vsp our work into 

four cases. 

Case 1: = ^iCj)^^Ct'3 ^ ̂ 10') 

Case 2: 

Case 3: = ^2(j) ̂ ^(f) 

Case 4: 
^(t) 

Hence, 

P{A} = I P{y^^ lease il x P{Case i) . 

(3.149) 

Turning to the first term, we have 

Ptypcj y»') l^Cf)^Case 1} 

t t' n-k n-k-k'+i 
=  1 1  i e  
j=l j'=j+l i=0 i'=i+k-k' 

Pfexactly Qc+i) observations and 

bservations in [Y exactly Ck'+i')- (k+i) observations in ,Y<^,^] 

= 1 2 À 1 PfG^} . " "'J ' (3.150) 
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Similar expressions can be given for the other three cases, cal] 

than I I I I P{G^}, i = 2, 3, 4. 

easel. = \ /3 ' "JW Ct •-t)-(j 

^ Ji ji'\ji|\k+i-ji \ £' 1 \Ck'+i')-(k+i)-J.'l 

n^-C£+Jl')J 

Nz-Ct'-i') 

^n2-Qc'+i') + (£+£'MnJ ̂n2y (3.151) 

In this case, l represents the nunber of sample observations in 

Stratun I less than or equal to represents the nunber of 

sample observations in Stratun I in the range 

\/j'-(t-j)Wt'-j'-j 

£' ICk'+iO-Oc+i)-^'; 
Case 2. P{G-} =11 

Z Jl'\Jll\k+i-î,l 

'%2-j' 

n^- Çk+i-a^-aj  

f-V(t'-j') 

n^-£- [ Ck' +i' )- (k+i)Mn^^ n-

(3.152) 

Here, z is as in Case 1, i' represents the nunber of sample observa

tions in Stratun II in the range Y^^,^]. 

t-j \/j\/j'-(t-j)\/t'-j-j' \ 

(k'+i')-(k+i)-2'l 
Case 5. P{G } =11 

z V \k+i-5.|\£ 

/VJ 
\ //}- \ / v \ 

^n^- (k+i -Z j -Z ' j  ̂ n^- [ (k'+i')- (k+i) ] + £'-J!.j/ ̂ n^^ 

N-

n^ 

(3.153) 

In Case 3, 2 is the number of sample observation in Stratun II 

in the range Y^, Z' is as in Case I. 
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Case 4. P{G.} 
2 li(k'+i')- I 5,' 

fXj-(f-j') WNj-j' \ 

n^- (k'+i')+£+£'jyn2- (£+i.')j 
(3.154) 

Here, I is as in Case 3, as in Case 2. 

In Section C we derived the expressions for P{Y^^>, = Y. ̂ A 
l^J 11] J 

"^(f) ~ "^1(3')^' the assumption of < '^2(u)' 

stituting these expressions into (3.149) yields P{A}. 
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IV. CONFIDENCE INTERVALS WITH THREE STRATA 

In this chapter we extend the results of the previous chapter to 

three strata. 

A. Definitions and Notations 

Let iij^T be a population of size N •uhose elements have distinct 

Y-values Y^^ < Y^2j <•••< Y.^^. .-^ssme that has been divided 

into three strata of sizes N,, N_ and N^, where N, + N^ + N, = N. 
1 Z ^ JL ^ Ù 

Denote the (ordered) Y-values associated with the elements of Stratun 

h by 

^h(l) \(2) ^h(N^) ' h = 1, 2, 3. 

Stratified random sampling is performed, the sample sizes within 

the strata being n^, 1X2, and n,, respectively. We denote the Y-values 

^ wX X ao 

^h(l) < ^h(2) < >'h(n^) ' h = 1, 2, 3. 

Combining and ordering the sançle values yields the combined- sample 

^(1) < ^(2) y(n) ' ̂  = "1 + "2 * ̂ 3 ' 

B. The Combined >tethod 

We first investigate confidence intervals for Y,^^ of the form 

[^(k)' ̂ (r)^' 1 £ k < r _< n. .45 earlier. 
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-  f ' y (r) i ^Ct-1)' • (4-1) 

We confine our attention to the term <_ }. 

1. General derivation of ^ } 

Let be the event "exactly i observations in the canbined 

sarple have values less than or equal to Y^^^"; the event 

"^«•05 ° ' = 1> 2. 3; and the event < 

^&Cp+l)"' i = l> 3. 

Then 

P{yQ^^ <_ Y} = P{at least k sample observations have values less 

than or equal to Y^^^} 

= I (A.) 
i=k 

min[t,X,] minft-j ,N' ] 

i j=max[l,t-(N-N^) ] p=inax[0,t-j-N^] 

m^[t,N_] niin[t-j,N ] 
+  1 1 ^  I  

i j=max[l,t-(N-N2)] p=max[0,t-j-N^] 

i j=max[l,t- (N-N_)] p=max[0,t-j-N^] 
C4.2] 

Furthermore, 

P(A.nD,(.,nE2,p,} = P(A,|Dj..jnn,jp5) (4,3) 
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and 

\ W ^ ' 3 - C t - j - p )  

l^2 '^2 r" 1^3' 

'N j \  

, n 1/ 'M\"3, 

-1 

(4.4) 

where indicates the simulation is over all non-negative integers 
4n. 

and 1112 such that 0 _< m^+m^ j_ i. Also, we have 

max 

max 

1  .  f :  i  > < m, < mm < > 

"  l ? i j  

n-

max 

1° . 
> < m,, < mm < 
- 2 - 1 

y < (i-m,-m,) < min< 
n2+Ct-i-p)-Nj - 1 ^ -

t-j-pi 

(4.5) 

(4.6) 

(4.7) 

1^3 

P{D^^j^n E2 j-p)} depends on the stratification assumptions and is 

derived in Subsections 2 and 3. 

Similarly, 

^^\'^°2(i)^^i(p)^ = ^^\i°2(j)^^i(p)' ̂ ^^i(p)'^^2(i)^ ' 

and 
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ip \/N^-p 

Also, 

I rinl \ j \^l/\^l"^l/ 

't-j-p WNj-Ct-j-p) 

i- I n^- (i-

'̂ iy-̂ 2 P3 

'"i/rzjWi 

(4.9) 

WA.nDj(.,rtEj(p,) . PUilD.yjHE^jj,,) P(Ei(p/l . (4.10) 

and 

' •  Wn -j 

\^3 '^z l \^ l l  

fN,-p \ 

ft-j-p \/N2-(t-j-p) 

i- (m^+m^)j|^n2- [i-

/ \- \ / V \ / V \ 
" 2U"3 I Ql ̂2/^3 J 

-1 

(4.11) 

2. Random stratification 

We say stratification is rap-dan if each possible stratification is 

equally likely to occur. Under this assumption, we have the following, 

using the notation of the previous subsection: 
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P{Di^.^nE2(^p^} P{E2^^|D^(.-^} 

't-jV N-N^-[t-j)\/t-l 

N,-p \ m  
C4.12) 

and 

^'J \ l^ '^2~ it"] J 

(4.13) 

P{D3Cj^nEi(p^} PfEiQpjlDg^j)} P{D3(j) 

t-jWN-Xy (t-j) 

/N-N, N \ 
(4.14) 

Theorem 3.1 tells us that the "combined" method, with random strati

fication is equivalent to simple randan sampling from the non-stratified 

population. 
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3. < y2(u) ̂  ^SÇv)' "Ordered" Stratification 

We assme that the strata are such that < "^2(u) ^3(v)* 

analogous to subsection B.5 of Chapter III. We wish to find expressions 

for E2(-p^}, A and 

CXir approach is to consider the event 

^l(s-^r^) < ^2Cuj ^ ^l(s+r^+l) 

^l(s+r^+r2) ^l(s+r^+r2+l) 

^2(u+r^) < "3(v) < Tzfu+rg+l) 

Y 
2W 

= Y 
(Tj) 

= Y, 
3Cv) '(q) 

The last expression is equivalent to 

q = s + r^ + r2 + u + r^ + v . 

/ 

(4.15) 

(4.16) 

These events are illustrated in Figure 7. 

By P{*1r = r n (s,u,v)} we mean the probability of event ("}, 

conditional on a specific configuration as given by (4.15) and 

Y^(s) < Y2^yj < By r we mean the vector 
12 . When we ̂ vrite 

I we mean the suimation over all corçonents of r which are consistent 
r 

with the logic of the situation. 



—I 1 1 1 1 stratun I 

^l(s) ^l(s+r^) ̂ l(s+r^+l) ̂ Ifs+r^+rg) ^Ifs+r^+rg+l) 

'2(u) ^2(u+rj) ^Zfu+r^+l) 

-Stratun II 

-Stratun III 

3(v) 

4 h 

(1) (^4) 

-i'opulaticsi 

(q) (N) 

Figure 7. Stratification notation. 
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Then, 

P{Dl(;3)nE2(-p)i Cs,u,v)} 

= I* P{Dl(j)<^E2(p^ jR = r A(s,u,v)} 

X P{R = r| (s,u,v) } 

= I ^ " r n(s,u,v)} 

X P{D^^j^|R= rACs,u,v)} 

X P{R = r| (s,u,v)} . 

Similarly, 

P{D,ç.jnEjjp)lCs,u,v)) 

= Î* P{Ej^jp^ iDjyj/lR = r/l(s.u,v)) 

X P{D2fj^ |R = r A(s,u,v) ) 

X P{R = rI (s,u,v) } 

and 

^l(p) ' } 

= I* P^E^Cp) '^3(j)^- = r A(s,u,v)} 

X PiDg^j^ 1r  = r ri(s,u,vj 

X P{R = r j Cs,u,v) } . 

; 
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We first consider PIR = rl(s,u,v)}. For fixed s, u, v, r^, 

r^, r^, N^, and N^, we count the nunber of possible arrangements 

of the population into the three strata. 

For Stratum I, v/e have 

A "̂2 

/N-q 

[h-

possible arranganents. 

Then, for Stratun II, we have 

'v Cs+r^)-lj|q-r4-l-r2 fN-q-(N^-(s+r^+r2}) 

xyCu+r^) 

possible arranganents. 

Stratim III is then deteimined. 

Hence, 

P{R = r 1 (s,u,v)} 

(4.21) 

(4.22) 

fr,-l\/q-r^-l\ N-q 

Nl" (s+r^+r2)| 

V (%!- Cs+r̂ +r2))l 

u-1 j\ r? )\ 
3 

N-q 

i  rj /\Ni-CsTj-^r^)^ 

1^4" -lUq-T -̂l- T^Uti-q- (Nj- (s+r̂ +rĵ  

u- l  j \  r j  l \  N^-Cu+rj )  /  

-1 

(4.23) 
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To evaluate |D^~ (s,u,v)} = we consider 

five cases: 

Case I: 

Case II: 

Case III: 

Case IV: 

Case V: 

t < 

^ = ^4 

r* < t < q 

t = q 

t > q 

Case I: 

Case II: 

Pi(B1) = i p / \ u-l-p 

Tj- (s+rp-1) 

u-1 

for 0 < p < min 

otherwise (4.24) 

^II^®2^ 0 for all p C4.25) 

Case III: 

^111^^2' 

(j - (s+r^))\ q-l-t- (s+r^+r^-j )' 

p-u j u+r^-p 

9-14-^2-1 

^3 
for u < p < u+r. 

(4.26) 
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Case IV: 

Case V: 

PjViBj) 0 for all p . 

't-q- (j- (s+r^+r2))WN-t-

p-Cu+rj) Ng'P 
-

N-q-CN- (s^+r^+r,))' 

Nj-Cu-rj) 

for u+r^ f. P ± ̂2 

otherwise . 

(4.27) 

(4.28) 

Introducing an indicator function 

a 
t = < 
b 

1 if a _< t < 3 

0 otherwise 

we have 

P/ H , , I 71  ̂ D = ->- /A r<z n 1 
• (P) I ~1 (3 j • • — — • ' 

N 
= P].{B2} S t + Pj i j{B7} 6 t + S t 

q+1 

(4.29) 

(4.30) 

To evaluate (j] 1^ = 2 A (s ,u,v)} = P{C^} we consider the 

same five cases: 

Case I: 
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Case II: 

P„{Ci) 

Case III: 

PlIl{Ci} 

^j-Cs+rp-lj 

q-t-1 

(4.32) 

(4.33) 

Case IV: 

Case V: 

Pv{C^} = 

t-q-1 

^j-Cs+r^+r2)-l/ 

^^N-t 

.h-3 l  

I N-q ^ 

Hence, 

^^^l(j) I R = I A (s,u,v)} 

^4 q 
- {C^} St + p t + Py{C^} 5 t 

v i  

X 
t 
q+1 

(4.34) 

(4.35) 

(4.36) 

To evaluate | ^2[j) ̂  — " — ̂  (s,u,v)} = P{B^}, we use 

a technique parallel to that just given, using the same five cases. 
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Case I: 

2, _ P 

•4 

s+r^-p 

iS+r 
1^ 

if 0 < p < 

otherwise 

t-j 

s+r. 

[4.37] 

Case II; 

Pn(B^) = 
1 if D = s+r, 

] 

0 otherwise 
(4.38] 

Case III: 

PlIl{Bi} 

ft-r^- (j-u)Wq-l-t- (u+r^-j) ' 

p-Cs+r^) s+r^+r^-p 

fq-r4-r3-l' 

if s+r^ £ P £ s+r^+r2 

otherwise (4.39) 

Case IV; 

pTirCBi} = 0 for all p [4.40) 
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Case V: 

ft-q- (j - (u+Tj) )W N-1- CN2 - j 

p-Cs+r^+r^) N^-p 

'N-q-CXz-Ou+r,^ 

Ni" (s+r^+r2) 

if s+r^+r^ p 

otherwise (4.41) 

Thus, we have 

^^^l(p3 I R = r n Cs,u,v)} 

,2, . 54 2, 
= PlfS;) a t + it.r 

+ s t + g t 
r,+l ^ ^ q+1 

(4.42) 

Also, to evaluate P{D2i R = r/0(s,u,v)} 

Case I: 

r4-l-t 

PiC^^, we have 

P {C } = iiil 

u-1, 

u-l-j 

Case II; 

(4.43) 

^II^^2^ 

1 if j=u 

0 otherwise 
(4.44) 
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Case III: 

^111^^2^ 

n-r^-ï\  

j-u-1 

'q-1-t 

q-fj-i 
(4.45) 

Case IV: 

PiylCz) 0 (4.46) 

Case V: 

Pyl C2} 
j-(u+rJ-l 

I N-q 

Nz-Cu+rg)^ I 

(4.47) 

Then 

P<'D- — I R = T /I 11 lA 1 
- ' — —• " ' 

PliCz) 6 t + PjjiCz) 0^^^^ 

q 
^TTT(^7^ 6 t + P, r{C^} 

r^+l ^ 

N 
t 
q+1 

(4.48) 

Finally, to evaluate P{E^. ̂  I A R = r H (s,u,v)} = P{Bp, 

using the same five cases, we have: 
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Case I: 

PjlBj'} 

't-jw s+r^+u-1- (t-j) 

^ P /[ s+r^-p 

'u+Cs+r^)-l ̂  

s^-rj j  
°  . p . r  

t-j-u-lJ is+r 

otherwise 
1^ 

(4.49) 

Case II: 

0 for all p (4.50] 

Case III; 

ft- (s+r^+u) - j\ /q-1-1- ( Cv-1) - j ) ̂ 

p-(sTi) s^rj-^r^-p j 

q-v-u- Cs+r^)^ 

if s+r- < n < s+r 

otherwise C4.51) 

Case IV: 

Case V: 

P„{b3) 
1 if p=s+r-,+r 

1 "2 

0 otherwise 

^t-q-Cj-v) \/N-t-(N--j)' 

PyiB,') 
[p- CsTj-rj), \ 

I N-q- (N--v) ^ 

if ^ p ̂  Nj 

Otherwise 

(4.52) 

(4.53) 
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Thus, 

P{E ICP) ' R = r A(s,u,v)} 
T. N 

I'"l III : r,+i ^ q+i 
(4.54) 

Also, to evaluate | R = r (s,u,v)} = we have 

Case I: 

PllCj) = 
j-l/\r--Cs+r,+u-l}-i 

Case II: 

"4-1 

(4.55) 

^II^S^ 0 (4.56) 

Case III: 

^III^s^ 

v^ase IV : 

PrvfCs) = 

t-r^-l 

^j-(r^-Cs+r^+u))-lj 

q-i-r* 

V- Cr^-Cs+r^+u)-l) 

1 if j=v 

[0 otherwise 

jq-l-t' 

\v-l-j 
(4.57) 

(4.58) 

Case V: 

PyfC,} = 

t-q-l\/N-t \ 

^j-v-l/^N^-j] 
(4.59) 
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Thus, 

1 R = lA(s,u,v)} 

^4 % 

0 r 

N 
+ Ry^Cg} 3 t 

q+1 
(4.60) 

Substituting (4.23), (4.30) and (4.36) into (4.18); (4.23), (4.42), 

and (4.48) into (4.19); and (4.23), (4.54), and (4.60) into (4.20); 

and these into (4.3), (4.8) and (4.10) yields — "^(t) I Cs,u,v)}. 

C. Confidence Intervals Derived from the Sançle C.D.F. 

1. Definition of the confidence interval 

We nw consider the confidence interval procedure based on the 

sançile C.D.F. for L = 3 strata. First, the sample C.D.F. is defined by 

0 if y < y ri ̂  

- Ci-(Mc)) 5^ 
N, 

if y (i)i7<y (i+i) A y -Yi (-j)Ay2 (k)^(i) ̂2 (k+1) 

n^N 
+ (i-(i+k)) ̂  

if y(i)i>'<y(i+i)Ay(i) y2 (j ) ̂ ̂1 (kj ̂  (i) ̂1 (k+i) 

N N 
* ti-U-kl) ̂  ^ 
if )'(i)^'^(i+i)/\y(i)"y3(i)^yi(k)'^(i)^i(k+i) 

1 (4.61) 
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To each pair (a,&) where < a < 3 < 1 and = max{(N^/n^N)}, 

there corresponds a unique pair of integers (Tc,r) where 1 k _< r _< n 

such that 

FCXp,)) 1 « < 

(4.62) 

v^ere FCy^^^) = 0, = 1-

For given values of a and B, the confidence interval for 

is given by [y^y y^^^) where y^^y y^^^ are defined by (4.62). 

Of course, the integers k and r will vary in repeated sampling from 

2. A lower bound for the confidence coefficient 

Proceeding as in Section C of Chapter III, 

-'̂ '(t)  ̂  ̂ (4.63] 

Let be the event £ = 1, 2, 3,; and 

the event for 1 = 1,2. 3. 

Then, 

^^^^(t)^ ^ ^ ®i°l(j}'^^2(p)^ ^^°l(j)^^2(p) 

+ 11 P(F(Y^^^) < 

J  P 

O ! ' 

(4.64) 
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Letting FCY,.>,) = ^ [m. (t)]N^/n-N where m. (t) = m. denotes the 
i=l 1 J- 1 1 

nunber of observations in the sample from stratun i with Y <_ 

P{FCY(t)5 < 8|D,r,^n E 

r „ 
ïïii >ni2 jiUj—0 

l(j) 

i \/N.-j 

^1/ \^l"^l/ 

fp \ /%2-p \ /t-j-pWNj-Ct-j-p)^ 

(4.65) 

v^ere J denotes sunmation over all non-negative integers m,, and 
3 . 

lïïj sudi that (mA'^/n^N) < g. One may obtain 

fron (4.65) by interchanging (m^,n^,N^) and (m2,n2,N2); and 

P { F ( Y ç ^ ^ )  <  ® l ° 3 ( j ) ^ i ( p )  -  b e  o b t a i n e d  f r o m  P { F ( Y ^ ^ ^ )  <  S | ( j )  A  

El } may be obtained fron P {F (Y ̂^^ ) < 31D2 ̂^ ̂  A } by inter

changing (m2,n2,N2) and (m^.n^iN^). 

Thus, (4.64) and, finally, (4.63) may be obtained by determining 

P{Dt n E-, and E.r . }: several 
^ K . J J  -H.i-'J -̂ LJJ -1-LPJ 

suggestions have been explored in the previous section. 

3. Derivation of the confidence coefficient 

in Section C of Chapter ITI denote the upper confidence limit, 

^(r)' ^he lower confidence limit, y^^^, by y^. Then, 

-i Y(t) " ̂u' ' ^ ̂(t) ' - < Y(t)! } . (4.66) 

To determine Pty^ Y^^^}, first consider the set of non-negative 

integers u^,u^,u^ such that + u^j2 + ulj. > 3, 
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(u; - r i j j  * . uy. < s aiid (of course) = Xifuj) 1 

the set .'V, of non-negative integers such that + 

uVj, * uVi. i 3. * (uj'-l) j, * < e and y^u, ,, = 

^7 [ul ') ' set A_ of non-negative integers u^'' jU^ ' ' jUj'' such 

that ui'']; + u^''j2 + u^/'jg 1 G, + Cu;''-l)j3 < B 

^(u^ "+u^ "+u:") "^'3(u^"j' Proceeding as in 

Section C of the previous chapter, 

° (u'.u|,uy.Aj 1=0 • - c t -iV 

t-Zu!' 

" (ui',4',uV)E.S i=0 ' ̂(t-i)' 

t-Zu!'' 

^ iiir^ P(ycu;''+u;''+u''')= ^^t-ij' 
(u'",u;",uV'3eA. i=0 ^ ̂ 3 

^ [4.67] 

Now, 

1 2 
- , T , I (u^+u^+u^) 2 Pfyv,,,. 
J=u^ p=u; 

(4.68) 

where DT^jj is the event C%=1,2,3); and 

,1 
'H(p) " ' ̂'(t-i) ' f" (^=1,2,3) 

Similarly, 
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^ ^ (4.69) 

and. 

jJu,,.̂ '''tui"+l4"-uy') ' ̂(t-i)!°3(j)'̂ 4(p)''̂ "'30)'̂ l̂(p)' 

Then, it is easily seen that 

(4.70) 

3-l\ N,-j 

n.,-u; 
"2; 

N^-p \/t-i-j-pWN^-(t-i-j-p)\ li^'Al^2\l^3 

{^2'^2i 

Pi'v, . . = V 

"3 

. -(t-i) i=2(j)-''-nCp) ' •* *taineâ iron (4.71) by 

interchanging [uj,n^,N^) and and then replacing with 

u^\ while Pîy(u^..+u....my.) = Y(t-i)iD3(3)nEi(p)) can be obtained 

from P{y(u..»u^.»u..) = by interchanging 

and and then replacing Uj^' with '. 

Thus, P{yy _< } may be obtained from the expressions given 

above plus a determination, of (j)^^'2(p) ^^^2(j)'^^l(p) ̂ and 

^^^3(j)''^^l(p) ^[t) ̂ ^^y be derived in an analogous manner. 

"3''"3 *^l/\^2/\^3j 

C4.71) 
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To find the components of the set A^, note that for each value 

of Cu^=0,l,...,n2) and Cu^=0,l,... jn^) , if 

0 <_ {[(B - 11^32 - + 1} 2 n^, then ([(3 " + 

1, u^, u^) E A^. The ccmponents of the sets A- and may be 

determined in a similar manner. 
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V. ADDITIONAL APPLICATIONS AND EXTENSIONS 

A. Applications 

1. Tolerance regions - two s trata s ituation 

We now danonstrate hw our work in Chapter III can be ccnverted 

into the context of tolerance regions. In particular, assune a fixed 

6, 0 < 3 < 1, and consider the interval , ̂(r)^ ^ the method 

of the combined sample approach. Then, [y^^^, y^^g] is a g-content 

tolerance region at confidence level y if 

P{[yQç), contains at least 100 g% 

of population values} = y • (5.1) 

We see immediately that if [y^^^, y^^^] is to contain at least 

100 B% of the population values, at least [SN]+1 elements from our 

population must have associated values in the interval. (If SN is an 

integer, replace [£N]+1 by SN in the following derivation.) 

Turning to the ccnputation of Y, we have 

Y = P{at least [SN]+1 elanents frcm population 

are in 7(^1) 

N-(n-r)-r[SN]+1)-k N-([6N]+1)-i 

Jo tL 

(5.2) 
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For ease of notation, let t' = [BN]+l+t-i, and let be the 

event "^(t) = & = 1,%; and the event "Y(t') = ' 

a  =  1 , 2 .  

Then, 

j'-l 

" j'L j=l ^(t]^^(r)= ̂ Ct')l°l(j)'^°i(j')^ 

N^ NZ 

+ I I P(yrkV= Yf^Ynyr.^= Yr»,^!D7r;,ADjr;,,} 
J • =J_ j=j_ '' - V - V.J ^ V J J 

Ng j'-l 

^ j ̂ 2 j=l ^Ct)'^^(r)" ̂ (t')'^2(j)'^^2Cj')^ 

X P{D2 Q D2 j-j I ^ } . (5.3) 

The foimulas for D^, ^} are given in Section C of 

Chapter III. 
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Finally: 

^(t)^ ̂(r) ^(f) '°lCj)^ ̂ io ') ̂ 

r-k k h - A l y - j - i X l  \ - y  

- I I  
£'=1 2=1 \ j L - l j y  £'-1 j y i ^ -  ( z+z ' )  

'ct'-t}-cj'-j)yNy(f-j') 

r-Jl'-k (5.4) 

^̂ (̂k) (̂t)̂ )'(T) (̂f) i°l(j)̂ °2Cj')̂  

= I I 
rj - i \ / t ' - j - j ' \ / \v(f-: ' )  

z '  z  y5,-11\ r-k-5,' Rn^- (r-k) + (2' -2)1 

/t-j\/j'-(t-j)-l\/ Ng-j' ^ 

^k-2 y £'-1 jtn^-(k-£)-£' (5.5) 

^^^(k) ^(t)^^(T) ^(f)'°2(i)^°i(j')^ 

, „ /t-j\/j'-(t-j)-l\/ N -j' 
= I 1 

£ '  Z  lk-£jl £'-1 lln^-(k-£)-£'! 

fj-lWt'-j'-jU N2-(t'-j') 

£-l|lr-k-£' jl^n^-(r-k)+ (£'-£) (5.6) 
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^(tV) iCj3 ') ̂ 

H 

/t-j\/t'-j'-(t-j)^ 

k-£ 

i  Ny(t'-j')^ 

f]-l\ 

. 2 - 1  

r-&'-k An^-r+C£+£') 

'j'-riy Xz-j' 

» • - !  (5.7) 

Using the C.D.F. method in contrast to the ccmbined method, we 

have 

y = P{at least [3N] elements fron population in [yj^,yy] 

N-pN] N-pN]+l-i 

i=0 t=l 
= Y([sN]nn+i)' • (S'8) 

These teims can be calculated using methods derived in Chapter III. 

2. Best finite population problem 

Using tlie notation of G*i.apter III, we riow consider the problem: 

Given two populations, we wish to arrive at a decision of which is 

the "better" of the two, in the sense that Population 2 is "better" 

than Population 1 if < "^2(;u)' 

The correspondence between Chapter II and this section is: interpret 

the strata to be the Populations, so that is the j-th ordered 

element in the i-th population, i = 1,2; is the j-th ordered 

observation in the sample drawn from Population i. 
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Our decision, as to the "better" of the two populations is based 

on comparing and /g . If < 72 (r)' say Popula

tion 2 is "better". We now derive the probability of a correct decision. 

P(yïCk) < 

N n- (r-k) 

" ̂Cn)l^l[s) ^ ^2Cu)^ 

^ ml '  ̂Zw'yiCk] = ^(m)^y2M = ^(n) 

^ ̂l(s] ^ ̂ 2(u/ 

* ^2 M ^Cn)'^lCs) ^ ^2 (u) ̂ 

The first teirr» in this suniriation is identically 1, so it remains 

to find an expression for the latter term. 

^^^iCk) " ̂(m)'^>'2Cr) " ̂Cn)'^l(s) ^ ^2(u)^ 

4 4, Ck] " ̂(m)^^2(r) ~ ̂ (n) ' 

^ " ̂2Cj'] l^l(s) ^ "^2^^ ' 

r; 1 r\^ 
J  
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Now, 

-(n) 

(5.11) 

} is Case II in the 

Section F of Chapter III. 

Hence, in the case of two populations, the probability of a correct 

decision is obtainable. 

The problem of finding a non-parametric confidence interval for the 

population median with cluster sampling as the sampling design has been 

investigated by Chapman [1970]. In his (unpublished) Ph.D. thesis, the 

confidence coefficients for the confidence intervals in cluster sampling 

are approximated. His assumptions include that the randan variable of 

interest has a continuous distribution over the entire population as well 

as within each cluster. Hence, it is assuned that each cluster is of 

infinite size, and that there are an infinite number of clusters. 

B. Extension: Cluster Sampling 

1 
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We approach the same problem, but with the following assanptions: 

1) Population size: N. 

2} Each element of the population has a distinct Y-value 

associated with it. 

3) There are K clusters, of sizes M^, i = 1, 2,..., K, 

(1 M. = N) 

4) When sampling from the i-th cluster, a simple random 

sample of size m^ is drawn. 

2. One cluster chosen 

We first consider the situation in which one cluster (say cluster i) 

is chosen from the K clusters, and then a single random sample of 

size m^ chosen frcm that cluster. Letting Q be the number of items 

in the sançle with associated Y-values less than or equal to Y^^^, we 

have 

ffypc) i^(t) 

and 

t 
Pt/rkl -^I't")^ = I P{Q = q} . (5.13) 

^ J ^ J q=k 

If we let be the event "cluster i is chosen" and the 
i 

event "exactly t^ elements in cluster i have Y-values less than or 

equal to Y^^^", it follows that 
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K M. 
P{Q - q} = y P{Q = qnA-HB. } 

i=i t:=o ^ 

I P{Q = qlA^aB^ } P{B^ I  A.} P{A^} . 

Considering the components of (5.14) separately, we have 

P{Q = qlA./lB } = 

and 

M. - t-

(5.14) 

(5.15) 

P{A^} = , (5.16) 

where = 1/K if the cluster is chosen by simple random sampling, 

^i ~ if the cluster is chosen with probability proportional to 

size, etc. 

Turning to P{B jA-}, we consider several cases. 
^i ^ 

If we as suite random clustering, 

/t\/N-t \ k 
(5.17) 

If we assume "ordered" clustering, i.e., ^'i(s) ^ '^'''(u) K = 2 

clusters, or < Y_for K = 3 clusters, previously 

derived formulas can be slightly altered to obtain P{B |A. 1. 
^i ^ 

Referring to Chapter III, PlB^ |A^^} is quite analogous to 
i 

P-Bj) = = Y. for ' ̂1(^1)'-



' l l ius,  referring to (3.41 ) and [3.4-1) ,  for K = 2 c lusters and 

Y • replacing "j" by 1(5] '2(u) > "ts)" •(;,)" 

by and keeping in mind tliat we just require that 

p-:»! 
^1 ^ 

s-^d+(u-l)-t\/N- (s+d+u)' 

s-i-d-t, |\M^-rs+d) 't ' ' 
hi ̂  \ 
t-l\/.\-t ^ 

"t,s+d+u 

/s+d+Cu-l)^ ' 

/ V I -

s+d+ (u-l)\/.\- (s+d+u)\]~^ 

d \ s+d 

s+d+(u-l) 

1 Jxh'^ij 

I  x - t  

j d \ 

t- [s+d+u3\ 

^t^-Cs+d) 
h -a'  

s+a+u 

and 

P{B :.4^} = 

(s+d) 

_ /s+d+(u-l)-t\/N-(s+d+u}\ ^ 

,  ̂ ! ,..n  ̂ !( >r .. ! "s+d+fu-ri 
i\-2/ \ " ̂ "2 l \  -''2 I  

(t \( X-t 

t,s+a+u 
2  

I X-t ^ _ (s+d+(u-l)Wt-(s+d+u)\ / 

Vh''2i ^ ^ / \ ^2"" / 
s+d+uj 

r, /5 + d+(u-l) \ / x - C s  +  d + u } \  

-[il.., I 
-1 
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3. Two clusters selected 

We new consider the situation in which two clusters (say Cluster i 

and j) are selected frcm the K clusters. Single randan samples of 

sizes and are selected fron these clusters, and the samples 

ordered as y ^(m.+m.)' Letting Q be the nixaber of items in 

the ordered sample with associated Y-values less than or equal to Y , 

we have, as before 

Now 

(5.20) 

p{q = q} = I 
i<j t 

y P{Q = qOA-oa-nb. n b. > 
.+t.=0 1 3 
1 

= I r P{Q = qlA.nA.AB A B } 
1 J ^i t. 

X p/b^ a b. la./la.: X pfa.aa.) 
'1 -j -

Then 

P{Q = qlA.nA.AB. A B. } 
1 J tj 

,  f lh\l \-h\h V'Yy \  l lh\h\ 

ào [>. A"»!-" 

Also, 

(5.21) 

(5.22] 

PtA; n A.; } = •'— , 
J  - J  

(5.23) 
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;Aere n. . = 1/C-) if the two clusters are chosen by single 
13 L 

randan sampling. 

Under the assmçtion of randcm clustering, we have 

,t. 
p(3- A E. IA.AA.} = — 

t-tiW N-t N-t- 01.-t-)' 
1 

/N-M.\ 

M. 
3 

[5.24) 

A different approach to this same problem is suggested by Chapman. 

We alter our assumptions by having all K clusters equal-sized, M. Let 

P be a randcm variable, representing the proportion of elements in an 

individual cluster with associated Y-values less than or equal to Y 

1 2 
In this case, P e {0, ̂  ^ ,..., 1). 

(t)-

4. One cluster chosen 

Si^^pose one cluster is selected at randcm frcm the K clusters, 

and a simple randan sample of size m chosen fron it. Letting 

R = nimber of items in sample with Y _< Y^-^y and f(*) the density 

function of P, we have 

m 
= I P{R=r) . 

r=K 

Now 

[5.25) 

P{R=r}= \ P{R=rnP=p}= \ P{R=r|P=p} x P{P=p} 

P P 

/Mp\/M(l-p)\ //M\ , 
X f(p) = y 

n t ^ = 0 \ r j  H A p ^r ^ m-r 

M /t'\/M-t'\ fM 

m-r \m 
(5.26) 
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Tumijig to £(•)> if the number of items in the selected cluster 

less than or equal to has a hypergecmetric distribution, that is 

then, after some simplification 

which is equivalent to taking a simple random sample of size m frcm 

the entire population, ignoring clustering. Thus, the hypergecmetrie 

assunption is equivalent to "randcm" clusteriiig. 

If, instead, we have 

fb+t'-l\/N-t'+a-l\ //N+a+b-l\ 
F(T7N) = I / 1 , (5.29) 

b-1 jy a-1 jM a+b-1 

which is the negative hypergecmetric density with parameters Cb,a), 

and is the discrete analogue of the Beta distribution, we have 

/b+i-l\ /a+m-i-l^j 

m 

Similar work can be done for the situation in which two clusters are 

selected. 
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