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I. INTRODUCTION AND REVIEW OF LITERATURE

Most of the theory of sampling from finite populations pertains to
point estimation of desired parameters such as the finite population mean
and variance. Researchers and practitioners have generally been reluctant
to make any assumptions about the distributions of the relevant random
variables. This may be due to the very wide variety of finite populations
met in practice, and the inherent lack of "‘smoothness' of many finite
populations. Thus, the literature contains very little discussion about
the formatian of confidence intervals, tests of significance, etc., when
sampling is fram a finite population. Most of this (limited) literature
pertains to simple randam sampling and the use of nommal approximations
for the sampling distributions of the estimators (and, often, approxima-
tion of the distribution of a test statistic by a t-distribution). (For
a general treatment, see Cochran [1963, Sections 2.7 and 2.13].) In nc
case will the confidence coefficient associated with such (approximate)
confidence intervals be known exactly, and the validity of the nommal
approximations may be questioned (at least) for many of the extremely
skewed finite populations encountered in practice--especially if sample
sizes are small. When one employs a sample design more complex than
simpie randam sampling, the validity of using normal (and ''t'"') approxima-
tions for the sampling distributions of the estimators has received even
less attention than for the case of simple random sampling. This is well
illustrated by Cochran [1963, Section 5.4] in his discussion about confi-

dence intervals for the finite population mean when stratified simple



randam sampling is used, and his lack of such discussion for sample
designs such as single- and muiti-stage cluster sampling.

It 1s clear fram the considerations noted above that even for simple
randan sampling, the development of confidence intervals having known
canfidence coefficients requires an alternative approach. For the more
camplex sample designs used in practice, theoretical investigations of
the use of normal (and ''t"') approximations appear to be quite formidable,
and the validity of approximate confidence coefficients would, again,
depend heavily on the type of finite population being sampled. Further,
the validity of these approximations may depend on more assumptions (e.g.,
the random variable Y has a normal distribution in each sfratum) than
one would ordinarily wish to make.

In this thesis we suggest confidence interval procedures for any
specified quantile having the property that one may determine the exact
associated confidence coefficient for any finite population. Although
quantiles (e.g., the finite population median) are of great interest to
many practitioners (because, for example, of the highly skewed distribu-
tions encountered in applications), estimation of such parameters has not
received much attention in the sample survey literature. Perhaps this is
due to the difficulty of determining the properties of appropriate point
estimators when sampling is from a finite population. However, it will be
shown that if either simple randam or stratified simple random sampling 1s
employed, it is feasible to detemmine a confidence interval for any
quantile with known confidence coefficient. It is apparent that the
procedures to be described can be extended to other sample designs. These

confidence interval methods are very simple to apply since the upper and



lower confidence limits are either given by a pair of order statistics
or are derived fram the sample cumulative distribution function (C.D.F.).
Given the sample design and confidence interval procedure, it is straight-
forward to tabulate, using an electronic computer, the possible confl-
dence intervals and associated confidence coefficients. Given this tabu-
lation, the simplicity of the confidence interval procedure should
make its use attractive in places where sophisticated personnel and
machines are not available, and for applications where preliminary esti-
mates of specified parameters are required very quickly. For two of the
confidence interval procedures, a camputer program to evaluate the exact
confidence coefficients has been written for use of the UNIVAC 1108
camputer at the University of Wisconsin Camputing Center or the IBM 1130
camputer at Cornell College.

Wilks [1962, Section 11.4] has suggested a confidence interval
procedure if simple randam sampling from a finite population is used.

Hie yeculte

Y S, some amlificaticon of these results
generalizations, including joint confidence intervals and expected lengths
of confidence intervals are discussed in Chapter II. In Chapter III,
stratified simple randam sampling is considered for the case of L = 2
strata and the three confidence interval procedures are introduced. In
each case an expression for the exact confidence coefficient is derived,
and (where appropriate) an approximation is suggested. Brief tables are

included, and the three techniques are compared, both theoretically and
by Monte Carlo methods.



A parallel development for two of the methods is given in Chapter IV
for L = 3 strata; these results suggest how extensions to four or more
strata can be made. When L strata are formed by utilizing the known
distribution of a concomitant variable, X (which is closely related to
the variable of interest, Y), considering only two or three strata may
not be restrictive. Given the stratification and a general knowledge of
the relation between X and Y, it may be reasonable to assert, a priori,
that the (t/N)-th quantile of the finite population (e.g., the finite
population median) is a variate value from one of only two or three of the
L strata. Then, the methods described in Chapters III and IV may be
used.

In Chapter V, several extensions and applications of the preceding
caapters are explored. These include tolerance regions, the 'best"
finite population problem, and an extension of the previous work to
cluster sampling.

In order to get the main ideas contained in this thesis. the reader
may first wish to examine Sections A through C of Chapter II, and then
turn to Sections A through D of Chapter III, to follow the three proposed
methods.

The problem we are dealing with was given by Thampson [1936, pp. 122-
128}, in which he gives an equation for the probability of coverage of the
median of a finite population by two selected symmetric order statistics
of a simple randam sample of size n drawn from the population.

Savur [1937, pp. 564-576] derives what he calls a 'new test of sig-

nificance', using the median. In his paper he first gives justification



for considering the median, he then suggests the symbol ¥ for it, and
finally gives symmetric confidence intervals for the median and, from
these, gets his tests of significance. He restricts his work strictly
to a continuous C.D.F.

Nair [1940, pp. 551-558] takes the work of Thompson and Savur, and
tabulates, for a continuous distribution, the probability that given
symmetric order statistics fram the sample will cover the median. He
assumes an infinite population, and also points out a slight discrepancy
in Savur's work.

Wilks [1962, p. 333] gives a brief description of confidence inter-
vals for quantiles in finite populations, again, in the manner of
Thompson, but generalizing to any pair of order statistics. We illustrate
the work of Thampson and Wilks in Chapter II.

McCarthy [1965, pp. 772-783] discusses non-parametric methods for
confidence intervals fram stratified populations. In his work he derives
a lower bound for the confidence coefficient, if proportional allocation 1is
used. He assumes a continuous C.D.F. in his work. We consider his
results in Chapter III, Section B.7.

Woodruff [1952, pp. 635-646] proposes a method using the sample
C.D.F. to obtain a confidence interval for quantiles, utilizing general
sampling plans. He also assumes a continuous C.D.F., and gives approxXi-
mate confidence coefficients for his intervals. We describe his work in
more detail in Chapter III, Section C.4.

Finally, it may be noted that Loynes [1966, pp. 497-512] investi-

gates various aspects of point estimation of population quantiles when



random and stratified randam sampling are employed. For random sampling,
distribution-free estimation procedures are obtained, and the admissible
estimators are identified. Throughout, the population is assumed to be

infinite.



II. THE NON-STRATIFIED SITUATION

In this chapter we investigate confidence intervals for the t-th

ordered value in a finite population, when simple random sampling is

used.

A. Definitions and Statement of Problem
Let My be a population of N elements, whose elements have
distinct Y-values associated with them. These Y-values can be simply

ordered as

Y <Y

) 2) < ies < Y(N] . (2.1)

Let t be a fixed integer in the range 1 <t < N. We may then regard
Y t) 3 the (t/N)-th quantile of the population Iy In general, we
define the A-th quantile of our population to be Y(NA) if N is an
integer, and to be Y([NA] +1) otherwise, where [-] denotes the greatest
integer function.

A simple randam sample of size n 1is drawn without replacement

from iy We denote the values associated with the sample elements,

after ordering, by

y(l) < y(z) < ve. < y(n) . (2.2)

We wish to consider two-sided confidence intervals for Y(t) of the

form [y(.k), y(r)], where 1 <k<r<n and k < t. We first turn our



attention to the camputation of the confidence coefficients of these

observable random intervals:

ey Yo Ve 2-3)

B. Calculation of the Confidence Coefficient

n computing the confidence coefficient, we first note that

P{Y(k) iY(t) iy(r)} = P{}’(k) iY(t)} - P{y(r) iY(t-l)} . (2.4)

'This follows from the facts that

Yoo 2Y¥my! = Vg Y0 Y@ VY < Yiy?
" Y0 Yo @ VY Y (2-3)

and the latter events are disjoint.
Therefore, to evaluate (2.4), it is sufficient to arrive at an

expression for P{y(k) < Y(t)}‘

1. The first approach

Our first approach uses a technique suggested in Hogg and Craig
[1970, p.352]. 1If we define the event
{Ai} = {exactly i sample elements have values less than
or equal to Y[t)}

we then have



{At least k sample elements have values less than or equal to Y(t)}

n
Uk{.Ai} . (2.6)
1=

Hence,
min[t,n]

Py iy < Yoot = ) P{A}
&) =" jomax(k,ten-N] T

iik (:)(:lf)/ (E) ' 2.7

By virtue of the definition

(§)=o if k<0 or k>N (2.8)

we can eliminate the maximum and minimum expressions in the limits of the

summation.

Equatians (2.4) and (2.7) 1ead to the following theorem.

Theorem 2.1: Using the notation in Section A,

Pha) =¥ 27 @

feaey -2 oo .
Proof: Using (2.4) and (2.7) we have

(Ir\;) Pag =¥ <V @?
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Using the readily derivable combinatorial identity
IZI t\ (N-t) _ rzl t-1) (N-t+1) _ (t-1\(N-t (2.10)
£ \i) \n-1i L i ) n-1i r-1/\n-r )
i=r i=r
on the last two terms yields the desired result.
An alternative method of looking at Theorem 2.1 is as follows:
r-1
= ) = . .1
Pyay SYw) 2V (! izk PUAj T + PIALNTY (g = Y gyl (2.11)

Writing the above expressions in their hypergeametric forms yields the

conclusion.

2. The second approach

Our second approach to the problem of evaluating P{ka) f-Y(t)} is
suggested by Wilks [1962, p. 333]. The event {y(k) :_Y(t)} is written

as the union of the disjoint events

{y(k) iY(t)} = {Y(k) = Y(t)} U {Y(k) = Y(t-l}} {}’(k} = Yfk)} .

(2.12)
We then have

t-k
Py 2 Y(ey? = iZO PO = Y-y

o [t-1-1V[N-t+1) /iN) )
imax[g,n-kﬂ:-N]\ k-1 /\ n-k )/\n} . (2.13)

1]

This yields the confidence coefficient

PVa Y V!
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: [ti ()0 - L (t;%f)(N-;ti*l)] IR

The equality of (2.9) and (2.14) can be demonstrated algebraically.

3. One-sided confidence intervals

It may, on occasion, be impractical to utilize a two-sided confi-
dence interval. This would be especially true if we were attempting to
estimate a very low or high population quantile. In such circumstances,
one-sided intervals of the form (-=, y(r)] or [y(k), =) could be much
more practical.

In the case of forming a one-sided confidence interval for Y )’

t small, t > 1, the confidence coefficient associated with (-, y(r)]

1s given by

P{-o <Y

<

\r 1 = -
®© V@ =1 P < Y!
=1- Py S Y(q)? - (2.15)
Similarly, for t relatively large,
P{y(.k) iY(t) < o} = P{y(k) iY(t)} . (2.16)

C. Symmetric Confidence Intervals for the Median
As a special case of the above derivations, we consider confidence
intervals of the fomm [y(k), y(n-k*—l)] for the median of an odd-sized

population (N = 2m - 1) with distinct variate values. Such confidence
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intervals are called symmetric and were studied by Thampson [1936,

p. 122]. Our reason for looking at an odd-sized population is that the

median is well-defined, since Y edian - Y(m) = Y(N+1)‘

2
Theorem 2.2: If N is odd, and if m= (N + 1)/2,
T fm\/m-1\ //N
P{y(k) iY(m) iy(n-k+1)} * zizk (i)(n—i) (n) -1 . (2.17)

Proof: Fram Theorem 2.1, we have

() 700 = Yoy <Y reny’ = (LR - :_Z_i (6D -

Applying identity (2.10), this becomes

e m\/m- Im-1\ m n-k o\ (-
1—nzk+1( )(n 1) 1—n-k+lk i \n- 1) T Zk (i)(n—%)

Manm~saney +ha Svwdavy A +ha Taocs
-

Rt R S R e I U Con

nik ( fl)( m.) - rzl (m-})/rr_l)

i=p \ t /\n7L j=k \P7J \j
and the result follows directly.

Thampson [1936, pp. 126-128] investigates the case of using symmetric
confidence intervals for the median. He defines a function

min[r',s] ' '
- _ T+ +1 s+s'+1 s+r'+5'+2
v(r,s,r',s') = ago (r+1+a /(Pr+s+1 . (2.18)

Then he demonstrates that



13

P{y(-k) -<-Y(t)} = p(k-1,n-k,t-k, k+N-t-n-1) , (2.19)
which reduces to equaticn (2.7), and
P{y(—k) -<—-Y(m) iy(n-kﬂ)} =1 - 2u(k-1,n-k,m-k,k+N-m-n-1) . (2.20)

This latter temm is in error; the correct result is the negative of
(2.20).
For campleteness we consider the case where our population is of

size N = 2m. In this situation, we define Y

median (Y(m) * Y(m+1))/2;

hence Y(m) < YIne di Since 'median' is not integral,

an * Y(m*-l) :
Theorem 2.Z does not apply.

However,

P{y(k) Zlned X y(n-k+1)}

P{y(k) 2 Yeal - P{y(n—k+1) <Y gt

5

Ve Ym! T e < Ym’

L1 O - L O]l

N) : (2.21)

Tl

]
0 ki
= =
—
o=
e
o}
R
 add
>

D. Non-distinct Values in the Population
We now examine the situation where the elements in our finite popu-

lation do not necessarily have distinct Y-values.
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Theorem 2.3: Let 1, be defined as in Section A of this chapter. For

fixed n, k, r, and t, we denote P{y(k) iY(t) iy(r)}’ as given in
>T,N

Theorem 2.1, by 1 - a{:r .

Let 1Y be a population of size N 1in which same of the associated
N

Y*-values may be equal. Order the population values as
Y(1)*<Y *i...<Y *.

A simple random sample of size n is drawn without replacement from

IIN* and ordered as

*< *< < *
Y V@) 2t V@) -

Then
® * * n,t,N
PV <Y =¥ 2t %y (2.22)
® *
Proof: lLet P {-} indicate probabilities associated with T,. , and

N
sgocizted with 1n . W chey
4
Pt * ® x
Yaw <Yy V@ 1280y 2¥0) 2V} -

*

. ] *
We first note that, if Y(t) < Y(t+1) , then

* * ®
P {YCK) iY(t) } = P{y(K) iY(t)} .

*

- * —
If Y(t) = Y(t+1) , then

*® ] *
PUa ¥y P> Py Yt
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3 *
Similarly, if Y(t'l) < Y(t) ’

P*{ * Y *}-P{ Y }
o e T Ty e

. * ®
and if Y(t—l) =Y(t) R

® ® R
P Yo ! m Y’
Therefore,
P* & Y % *
Yoo <Y 2V !

_ P* * Y * P* *® Y *
V0 TP Y Y !
2Pag = Ye)? T P < Yie?

=P =Yy £V m)?

n,t,N

=1y

E. Systematic Sampling
Since systematic sampling has certain practical advantages (Cochran
[1963, Chapter 8] and Sedransk [1969, p. 39]), we show in this section
that the confidence coefficient associated with P{y x) <Y (t) <Yy (r)}
is the same if the sample is a simple random sample fram Ty» OT if the
sample is a systematic sample, where the population is in ''randam' order

(Sedransk [1969, p. 40]).
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Theorem 2.4: Using the notation of this chapter,

PSRS{}’(k) iY(t) :Y(r)} = PSYS{y(k) iY(t) iy(r)} . (2.23)

where, by PSRS{'} we mean the probability when simple random sampling
is employed, and by PSYS{'} we mean the sample is drawn by systematic
sampling fram a popuiation in ''random" order.

Proof: It is sufficient to prove that a particular sample is equally
likely to be drawn under either sampling design.

Let (ei > €5 seces € ) = e be any n specified elements, for

1 2 n
ij e (1, 2,..., N), ij # ik' Under simple random sampling,
- (N1
P{e} = (n) .

For systematic sampling,

k
) P{e|starting point of sample is i} P{i}
i=1

P{e}

\N-T

kKoayt s
5_21 (n) k

"

since P{g{starting point of sampling is i} = (N-n)! n!/N! by counting.

F. Sampling from a Continuous C.D.F.
We now consider the situation where our sample is drawn from a

population with continuous cunulative distribution function F{x).



More specifically, let X(l) ix(z) < e ix(n) represent the
values of a random sample of size n fram a population with continuous
C.D.F. F(x). It is well known (Walsh [1962b, pp. 137-138], Wilks [1962,
pp. 329-331], Thompson [1936, pp. 122-128}, Savur [1937, pp. 564-576],
Nair [1940, pp. 551-558], David (1970, p. 14]) that

P{x(k) ixp f-x(r)} = Ip(k,n~k+l) - Ip(r,n-r+1)

r-1 . 3
I (2) pt (1-p)"™Tt (2.24)

i=k
where Xp denotes the p-th quantile of the population, defined as
X
J{ f(x) & = p, and Ip(‘k, n-k+1) 1s Karl Pearson's Incamplete Beta

-0

fumction

ry :‘(vl+ vz) v,-1 Vz-l
Iy(vl,vz) = T v X (1-x) dx 0 <y <1. (2.25

David [1970, p. 14] gives an approximation for the symmetric con-
f*Jence interval for the median with confidence coefficient 1 - o .
His technique, using the nommal approximation to the binamial, is to
count off *+ 1/2yn u, observations fram the sample median and round-
ing to the nearest integer, where u, is the upper o/2 significance
point of the standard nommal distribution.

David also cites other work related to confidence intervals when

a continuous C.D.F. i1s assumed.
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G. Sampling fram a Discrete C.D.F.

In the case where our distribution function is discrete, we have
the following.

Let x(l) < X(Z) < e _<_x(n) deﬁote an ordered random sample of
size n on a variate X which may take on the values 0, 1, Z,...
with probabilities p(0), p(1), p(2),..., respectively, where p(a) > 0
and Zp(u) = 1. When X takes on only a finite number of values (say
0, 1,?.., M) let pM+a) =0, a =1, 2,... .

Let P(x) = D}i p(a) be the distribution function of X. Let p

o=

be a fixed real number such that 0 <p < 1. Define g to be that

integer such that

P(® - 1) <p <P(8) .

Now,
P{x(k) <8 :x(r)}
= P{x(k) < 8} - P{x(r) < 8}
= P{X(k) < B8} - P{x(r) < 8-11 .

Khatri [1963, p. 168] gives
P(8)
- n k-1 ,,_ \n-k _ _
P{X(k) <8l =k (k) J' . W (1-w) dw = IP(B) (k,n-k+1) .

Therefore,

P{x(k) < B< x(r)} = IP(B) (k,n-k+1) - IP(B-l) (ryn-r+1) . (2.26)
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This tem 1s greater than or equal to
Ip(k,n-k+1) - Ip(r,n-r+1) ,

the corresponding result for the continuous case.

Furthemmore,

P{x(k) < xp < x(r)}

]

P{x('k) < g-1} - P{x(r) =< 8}
= IP(B-l) (k,n-k+1) - IP(B) (r,n-r+l1)
< Ip(k,n-k+1) - Ip(r,n-r*l) . (2.27)

This result, with a different proof, is given in a theorem by
Scheffe and Tukey [1945, pp. 187-192] and is also noted by David [1970,
p. 14] and Noether [1967, p. 39].

Finally, we note by Khatri [1963, p. 170],

By~ Yol = 20 ‘ ‘i: (n) PEAITTL - PGP
x= m=
r-1 = or M-1 n -
= Zk ZO (p) [PIP [1 - PeOT*P,  (2.28)
p= x=

a result analogous to the X approach of K. Pearson [1901, p. 391].

H. Tables and Charts for P{y(k) iY(t) f_y(r)}

No direct tabulations for P{y(k) < Y(t) < y(r)} with respect to
simple randam sampling fram oy are, in general, available.
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However, for the continuous case, Nair [1940, pp. 556-557] tabulates
the smallest symmetric confidence intervals for the median, where by
smallest he means [(n - k + 1) - k] is minimized. To be precise, Nair
tabulates, for samples of size n=6 (1) 81, k and (n - k + 1) such

that k 1is maximized, subject to

o Yoy Vw21

where 1 - o« takes on the values .95 and .99.

Chung and DeLury [1950}, in their book of charts, are concerned
with the following probiem: Given x defectives in a sample of size n
fram nN’ what are the confidence intervals for k, the number of
defectives in HN' They use population sizes of N = 500, 2500, and
10,000, and confidence coefficients of (1 - a) = .90, .95, and .99.
Their charts are based on ''equal taii'' probabilities, and due to the
nature of the charts, and the large population sizes, only approximate
answers Can o€ eXpecied. in addition, an €rror made in wie Coi
of the charts, as explained in an errata sheet, makes the charts more

difficult to use. However, for the limited cases N = 500, 2500, and

10,000, it is possible to utilize the Chung and Delury charts to find
k and r such that

P{ka) iY(t) i)’(r)} > l1-2ao ’

where 1 - o« = .90, .95, and .99.
In view of the absence of published tables, in Tables 1, 2, and 3

we give a limited tabulation of the confidence coefficients
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P{y(k) < Y(‘c) iy(r)} for pcpulations of sizes 39, 99, and 199, samples
of size 10, and two values of t, corresponding to approximately the
25-th percentile and the median. The tables were camputed using the
UNIVAC 1108 camputer at the University of Wisconsin Camputer Center.

Table 4 tabulates the confidence coefficients under the assumptions
of a continuous population being sampled. For aid in comparison with
the first three tables, the sample size chosen was 10 and the 25-th
and 50-th percentiles were picked. A more camplete table for the median
of a continuous popuiation can be found in MacKinnon [1964, pp. 937-947].

It is of interest to campare Tables 1-3. We see that the confidence
coefficient decreases as N increases for the usual type of interval--
approximately symmetrical for the median, skewed to the left for the
25-th percentile.

Camparing these tables with Table 4, we note that z similar comment
holds and that, for the usual types of intervals, the continucus C.D.F.
gives 2 lower bo tc the confidence coefricient, and that it estimates
the confidence coefficient quite well in the case of N = 199. In
general, for n/N small, the continucus C.D.F. would yield a reascnable
approximation for the confidence coefficients, and has the advantage
in a slight ease of tabulation, having only to tabulate for k, r, n,

and t.



Table 1. P{y(k) j_Y(t) 5_y(r)} N=139, n=10
T

k t 1 2 3 4 5 6 7 8 9 10
1 10 .0158 .2183 .5497 . 8187 .9364 .9646 .9683 .9685 .9685 .9685
20 .0001 .0052 .0390 .1572 <3935 6771 . 8839 .9742 .9968 .9997
2 10 .0608 .3922 .6012 .7789 .8071 .8107 .8110 .8110 .8110
20 .0023 .0361 .1543 . 3900 .6742 . 8810 L9713 .9939 .9908
3 10 .0884 .3574 .4751 .5033 . 50069 .5071 .5072 .5072
20 .0136 .1317 . 3680 .6516 .8584 .9487 .9713 .9742
4 10 .0628 .1804 .2087 .2123 .2125 .2125 .2125
20 .0413 2777 .5612 . 7680 . 8584 .8810 .8839
5 10 .0235 .0518 .0554 .05560 .0556 .0556
20 .0709 . 3545 .5612 .6516 .6742 6771
0 10 .0047 .0083 .0086 .0086 .0086
20 .0709 L2777 . 3680 . 3906 .3935
7 10 .0005 .0007 .0007 .0007
20 .0414 .1317 .1543 1572
8 10 .0000 .0000 .0000
20 .0136 .0361 .0390
9 10 .0000 .0000
.0023 .0052

20

[/



Table 2. P{y(k) 5-Y(t) j_y(r)} N=99, n=10
T
k t 1 2 3 4 5 6 7 8 9 10
1 25 .0071 .2006 .4995 L7573 .8947 .9417 .9522 .9537 .9539 L9539
50 .0001 .0080 .0485 .1667 .3828 .6421 . 8488 .9569 .9923 .9989
2 25 .0232 .3221 .5800 L7173 .7644 L7749 .7764 . 7765 . 7765
50 .0014 .0419 .1601 . 3762 .6355 .8422 .9503 .9858 .9924
3 25 .0319 .2897 4271 .4742 L4847 .4862 .4803 .4863
50 . 0065 .1246 .3407 .6001 . 8068 .9148 9503 .9569
4 25 .0241 .1614 .2085 .2190 .2205 .2206 .2206
50 .0165 .2326 .4920 .6987 . 8068 .8422 . 8488
5 25 .0110 .0581 . 0686 .0701 .0702 .0702
50 .0259 .2853 .4920 .6001 .6355 .6421
6 25 .0031 .0136 .0151 .0153 .0153
50 .0259 .2326 . 3407 .3762 .3828
7 25 .0006 .0021 .0022 .0022
50 .0165 .1246 .1601 .1667
8 25 .0000 .0002 .0002
50 .0065 .0419 .0485
9 25 .0000 .0000
50 .0014 .0080

£€Z



Table 3. Plygy < Yy <¥yi N=199,n=10
r

kK ot 1 2 3 4 5 6 7 8 9 10
1 50 .0037  .1942  .4841  .7381  .8802  .9331  .9463  .9486  .9488  .9488
100  .0000  .0089  .0512  .1690  .3793  .6318  .8378  .9507  .9904  .9985
2 50 .0114  .3013  .5554  .6974  .7503  .7636  .7658  .7660  .7660
100 .0008  .0431  .1608  .3712  .6237  .8297  .9426  .9823  .9904
3 50 0155  .2695  .4115  .4644 4777  .4799  .4802  .4802
100 .0034  .1211  .3315  .5840  .7900  .9028  .9426  .9507
4 50 0119 .1539  .2068  .2201  .2223  .2225  .2225
100 .0082  .2186  .4711  .6771  .7900  .8297  .8378
5 50 .0057  .0586  .0719  .0741  .0743  .0743
100 0126  .2651  .4711  .5840  .6237  .6318
6 50 .0018  .0150  .0173  .0175  .0175
100 0126  .2186  .3315  .3712  .3793
7 50 .0004  .0026  .0028  .0028
100 0082 .1211  .1609  .1690
8 50 .0000  .0003  .0003
100 .0034  .0431  .0512
9 50 .0000  .0000
.0008  .0089

100

¥e



Table 4. P{y(.k) < gp < y(r)} Continuous C.D.F., n = 10

k t(%) 1 2 3 4 5 6 7 8 9 10
1 25 .1877 .4693 . 7196 . 8656 .9240 .9402 .9433 .9437 .9437
50 .0098 .0537 .1709 . 3760 .6221 .8271 .9443 .9883 .9980
2 25 .2816 .5318 .6778 .7362 .7525 . 75506 . 7559 . 7560
50 .0439 .1611 . 3662 .6123 .8174 .9346 .9785 .0883
3 25 .2503 .3963 .4547 .4709 .4740 4744 .4744
50 1172 .3223 .5684 L7734 .8906 .9346 .9443
4 25 . 1460 .2044 .22006 .2237 .2241 .2241
50 . 2051 .4512 .6562 .7734 .8174 . 8271
5 25 .0584 .0746 .0777 .0781 .0781
50 .2461 .4512 .5684 .6123 .6221
6 25 .0162 .0193 .0197 .0197
50 .2051 . 3223 . 3662 .3760
7 25 .0031 .0035 .0035
50 1172 .1611 .1709
8 25 .0004 .0004
50 .0439 .0537
9 25 .0000

50 : .0098

S¢
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I. Best Confidence Intervals
Up to this point we have been interested in the confidence coeffi-
cient P{y(k) < Y(t) < y(r)}, where k and r have been predetermined.
We may look at the rroblem fram a different standpoint: find those

subscripts ({k,r} which satisfy

PVag < Y) ¥l 2l- e (2.29)

where (1 - o) has been fixed. This is Nair's [1940, pp. 551-558]
approach which we discussed earlier. This leads to the difficulty that
there may be many pairs (k,r) satisfying (2.29), and the problem then
becomes one of picking the 'best' of these pairs.

We will adopt the following criterion for the 'best' confidence
interval.
Definition: The best confidence interval of the form [y )’ y (r)] of

level ¢« least (1 - «) 1is that interval which satisfies (2.29) and has

shortest expected length, TIf there are severzl intervals which have

- -

equal shortest expected length, choose the interval with largest confi-

dence coefficilent.

Since, in every case for k < r,
e 3\
E(Y(k)) iE(Y(r)) s (2.3%)

we have the result that, if there are two confidence intervals, Il and

IZ’ which satisfy (2.29), and if I1 C IZ’ then the expected length of

I1 is less than the expected length of I,. By our definition of best
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confidence interval, we can eliminate I2 fram further consideration.
In the remainder of our work in this section, we will assume such ''initial
eliminations'' have been performed.

Pratt [1961, p. 549] suggests another 'natural measure' in place of
expected length for testing the desirability of a confidence interval
procedure. He suggests ''a natural measure of the extent to which the
confidence interval procedure includes a particular false value is the
probability of including that particular value. To "average' this over
all the values, one might simply integrate it over all the false values.
This gives an apparently different measure of the "average extent" of the
false values -ncluded'. However, Pratt goes on to prove that the two
measures are equal. Hence we will concern ourselves only with expected
length.

In order to find the best confidence interval, we must find the

expected lengths of the confidence intervals. To do this, we must make

- vt s mvn Al a7
2 assTiPiithl aclul wi€

-values in our popuiation.

let F(x;8) be a continuous cumulative distribution function. We
can consider Ty to be a random sample of size N drawn fram an infinite
"'super-population' with distribution function F(x;e). (Wilks [1962,
p. 195]). Note that HN will have elements with distinct Y-values with
probability one. This technique of using a '"super-population' is suggested
in Cochran [1963, pp. 214-216] in deriving results in systematic sampling.
As a result of the assumption, we cannot prove results which apply to any

single finite population--that is, to any specific values Yis Yoaeees Yy
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--but our results apply to the average of all finite populations which
can be drawn fram the infinite population.

Using this assumption about the ''super-population', we are able to
bypass Ty when working with E(y ) ~ y(k)) since the distribution of
{y(l),..., y(n)}, the order statistics of a random sample of size n
drawn fram a population with C.D.F. F(x;8), is the same as the distribu-
tion of {z(l),..., Z(n)}’ the order statistics of a simple random sample
of size n drawn from s where e is a simple randam sample of size
N drawn fram a population with C.D.F. F(x;e6).

As an example of how a change in the "super-population' assumption
may change the interval to be chosen, consider a 70% confidence interval
for Y(SO) when N =199 and n = 10. We see from Table 3 that
[y(l], y(4)] and [y(z), y(é)] both yield intervals with confidence

coefficient > 70%. We then have the fcllowing (Hastings, et al., [1947,

p. 4171):
Super-population E(Y(4) - }’(l)) E(Y(é) - Y(z))
Unifom (- /3, /3 ) .945 1.260
Normal (0,1) 1.163 1.124

Hence, under the uniform assumption, we would use [y(l), y(4)], and
under the nomal assumption, [Y(Z)’ y(é)].
For a discussion of the expected values of order statistics, refer-

ence can be made to David [1970].
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J. Joint Confidence Intervals
In this section we consider the construction and confidence coeffi-
cient for a joint confidence region for Y(t) and Y(t')’ (t <t") of

the fom

([Y(k), Y(r)], [)’(-k'), Y(r,)]), k < k" T < I‘" k < T, k' < rv .

In Figure 1 we represent this region graphically.

4
7 ()
e I \‘\\\
N
N
Ll N
3)
T
oo Ym e ey

Figure 1. Joint confidence region
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The confidence coefficient for this region can be calculated as

follows:

PV <Y Y@ N Yy Y@ £Y@n?

o <Y N Yy = Yen?

TP <Yy Yy < Yen?

PV Yoy N Yy 2 Yen? - P < Y(»!

‘g

ey <Yt * PO Yo N Ve < Yo’

P{A} - P{B} - P{C} + P{D} . (2.31)

We first turn to the calculation of P{A}. let (k + i) be the
exact number of observations in the sample with values less than or equal
to Y(t)’ and let (k' + j) be the exact number of observations in the

sample less than or equal to Y(t')‘ We then have

. [t'-k! . [ t-k
mn %n-k'} ”‘m{k' -k+j]

: 0 : 0
Jm[t'+n—N-k'} 1=max{k'-k-(t'-t)+j

x (n§&:+j)) (E) (2.32)

pear - R 8}

- ~\ /- -~ e\
P{B} = z (L "4 (L\'t'f'l) (N (2.33)
= i ) n-i n)
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~~
[EV]
.
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RN

s

P{C}

By

I
edo
It t~1
H‘
TN

P{D} t'—lz(,—l Hf-l (t‘?)( Lt '\(N‘t'*l )) (") (2.35)

320 = T+1 (r'+j)-(r+i)/ n- (r'+j n

Clearly, the confidence region given above can be used to form
confidence intervals for parameters such as Y ) - Y(t)' Further, if
t' - t 1is not too large, one may prefer to have an "outer confidence
interval"' for Y(t) and Y(t')‘ The confidence coefficient associated
with the "outer confidence interval'' given by [y(k) < Y(t) < Y(t’) < y(r)]
may be determined by using the same approach employed in the beginning
of this chapter.
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III. CONFIDENCE INTERVALS WITH TWO STRATA

In this chapter we investigate confidence intervals for the t-th
ordered value in a finite population, when the population has been strati-
fied into two strata. Three distinct methods are proposed. The first
method, called the '"cambined method' takes samples fram both strata,
canmbines and orders the sample values, and then uses two of the combined
sample values for the endpoints of the confidence interval. The second
method, called the "C.D.F. method', employs the empirical cumulative
distribution function to find the endpoints of the desired interval.

The third method, called the '"separate method', uses one value from each
of the strata samples to form the interval. Exact confidence coefficient
formulas are derived for each method. Comparisons of the three tech-
niques are given, both by theoretical work and Monte Carlo studies.

Brief tables are also given for the Cambined and Separate methods.

A. Definitions and Notations
Let T be a population of N elements whose elements have distinct

Y-values associated with them. These values can be simply-ordered as

Y <Y < vee < Yoo

o}
(9]
.
=

~

{1 (2)
Assume that Ty has been divided into two strata, with Stratum I con-

taining N; elements with values

Yl(l) < Yl(Z) < ... < Yl(Nl) (3.2)
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and Stratum II containing N2 elements

YZ(I) < YZ(Z) < ... < YZ(NZ) . (3.3)

Of course, Nl + NZ = N.
A simple random sample of size n, is drawn from Stratum I. The

ordered observations in the sample are denoted by

0 @ o N (3.4)

Similarly, a simple random sample of size n, is drawn from Stratum 1I,

yielding
20 2@ < S 2ty (3.5)
Cambining and ordering the two samples yields the cambined sample

Yo Y UV (3-6)

where n=nl+n

2
B. The Combined Method

Turning to the first of our three methods, we are interested in the
confidence coefficients of confidence intervals for Y ) of the fom
Y Yol

We note here that if ties are permitted among our population Y-values,
the proof given in Chapter II that the confidence coefficient is at least
as great as when our population has all distinct Y-values holds without

change for the stratified situation.
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1. Derivation of the general formula

Since we are considering distinct population values, we have, as in

Chapter II,

PGy =¥ 2V} " PV =Yyt T PV =Yt s BT

Let Ai be the event '‘exactly 1 observations in the cambined sam-

ple have values less than or equal to Y(t)”;

let A:%.j be the event ""exactly i observations in the cambined sam-
ple have values less than or equal to Y )
M Ty T Yagy 2T LA

let Ai|j be the event ""exactly i observations in the combined sam-
ple have vaiues less than ur equal to Y(t)’
given that Y(t) = Yz(j)’ 2 = 1,2";

and let B§ be the event "Y(t) = Yz(j)’ L =1,2".

We then have

min{t,n]

P{ < Y, 1= P{A;}
Y& =) i=max[£,t-(N'n)] *

min{t,N.] min{t,N,]
- % 1 P{Ai.} + 5 ; 2 pal. )
1 ojmax{I,e-N,] M 1 jremax(1,t-N ] +
1 1 2 2
= P{A- .}P{B.} + P{A., . ,}P{B: . 3.8
§ § 1]57P1B3 ; %* (A7 154 1P{B; ) (3.8)

We first turn to the evaluation of P{A%lj}' Let m represent the

number of elements in the sample fram the first stratum with values less
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than or equal to Y(t); that is, values less than or equal to Yl(j)'

For a fixed m, the number of cases favorable to Ailj can be obtained

directly:
JV [Ny -3V [ -GV N, - (2 -3)
! : , (3.9)
mf\n; - m i-m nz—(i-m)
where the range on m 1is given by
(0 ) [ i ]
i-n2 j
max < <m < min { + (3.10)
j+n1-Nl nl
1+ -t | ;'2'(t'j)'n2+i.

Adding (3.9) over all possible values of m, as given in (3.10),

n

P () )

\™} “mJ \1 mf \Ry" (1- m)}

I
-

Similarly,

[
j* Wl N,
I\

N1 N2
and dividing by yields

3t~

P{All

P{All (3.12)
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where the range on m* is given by

v .
0 1 E 1
i'nl j* b
max ¢ ) < m* < min { > . (3.13)
Frnp - N n,
L14-3"* t LNI (t - 3% n1+1J

At this point, it remains to arrive at expressions for P{BJ%} and
P{BJ?*}. In order to do this, we must make an assumption concerning the
stratification. To illustrate the possibilities, two different assump-
tions are considered in this chapter. The first we call ''random stratifi-
cation' and the second "Yl(s) <Y, (u)"’ It is intended that each of
these assumptions represents a type of stratification found in practical
applications. However, for a particular finite population, other postu-
lates may be more appropriate“ and these, of course, should be used.

2. Random stratification

Following the notation of Section A, we will say that the stratifi-

N
cation is randam if Stratum I is equally likely to be any one of the(\,)
1

possible subsets of size N, of I

1 N°

This assumption of ''random stratification' may be appropriate where
strata are formed primarily for administrative convenience. For example,
administrative districts may be used as separate strata, even though
there 1s 1ittle difference among the strata in the distribution of the
Y-values. ’

In order to arrive at an expression for P{B§} we note that the

event B; can be thought of as putting into Stratum I (j - 1) units
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out of the first (t - 1) population units, then putting the t-th
population unit into the j-th position in Stratum I, and finally putting
(N1 - j) units into Stratum I out of the last (N - t) population
t-1\/1\[N-t
units. This can be done in ways.
j - 14\1 N1 - j

Hence, under random stratification, we have

[ [t-1\ [ N-t N 1 t
if max < j <min
§\3-1J\Ng-3 '1 t-N, N

N
P{B;} ={ (3.14)
\ 0 otherwise .
Similarly,
F{t-1\ [N-t N (1 t
if max{ < j* < min
X I ] -1 % - - -
J*-1\N>-j N, |t-N N,
P{BZ,} =3 (3.15)
J
t 0 otherwise .

Cambining (3.8), (3.11), (3.12), (3.14), and (3.15) yields

. -1
_ NI
P{Y(k) iY(t)} - ( nlanI(Nl-nl)!(Nz-nzj! )

t-1\[N-t 1 -j N>- -(t-3)
x )12
i1j \j-1 Nlj m m \i-m n,-mi\n, -(1-m)
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where the limits an the summation of i and j are given in (3.8)
on m in (3.10), and m* in (3.13).

It can be shown algebraically that (3.16) reduces to (2.7). That
is, the confidence coefficient associated with [y(k), y(r)] is the
same if either (1) simple random sampling or (2) stratified simple random
sampling with "'random'' stratification is assumed. In the following
theorem we prove this result holds for any number of strata. It may be
noted that this equivalence does not necessarily hold for the other
types of confidence intervals discussed later in this chapter.
Theorem 3.1: Let Ty be a population of N distinct units {ul, Usseees

uN}. Assume TN has been divided into L strata of sizes Ni’
N
NpoNyseeesNp

stratifications is equally likely to occur. Fram each stratum a simple

i=1,..., L, in such a way that any one of the ( ) possible

randam sample of size n., i=1,..., L, is drawn. Then if S =

[(uil, uiz,..., u, ), 1. e {1,..., N}, ij # ik’ j # k] 1s any fixed

n J
I\ =

sample, the probability of obtaining it is (;)_*.

Proof: P{obtaining S}

P{ni elements of S are in Stratum i, i=1,..., L}

X P{drawing those g elements, 1i=1,..., L}

Ny,Ny,. .0 Nl-nl,Nz-nz,...,NL-nL 1
\f
( N ) (* 1)(N2) ...(I\‘L)
N;,N,,...,N
172 L n,/\n, n;
/N\-1

\n) . (3.17)

I
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In the previous chapter we showed that systematic sampling with the
elements in ''randam'" order was equivalent to simple random sampling.
Hence, in this chapter, if we apply systematic sampling to each strata,
under the assumption of "random' stratification, it would be equivalent
to simple randam sampling from each strata, and we conclude that this

would be equivalent to simple random sampling without stratification.

3. Ordered stratification

In many surveys the stratification variable, X, is closely related
to the variable under study, Y. For example, X may denote the value
of Y at same previous time. Then, the usual stratification consists of
placing those units with the smallest values of X in Stratum I, those
with the next smallest values of X in Stratum II, etc. Knowledge about
the relation between Y and X, and the method of stratification may
enable the investigator to assert that, for example, Y1 (s) < Y2 W For
instance, in same situations it may be reascnable to assume that the
median among the variate values in Stratum I is less than the median
among the variate values in Stratum II. Note that although in the
ensuing analysis the only restriction made is Yl(s) < Y2 (u)’ other

restrictions of the same type may be added.

T1s) < Yo < Yi(s+1)

For simplicity, it is assumed at first that Yl(s) < Y2 W ° Yl(s+1)

where 1 <s _<_N1, 1 :u_<_N2, and Yl(Nl+1) = + » ., Note that this
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specification includes the possibility of asserting that Yl (Nl) < Y2 (1);
such an assertion may be a reasanable approximation where, for example,
there are only a small number of very '"large'" umnits and these are all
included-in a single stratum.

In order to compute P{y(k) <Y (t)} under these specifications, we
note that equations (3.8), (3.11), and (3.12) still hold. It therefore
remains to campute P{B:}} and P{Bg*}. It may be of assistance to
consider Figure 2 which represents the population in both the cambined

and stratified forms under our specification.

N ; + .  — Stratum I
1) Y108 Y1 (s+1) 108))
1 1 | |
i |
{ |
. ' f :
] i '
- —+ — ﬁ‘-ﬁ + i + : %Yl, Stratun 11
s ] -
T B R O R L 20y)
, ‘ l | i | ;
I l i I ! ] i
| | ! ' 1 i !
) \ :
—- — . < + + ,L— Population
Y Y
) T (s+u) )

Figure 2. Stratification under Y1(5) < ¥y W © Y
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We break up our analysis into three cases:

Case I: t < s+u

Case II: t = s+u

Case III: t > s+u,

and arrive at expressions for P{B%} and P{Bizi*} by counting techniques.
The total number of possibilities for distributing the ordered units

among the two strata, given Yl(s) < YZ(u) < Y1(5+1)’ 15

s+(u-1)) 1) N- (s+u)) 5.18)

S O\ N.-s
1

Case I: t < s + u. There are

N,-s

t-l) s+(u-1) -t) N- (s+u)
1

j-1 s-J
stratify favorable to Y(t) = Y1 G) Therefore

\) ways to

.
(t-l) (s+ (u-l)-t)
. . 1 S
I, _J\j-1 S . . 3
P{B.} =
8y ] (s+(u-D) if ‘“ax{t_(u_l)} <3 1mn{t}
S
| 0 otherwise . (3.19)
t-1\ {s+(u-1)-t\ /N- (s+u)
Also, there are ways to stratify favor-
j*-1 u-1-j* NZ—u

to Y = kY S
able to ) YZ(J*) Therefore

t-l)(s*—(u-l)-t

2, (j*-l (u-l)-j*) . 1 . )t
P{Bj*} J (s+(u-D) if max e < j* <min 1

S

1

L 0 otherwise . (3.20)
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Case II: t =s + u. In this case, we necessarily have

Y(t) = Y(s+u) = YZ(u)‘ Hence
p{BJ?} = 0 for all j (3.21)
and
2 1 if j*=u
P{B:,} =
J 0 otherwise . (3.22)
s + (u-1)\/t-(s+u)-1\/N-t
Case III. t > s + u. There are ways
s j-s-1 Nl-j

to stratify favcrable to Y(t) = Yl(j)’ Hence

'(t- (s+u)-1 N-t\)
j-s-1 AN,-j s+1 N
pily = L if rax <j<min{ 1

J N- (s+u) t-N t-u

Nl—s
. 0 otherwise . (3.23)
s+(u-1)\ [t-(s+u)-1\/N-t
Finally, there are ways to stratify
u-1 j*-u-l J\N,-j*

Y = gy o
favorable to (t) YZ(J*) Therefore

( {t— (s+u)-1\/N-t \

2 \ jr-u-l }l\Nz'j*} : 1 . Ny
P{Bj*} = 4 NG if max < j* < min .
Nz-u

| 0 otherwise . (3.24)
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It 1s easily shown that, for each of the cases,

§ Pl + 7 pBZ1 =1 . (3.25)

j J j* J

Cambining (3.8), (3.11), (3.12), and the expressions (3.19) - (3.24),
we have P{y(k) < Y(t)} for the following cases:

Case I. t < s + u.

min[t,n] min[s, t] 3\[Ng-i
P{y(.k) iY(t)} =\ 1 L )
i=max[k,t- (N-n)] j=max[l,t-(u-1)] m \m n;-m
§ /t-j Ny (£-3)\ [t-1\[s* (u-1)-t
\i-m ny-(A-m J\i-1\ s-j
Z mil‘}[(u'l)’t]
i j*='ma)12[1,t-s] m* m* n, -m*
I il |
* \1- m* n-—rl-m*\ I 1)-3%
N (N fs+ u-1)V]
x| ) 2 (3.26)
n,/\n, S

where the limits of the summation of m and m* are given by (3.10)

and (3.13) respectively.
Case II. t =5 + u.

(u Nz-u S Nl-s
\m*~ n.-m*f li-m&fln _(1' -m*)
) N AR R R - (E-m®)
Prag Yt L1 ﬁ“%)
e

(3.27)
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where the range of the sumation of m* is

-

[0 [ 1 1
i-n1 u
max1 }<m*<minﬁ
+ - N - -
nz u I\z n,
Li-s ] Nj-s-n; -1 . (3.28)

Case :.1. t > s + u.

min[N, ,t-u] FVIN; -3V -3\ N,-(t-5)
i j=max[s+1,t—N2] m \mf\n,-m i-m n,- (i-m)
t-(s+u)-1 N-t
X
( j-s-1 Nl-j
mi [Nz,t‘S] J N
1 j*=max{u+l,t- \41] m* \ m* n, -m* ]\ i-m*

1 (t- J*) !t (s+u)- 1\, N-t\

5 ]
\nl- (1- m*)‘,’\J -u-1 \N -j* J

. . -1
. N1 Nz N- (s+u)
nq/\ n, Nl-s (3.29)

where again the ranges on summation of m and m* are given by (3.10)

X

and {3.13).
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Y1(s) < Y2(u)

It would appear that the assumption Yl(s) <Y, (w) < Yl(s+1) is
rather unrealistic and unduly restrictive. Hence we turn to the more
realistic and general assumption that Y, s) © Y, Ok where 1 <s <Ny
and 1 <uc< N,.

As in the previous section, equations (3.8), (3.11), and (3.12) are
still valid. It remains to campute P{BJ%} and P{Bg*} under our new
assumptions.

Tet 4 be an integer in the range 0 <d <N, - s such that

1
Yi(s+d) “Y2() < Ti(srasys (s 1=Np o+l det Y605t

We then have

Ny-s
PBI} = lz PBINY <Y, . | <Y }
J a<o j 1(s+d) 2(u) 1(s+d+1)
N,;-s
- V P{‘ul i Y < \17 < \lv 3
d=LO j ' T1(s+d+1) 2(u) 1(s+d+1)
X P{Yl(s+d) <Y2(u) <Yl(s+d+1)} . (3.30)
Letting
= 1 v -
P gt = PE Y Y © Yigseany (3.31
and
PD;} = Pwl(s+d)< Yz(u)< Yl(s+d+1)} (3.32)
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we then have

1
P(B}} = ] P{C},} P{(D,}. 3.33
j § tC51a? PR} (3.33)
All of these probabilities are, of course, conditional on Y1 (s) < Y2 Ok

Evaluation of P{Dd}. Consider Nl, NZ’ s, u, and d fixed. There

are then

s+d+(u-1) | N- (s+d+u) '
(3.34)
s+d Nl- (s+d)
ways to stratify so that Yl(s+d) < Y2 W < Y1(s+d+1)’ It follows that

the total number of possible arrangements such that Y1 (s) ° Y‘2 (w) is

Ni7S fsegs (u-1)\[ N- (s+d+u)
) . (3.35)
<o s+d N, - (s+d)

Considering each of these arrangements (stratifications) equally likely,
s+d+ (u-1)\/ N- (s+d+u)
s+d Nl- (s+d)
= . (3.36)

}
d N%‘S [ s+a+ (u-1)\ [ N- (s+d+u)
d=0 s+d Nl- (s+d)

H

v oem 4l e

A - -
wC  WCIL 11ave

Evaluation of P{Cj.L | Fie As in the previous section, we break our

work up into three cases.
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Case I: t <s + d+ u. From the previous section,

t-1)/s+d+(u-1)-t .
d 3-1 )l sed-j : 1 Y
P{ ,d} (s+d+ (u-l)) if max t- (1) £J2mn cad
s+d
‘ 0 otherwise . (3.37)

Case II: t=s + d+ u. As before

P{C%Id} = 0 forall j . (3.38)

Case IJI: t»>s +d + u.

[ t- (s+d+u)-1\/N-t
4 j-(s+d)-1 Nl-j ) s+d+1 _ ) t-uj
P{Cgld} = e I _if max{t_\l}_gj imln{N }
2 1
( Nl—(s+d))
v © otherwise . (3.39)

. 1 . . ... .
Evaluation of P{B.}. We define an indicator function o« b
venmmem ot Y Y

t 1 1if t<z
(3.40)

0 otherwise

Putting (3.36) - (3.40) into (3.33), we have
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LY s+d+ (u-1)-t N-(s+d+(u-1))-1) .
P{B;} =
J { j-1] d s+d-j ) Nl-(5+d) %s+d+ (u-1)
N-t s+d+ (u-1)\ ft- (s+d+(u-1))-2 ‘
+ 1-
(Nl-j) 5 ( s+d )(j—(s+d)—1 )( aS*dﬂJ) }
s+d+ (u-1)\[ N- (s+a+w)\ | 2
X
cz1 s+d Nl- (s+d)

hacfl ) m{’jl }

if min <j< max
max{s*'l } ming-u}
t-N
2 L 1

0 otherwise . (3.41)

.

Evaluation of P{BJ%*}. Turning now to Stratum II, we have,

corresponding to (3.33),
PB%,} = 7 PiCt, .} PiDy) (3.42)
b = L PiGg) PR :

P{Dd} 1s as 1n equation (3.36). The evaluations of P{C§*}d} are very
similar to equations (3.37) - (3.39). Putting these into (3.42), and

recalling the definition of the Kronecker delta:

éa,b = (3.43)

1 if a=>»
0 otherwise

we have
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r

t-1 s+d+(u-1)-t\/N-(s+d+(u-1))-1
P{BSy} = ¢ ] o vt (a1
] i1 ld | @n-3* | N-(svd std*(u-1)
t-1 N-t
+ 5_*
t-u f\N - (e I

N- +d+(u-1)\ [t-(s+d+ (u-1))
+ t,)l‘és u )t s u )(1 -a §+d+u) }

Ny d| s+d j*-u-1

s+d+ (u-l]) N- {s+d+u)) "1

X
d s+d Nl- (s+d)
1 iy { t
. max t'Nl in{,-1
for mi 1l <j*< max (N,

:{ max{t_N]} ming "o
; 0 otherwise . (3.44)
\

Thus, under the assumption that Yl (s) < Y2 ()’ one may determine
P{y(k) iY(t)} by using (3.8), (3.11), and (3.12) together with (3.41)
and (3.44).

, | v v 3
6. Tables for P{y,k) iY(t) i}gr) ! Y1(§) < )

A FORTRAN program was written for use on the UNIVAC 1108 computer
at the University of Wisconsin Computer Center to evaluate P{y(k) <
Y(t) <Y | Yl(s) <Y, (u)}' The variable parameters are Ny» Ny, Dy,

n,, t, s, and u. The results were printed in tabular fom, giving the
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above probabilities for 1 <k < r <n. Tables 5 through 9 present same
typical results. In all cases presented, Nl = N2 = 10, and the values
assunecd for the (s,u) parameters are (1,1), (1,5), (1,10), (5,1),
s,s), (G,10), (0,1), (10,5), and (10,10). Tables S and 6 are for

n, =n, = 3 (proportional allocation), and t = 4 and 8, respectively.
Tables 7, 8, and 9 deal with non-proportional allocation. In Tables 7
and 8, n, = 2, n, = 4, and t = 4 and 8, respectively. Table 9 has

n, = 4, n, = 2 and t = 8. For comparative purposes, in each table we have
uriderlined the entry for (s,u) = (1,10), which is essentially equivalent
to "random' stratification.

Some interesting patterns emerge as we study the tables. For
proportional allocation (Tables 5 and 6) the probability of coverage
remains essentially constant for (s,uw) = (1,1), (1,5), (1,10), (5,5),
(5,10), and (10,10) and this probability is equal to that of "'random"”
stratification. In Table 5, for t = 4, we see a slight improvement in
coverage propapilities in the other (s,u) entries for (k,r) = (1,1),
r=23,4,5, 6. That is, as the strata become "more ordered'', those
confidence intervals which include y(l) have a higher probability of
coverage. Also, for all other intervals, we have no gains, and same
losses in probability over the probabilities for '"random' stratification.
In Table 6, for proportional allocation and t = 8, we see improvements
in coverage probability, same substantial, for (k,r) = (1,r), (2,1),
and (3,r) as the strata became "more ordered'.

In Table 7 (non-proportiocnal allocation), we have no improvement

in the probability of coverage for fixed (k,r) and every pair (s,u)



differing from "random' stratification. llence, this would indicate

that, for improvement, a different allocation of sample sizes should be
used. In Table 8, we have gains for those intervals which include

y(l). As the {y(k), y(r)] intervals ''shift to the right", (e.g., from
[y(l), y(i)] to [y(z), Y(S)]’ the coverage probabilities drop. However,
in Table 9, the probabilities improve as the intervals ''shift to the
right". This indicates that, if we seek improvement of coverage proba-
bilities by using the "'combined" method, and an assumption of the type
”Yl(s) < YZ(u)”’ the sampling fractions and intervals used must be

selected carefully.

7. Bounds and approximations for the combined method

a. McCarthy's coniecture. McCarthy [1965, pp. 772-783] has consid-

ered the type of procedure we have just discussed. He assumes an arbitrary

number, L, of strata, a continuous C.D.F. 1n each stratum, and propor-

tional samnle size allccaticn

Tr "
P, Teip- P 2 P ) 1

& proves tnat any palr of symmetric
order statistics from the combined stratified random sample of size n
provides a confidence interval for the population median, whose confi-
dence coefficient is not less than the confidence coefficient associated
with the interval determined by the corresponding order statistics in a
randam sample of n observations drawn from the entirc population. llc
proves (by counterexample) that the result necessarily holds only when
proportional allocation 1is empioved, and also notes that his main result
can easily be extended to any other quantile of the pepulation. Cur

approach differs from that of McCarthy in that (1) we give the probability



Table 5. P{)’(k) —<-Y(t) _f_)'(r) l Yl(S) < YZ(u)}

-- Combined Method

N1 = Nz = 10, n, =n, = 3, t=4
T = T = T = r=20

k s u= 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .776 .775 776 .793  ,793 ,793 .793 .793 .793 763,793 .793
5 .825 .776 .776 .833  .793 793 .833 .793 .793 633,793 793
10 .825 .784 .776 .833  .800 .793 .833 .800 .793 .833  .800 .793
2 1 . 325 . 325 . 325 . 343 .343 . 343 .343 .343 .343 .343 .343 .343
5 . 325 . 325 . 325 .333  .343 343 .333  .343 33 .333  ,343 343
10 . 325 . 325 .325 .333  .341 .343 .333  .341 . 343 . 333 .341 .343
31 .043  .044 .043 .061 .061 .061 .061 .061 .061 .061 .061 .061
5 .025 .043 7,043 .033  .061 061 .033  .061 L0671 .033 .061 .061

10 .025 .041 .043 .033  .057 .061 033,057 .06l .033  .057 .061
4 1 .003 .003 .003 .003 .003 .003 .003  ,003 .003
5 .000 .003 003 .000 .003 .00% .000 .003 003
10 .000 .002 .003 .000 .002 .003 .000 .002 .003

Zs



Table 6. P{y(k) 5-Y(t) <Y () | Yl(s) < YZ(u)} -- Combined Method

N1 = N2 = 10, ng=n, = 3, t=28
r=273 T = 4 T=25 r=20
k s u= 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .640 .640 .640 .899 . 898 .898 .969 .969 .969 .976 .976 976
5 .063 .640 .640 .930 . 899 . 898 .982 .969 969 .985 .976 .976
10 .708 .653  .640 1.000 .915 .898 1.000 .978 .969 1.000 .982 .976
2 1 477 A77 477 .735 .734 .735 . 805 .805 .805 .813 .812 .813
5 .514 .477 A77 . 780 .735 .735 .833  .805 . 805 .835 .812 .817
10 .642 . 500 477 .933 .762 .735 .933 .824 .805 .933  .829 .812
301 .119 119 .119 .377 .377 .377 .448 .448 .448 .455 .455 .455
5 .132 119 .119 . 399 .377 .377 .451 .448 448 .453 455 455
10 .175 .124 .119 L4067 . 387 .377 407 .449 .448 467  .454 .455
4 1 .060 .0060 .060 .130 .130 .130 .137 .137 .137
) .001 .060 060 .114 .130 .130 .116 .137 .137

10 .000  .055 :060 .000 .117  .130 .000 .122 .157




Table 7. Plyqy < Y4y <Yy | Y1) < Yoe? ™ Combined Method

N =N, =10, n =2,n,=4,t=4
I"= 3 = = = 6
k s u= 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .752 .774 776 .764 791 .793 .764  .791  .793 .764  .791 .793
5 .667 .750 776 667 .764 793 .667 .764 793 .667 .764 793
10 667  .725 .770 667 734 .780 667  .734  .786 667 .734 786
2 1 291,322 .352 .302 .339  .342 .302 .339  .342 302 .339 342
5 133,289 .325 L1330 .302 .342 133,302 U342 J133 0 .302 U342
10 133 250 .316 .133 260  .333 133,260 .333 .133  .260 .333
3 1 036 .043  .043 047 .060 .061 .047 .060 .061 .047 .060 .061
5 000 .034 .043 .000 .047 061 .000 .047 061 .000 .047 061
10 .000 .024 .041 .000 .033 .058 .000 .033 .058 .000 .033  .058
4 1 .002 .003 .003 .002 .003 .003 .002 .003 .003
5 .000 .002 .003 .000 .002 003 .000 .002 003
10 .000 .001 .003 .000 .001 .003 .000 .001 .003

¥S




Table 8. P{y(k) iY(t) Y(r) | Yl(s) < YZ(u)} -- Corbined Method

N, =N

= 10, n

2, n, = 1, t = 8

12 1
Tr = r = r = r=206

k s v 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .663 643  .640 906 .899 .898 967  .969  .969 972 .976  .976
5 .800 .68 .641 .946 .912 899 .959  .963 969 .959  .966 .976
10 978 .744  .652 .978 929  .902 .978 959  .967 .978 .961 .974
2 1 .486  .478  .477 .729  .734 735 .790 .804  .805 .796  .811 .813
5 .548  .487 477 .694 713 .735 .707  .764 805 .707  .767  .812
10 622,505  .480 622 .690 .729 622 .720  .795 .622  .722  .801

3 1 120 119 .119 .362  .376 377 .424 445  .448 429 .452 (455
S .127  .108 119 273 . 334 377 .2806  .385 447 .286  .388  .454
10 000 .095 .116 000  .280 .366 .000 .310 .432 .000  .311 .438
a4 1 .056  .059  .060 117 0129 .130 .123 136 .137
5 .034  .045 .059 046 096 .130 .046  .099  .137
10 .000 .028 .0560 .000 .058 .121 .000 .059 .128

SS




Table 9. I{y(k) < Y(t) <Y () | Yl(s) < YZ(u)} -- Combined Method
N, =N, =10,n =4,n, =2 t=8
r-= r = = T =

k s w= 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .617 .638  .640 .801 .898 .898 .971 .969 .969 .979 .976 .976
5 .484  .594 640 . 856 .885 .898 .983  .975 969 .995 .986 .976
10 .333  .540 .623 .833 .871 .895 .000 .981 .970 .000 .993 .978
2 1 .467  .476 .477 .742 .736 .735 .821 .807 .805 .829 .814 .813
5 410 .4066 477 .782  .757 735 909  .847 806 .921 .858 813
10 .333  .452 .474 .833 .784 .741 000 .894 .816 000  .906 .824

3 1 118 119 .119 . 392 .379  .377 .472  .451 .448 .480 .458  .455
5 113 . 130 119 . 485 .421  .378 .611  .511 449 .624 521 .456

10 L2000 .145 122 .700  .476  .389 .867 .580  .464 .867  .598  .472
4 1 .063 .060 .060 143,131 .130 .151 .139 .137
5 086 .074  .060 212,164,130 .225  .175  .138
10 167  .091  .063 .333  .200 .139 .333 L2133 .147
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of coverage (rather than a lower bound) for our confidence intervals,
(2) we consider a finite number of elements in each stratum (i.e., a
strictly finite population), and (3) our stratum sample sizes are arbi-
trary (i.e., we are not restricted to proportional allocation). We now
show (using a counterexample) that McCarthy's main result does not
necessarily hold if sampling is without replacement fram a finite popula-
tion. (This result can also be observed by examining Tables 5 and 6.)
Let 5 be a population of size 9, where all the elements have
distinct values. A sample of size 3 is chosen without replacement. The
probability that [x(l), X(S}] covers the median, Y(S)’ of T 9 is,
by (2.9), 73 .
Suppose the population is stratified into two strata of sizes Nl =3
and NZ = 6, and we sample proportionally from each strata: n, =1,

1
5 = 2. There are seven types of stratification possible. In Table 10

n
we 1list these, along with the probability that [y(l), Y(S)) covers
Y(S)’ Tthe probability of obtaining that particular stratification under
the assumption of ''random' stratification, and the product of these two
probabilities. In the Type colum, a '-"" sign indicates a value

below the population median, ''0" the median, and a '"+" sign a value

above the median.
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Table 10. Counter-example

Case Type Pl{yil) i.Y(s) 5-y(3)} Pz{obtaining case: Plx 2y
1 +++i—---0+ 1 4/84 180/3780
2 O+ !-mmmss 43/45 6/84 258/3780
3 -++:---0++ 40/45 24/84 960/3780
4 e e 39/45 16/84 624/3780
5 --+§-—O+++ 40/45 24/84 960/3780
6 ERTEEE 43/45 6/84 258/3780
7 —-- Ot 1 4/84 180/3780

In Cases 3 through 5, the probabilityv of coverage is less than the
19/21 as found for the non-stratified situation.

Hence we have shown that using the combined sample order statistics
may lead to a lower confidence coef{ficient than obtained sampling from
the non-stratified population. Of course, in the case of random stratifi-
cation, we know that the two expressions are equal. This is confirmed

by our table, since the sum of the last colum is 19/21.

b. Theoretical lower bounds. We now explore ways of approximating

P{y(k) :_Y(t) 5_y(r)} for the two strata situation. As before,

p{Y(k) iY(t) i?"(r) ;= P{Y(k) iY(t) o= P{Y(r) iY(t-l)}' Furthemore,

pf <' 1= v a : 4 =Y o) =Y Y
Y STt TLPYa 2V Yy T iyt Pl T Yiy!

i~

+
)

S0 Y Y T Yagn ! P T Yogm

(3.45)
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Therefore,

AP Y e T gy
P(Y gy < Ypey) 2 mind : (3.46)

Py ©) ~ Y20’

NGO

.

and

[P e e e’
P{y(k) f—Y(t)} < max . (3.47)

Pag <Y | Yo = Y2}

Using (3.11) and (3.12), we note that

Pag <Yy [ Yoy = Y1) = a0 <Yy | Yooy = Y-y
(3.48)

and so the minimum values and maximum values in (3.46) and 3.47) are
identical; if the minimum (maximum) occurs when j = p, the minimum
(or maximum) will occur when j* = t-p. The only exception to this
due to the fact that j (and i*) cannot take on the value 0, whereas
the possibility exists that j* (and j) can assume the value t. The
graphical work to follow demonstrates why we do not need to concern
ourselves with this fact.

Unfortunately, it is extremely difficult to work with the convolutions
cf the hypergeanetric distributions as they appear above. Hence we
turn to the binamial approximation to the hypergeametric as given in

Johnson and Kotz [1969, p. 148].
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In this case,

P00 Yy Yo M’

L) E D) e e g

i

i-

Py <Y \ Yooy = Yl(j)} . (3.49)

In Figure 3 we present P{y(.k) iY(t) \ Y(t) = Yl(j)} for
k=1, 2,..., 10, Nl = 20, Nz = 80, n, = 2, n, = 8 (i.e., proportional
allocation), and t = 50, plotted as a function of j. Figure 4 shows
the binamial approximation to this same data, and Figure 5 plots the same
probability, with n; =n, = 5 (non-proportional sllocation). Figure 5
also represents the binamial approximation.

A study of plots of these types would indicate that for proportional
allocation, well-defined maxima and minima do exist. Below, we prove a
thecrem conceming thanm;  this leads O aGppraximate 1Gwer DOUNGs Ior ihe
confidence coefficient of the type suggested by McCarthy. This is
followed with another approach which yields approximate lower bounds for
both proportional and non-proportional allocatien.

We now turn to finding the maximum and minimum values for (3.48).
Theorem 3.2: The maximm (minimum) of expressian (3.49) occurs at
j= Nl (t/N) for k > (nt/N + 1)(<nt/N), assuming proportional allo-

cation.
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1.0+ k=0,1,2
- k=3
M
0.9+
.. =4
\\\\ /
0.8+
0.7-4r
-\ S =.5
0.6+
0.54
0.4+
0.3+
0.2+
k=7
0.1+
— k=8
0.0 +—+—ttt—F+FFFFFF—FFFFFFF=F=+ k=9,10
5 10 15 20
j
i . P{at least rati Y LY =Y, ay0
Figure 3 at least k observations < W | Ty 1(5)°
Ny =20, N, =8, n, =2,n, =28, t=50



1.0 + = k=0,1,2
_/ k=3
.‘\‘—‘—h
0.9 +
\\ / k=4
0.8 4
0.7 4
\\ _
k=5
0.6 +
0.5 4
0.4 ¢+
0.3 +
0.2 T
\ k=7
0.1 +
0.0 p— e e s N L } — e —— k=9,10
5 10 15 20
j

Figure 4. P {at least k observations f—Y(t) | Y(t) = Yl(j)}

Nl = 20, NZ - 80, n1 = 2, nz = 8’ t =50 (Blnaﬂlal approximati(m)
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Figure 5. P{at least k observations <V

ORNORR O

N, = 20, N 5, t = 50, (Binomial approximation)

1 = 80, n, =

1° M

il

2
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Proof: Notationally,

T n . s
Bi(m,p;r) = ] () Pa-ph? . (3.50)
3=0 \]

For j = N;(t/N), expression (3.49) becames
Lo NS
i=k 2 12
irik (1%)1 ( lg)nfnz-i ) (’:1)(‘:21
A

= 1-Bi(n,t/N; k-1) . (3.51)

n
[

Turning to Hoeffding's Theorem, as stated in Anderson and Samuels [1967,
p. 1-12]:

"Let F(k) be the probability of not more than k successes in n
independent trials where the i-th trial has probability P; of success.

Let A = Py * Py *.--* Pp- Then

>F(k) for k<a-1
Bi(n, »/n;k)
<F&) for k >
Equality holds only if Py = - =P, = A/n."
Applying this notation to the theorem we are proving, expression

(3.49) becames 1 - F(k-1); Py = .- = pnl = j/Nl; pnl_*1 =...=p =

n
(t-j)/N,. Because of proportional allocation ] p; = Ny /Ny +
i=1
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nz(t-j)/N2 = nt/N. It then follows by Hoeffding's Theorem,

> F(k-1) for k-1 < (nt/N-1)
Bi(n,t/N;k-1)
< F(k-1) for k-1 > nt/N . (3.52)

Therefore,

>1- Bi(n,t/N;k-1) for k < nt/N
1 - Fk-1)
<1-Bi(n,t/N;k-1) for k > (nt/N)+1 , (3.53)

with equality only if j/N1 = (t-j)/NZ so that j = Nlt/N, thus proving
our theorem.

Hence,
PVay =¥ <V PV 2¥w! - P 2 ¥ (e-p!

R (A ORI ORI

Yy <Yeen Y en i

Il

1 - Bi(n,t/N;k-1) - (1 - Bi(n,(t-1)/N;r-1))

Bi(n, (t-1)/N;r-1) - Bi(n,t/N;k-1)

provided k <nt/N and 1 > (n(t-1)/N)+1
(3.54)
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A second approach to this problem yields approximate lower bounds
to the coverage probability for both the proportiocnal and non-propor-
tional allocation cases. The binomial approximation to the hypergeo-

metric distribution is also used in this derivation.

Let
v, =4 Yo {Ip?
ki . U =
0 otherwise . (3.55)
let
n% n§
Z= ) X, + X,. . (3.56)
j=1 45 A

Z 1is then the number of observations in the sample with associated Y-

values less than or equal to Y(

t)°

Then

Pag <Yy S¥n | Yoy = Y1)
=P{k < Z<r-1| Yooy = Y5

FPe e e T he! (3.57

and

Pyay <Y SV | Yo = Yagm?
=Plk < Z<r-1| Yooy = Yo(im}

+ P{y(r) = Yy (5 | Yigy = Yz(j*)} . (3.58)
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Therefore,

R(ORNOEMOY

> J) Ptk <2 <11 | Yoy = Yy(50 0 POy = Yy5))

FLPR ST erd [Ny T Y] Pl T g

min Pk <Z <11 | Yy = Y5))
> mind J

m?: Pl <Z <11 | Yy = Yysmd| (3.59)

Considering P{k < Z < r-1 | Y(t) = Yl(j)}’ we have

n, n, )
E(Z) = E‘J + NZ (t-3) . (3.60)

Switching to the binamial approximation and applying Hoeffding's Theorem
as stated in McCarthy [1965, p. 776],

-1 [n\ . .
Pk <Z <11 [ Ypyy =Yy > ] / \lpf (1-p,)""* (3.61)
~ Y/ -\J/ i:k \i/ . A
where
n n,
1 1 YA
= 5l §*+rx (t3))
1 2
0 <k<npy <r1lc<n (3.622
Similarly,
r-1 [n\ .
Pk <Z <r-1 | Y(t) = YZ(j*] > Z ( \p; (l'Pz)n-l (3.63)
1=k i’



68

where
1 [™ N,
Py = = | (t-3%) + & j*
2 et \1 12
0 <k <mp, < -1 <n . (3.64)
Thus,

PV <Yy <V (n)?

r-1 /ny - s r-1 /ny - _.\
2 minfnin § () e} e min g ()6} cpp” | e
j isk M j* i=k \i

In the case of proportional allocation,

n_ i _ 12
N < - N
N .\2 I\z
and
_ _t
P=p =D, = & . (3.66)
Then
r-1 (n . .
\ i ,,_\n-1 -
PO <Yy <Vt izk P e (3.67)
provided
1 < X < -T}:—t < r-1 < n
For non-proportional allocation, we find the minimum value which
rl/n i n-i
fpy) = 1 p (1-py) can attain, recalling that p; is a function
i=k \i
r-1 n\ : n-i
of j. Similarly, we find the minimum value of f(pz) = )

1.,..
p5(1-p,)
isk i} 2= fe
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where P, is a function of j*. Then P{y(k) 5-Y(t) :_y(r)} 1s greater
than or equal to the smaller of these two minima.

We now turn to finding the minima of f(pl) and f(pz). let

r-1 /n)\ . .
£p) = J ()nl 1-p)"t
i=k {1

P k- -
S r.lln_ 1 f K 110K &
0
P - -
(r-nrzl!(n-rT! f ¥ (10T & . (3.68)
0
Then
n-1 n-1
@ - ) Pt -p)" \ T lap)™ T . (3.69)
k-1 r-1f

Setting (3.69) equal to zero and solving, the resulting polynamial has
a root of multiplicity (k-1) at zero, a root of multiplicity (n-r)

at one, so that, after removing these roots, we have the equation
n-1 n-1
-k -k
1-p™* - p’

=0 . (3.70)
k-1 r-1

Solving this equation for p, the only root in (0,1) is

1 s
D ~ . (3.71)
n-1\ [[n-1\} 1/E-K
1 +

r-1)f \k-1
Hence, since f(p) 1is continuous on [0,1], f£'(p) continuous on (0,1),
f(0) = £(1) = 0, and there exists exactly one p* in (0,1) such that

£'(p*) = 0, the minimum of f£(p) must occur "near' zero or one.
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Recalling that Py is a fimction of j,

1. /™ nz) Ny
p, = 1] ( ) Yt )
1 n[ NZ— 2\2 2\2

we have the following:

n n
If r, 2 , the smallest value p can assume is when
NN
n n
j =max {1, t-N, 1 Call that value of p, "p min". Also, if N—l >N—2 ,
- 1 2

the largest value p can assume is when j = min {t, Nf . Call that

value of p, '"p max".

n n
Similarly, if Nl- <Ng' , the smallest value p can assume is when
1 2

j = min {t, Nl} ("p min") and the largest value is when j = max({l, t-NZ}
(Hp maxll) .
At this point, evaluate f(p min) and £(p max), and compare them

to obtain min f(pl) .
J

n
Repeating the same procedure for Stratum II, with P, = %(\,—1 t +
!
(Né- - Nl—) j*) , we are able to find min f(pz).
2 1 j*
Finally, camparing min f(pl) and min f(pz), the smaller of these
j i*

will be an approximate j* 1lower bound for P{y(k) < Y(t) =Y 1
under the assumption of expressions (3.62) and (3.64).

8. Sampling with replacement from a finite popuiation

Let our population consist of N = 2m - 1 elements, having distinct

associated Y-values. OCbviously, Y(,_‘) is the median. Using the notation
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of the first section, and using proportional sampling with replacement
from each stratum, McCarthy [1965, pp. 776-777] derives a lower bound
for P{y(k) f-Y(t) iy(r)}.

Let W1 = Nl/N‘ Then Wl and 1 - Wl are our strata weights.
Let Py be the proportion of elements in Stratum I with associated
values less than or equal to Y(m); P, the correspanding proportion in
Stratun II. We then have W]_p1 + sz2 =m/(2m-1) and n,p; * nyp, =
nm/(2m-1). If we let S; = number of observations from the i-th stratum
with. values less than or equal to Y(m)’ and S1 + S2 =S, E(S) =
mm/(2m-1). Appealing to Hoeffding [1956, pp. 713-721], we then have

r [n i n-i
X n ) T (3.72)
z L i) ) A
In the case of an even-sized population,
Py gy < Y AR (3.73
Y < <Yl > (—-—) . 3.73
k) med (r) = (1) 2

This generalizes directly to more than two strata.

C. Confidence Intervals Derived fram the Sample C.D.F.

1. Definition of the confidence interval

The confidence interval procedure described in Section B may not be
satisfactory in all situations. Given a stratified simple random with,

for example, (nl/Nl)» (nszz), a wide confidence interval of the fom
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[y(k), y (r)] might be necessary to achieve a desired confidence coeffi-
cient. (For example, with s 1large, u small, N1 = NZ and Y(t) the
population median, both the upper and lower confidence limits would
likely be variate values from Stratum I unless r were chosen to be very

large.) Such possible difficulties rmay be eliminated by deriving a

confidence interval from the sample C.D.F. defined by

N N
. M1 iy 2 i =
A J HIX{ + (1-3) @ if Y(i) <Y < y(i+1) and y(i) - yl(j)
Fly) = N N

< ey 1 : i =
D gy *iay M Y oY <vaa ®™yg Ty

L1 if Y2 ¥mpm,) . (3.74)

The graph of ﬁ(y) 1s illustrated in Figure 6. Note that the ''jumps"
corresponding to observations from Strata I and Il are j1 = (Nl/nlN) and
j2 = (NZ/nZN), respectively. If proportional sample size allocation is
used, these "'jumps'' are equal.

To each pair (a,B8) where &g < @< 8 < 1 and ag = max{(.\’l/nlN),
(NZ/nZN)}, there corresponds a unique pair of integers (k,r) where

1 <k <r <n such that

F(Y(k)) <acx< F(Y(k+1))

A

O (p-1y) < 8 < FO(p) (3.75)

Where F(yCo)) 0) F(Y(n‘_l)) = 1.
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Figure 6. F(y). (C.D.F. method)
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For given values of o« and 3 , the confidence interval for Y(t)
is given by [y(k), Y(r)) where y(k), y(r) are defined by (3.75).
Of course, the integers k and r may vary in repeated sampling from
LINE This confidence interval procedure is illustrated in Figure 6. For
any value of 8 in the shaded region on the Y-axis, the upper confidence
limit 1is y(r); similarly for any value of o 1in the shaded region,
the lower confidence limit is y(k).

In the case of proportional allocation, the jumps jl and J, will,
of course, be equal, and in this case, the integers k and r will not
vary for fixed o and 8. Hence, for proportional allocation, the C.D.F.

method is equivalent to the cambined method.

2. A lower bound for the confidence coefficient

Before determining the exact confidence coefficient associated with
the confidence interval defined in the previous subsection, a lower bound
for the confidence coefficient is derived. This lcwer bound sheuld pre-

vide a good approximation for the confidence coefficient.

PVay =¥ <Vy? = PEO ) 2 Fl(g)) < FO ()

|v

Pla < ﬁ(ym) < 8}
= P{F(Y(yy) < 8} - PIE(Y () < ) (3.76)

where the inequality in (3.76) follows fraom the definitions given in

(3.75).
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Then,
) min[t,N}
PIF(Y(yy) < B} = j=ma£[l’t_N2]P{F(Y(t))<8lY(t)=Yl(j)}P{Y(t)=Yl(j)}
min[t,N,]
+ ) P{F(Y(t))<BIY(t)=Y2(j*)}P{Y(t)=Y2(j*)}.

j*=max[1,t-N1]

(3.77)
Let i:(Y(t)) = [ml(t)Nl/nlN] + [m, (t)NZ/nZN] where mi(t) =m; denotes
the number of observations in the sample fram Stratun i with Y < Y(t)‘

then

] I\ NS t-j\/N,-(t-3)\ JINJ) /N
- 1 2 S ERD)
ml,m2=0 m n,-m, /A m, n,-m, / n;/\n,

*
where ) denotes sumation over all non-negative integers my; and m,

such that (rnlNl/nl;\" - :r:z,\'z/nzl\') < 2. Similariy,

PIEN ) <8 1 ¥ () = Yo(m)]

. .- . C e - . -
_ g’:* i* NZ-J* t-J*) :\1'(‘-'3*)\) :\1) :\2)
ml,m2=0 mz* ny-m, J\ My | n;-my ' n, /\n,
(3.79)
Then, (3.77) and, finally, (3.76) may be obtained by detemmining
PrY -y - _ . e
{ (t) 1(])} and P{Y(t) YZ(J*)}’ several possibilities have been

considered in Section B.
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In Table 11 we give examples of these lower bounds under the assump-

tion of "'randam'' stratification for P{ﬁ(Y(t)) < 8} for a) Nl = NZ = 50,
n; =n, = 5, t =50; b) N1 = N2 = 50, n, = 2, n, = 8, t = 50;
c) N1 = 20, NZ = 80, n, = S, n, = 5, t =50, for 8= .2 (.1) 1.0.
The results for Nl = 20, N2 = 80, n, = 2, n, = 8, t = 50 are identical
to case a).
Table 11. P{F(Y(SO) < 8}
N1=SO, N2=50 N1=SO, N2=SO N1=20, N2=80
B n,= S, n,= 5 n,= 2, n,= 8 n,= 5, n,= S
.2 .0078 .0828 .0307
.3 .0458 .1547 .1503
.4 .1589 .3068 .2367
.5 .3703 L4271 .5000
.6 .6297 .6932 .6627
.7 .8411 . 8453 .8497
.8 .9542 .9172 .8471
.9 .9922 L9936 .9873
1.0 .9994 .9994 .9994
3. Derivation of the exact confidence coefficient
For greater clarity, denote the upper confidence limit, Y (1) by
Yu and the lower confidence limit, Y(k)’ by Y- Then,
P{yL f-Y(t) < yU} = P{yL f-Y(t)} - P{yU f-Y(t)I . (3.80)

To determine P{YU-:_Y(t)} one must first enumerate the possible
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"values" of U. Consider the set A of non-negative iﬁtegers ui and
ué such that uij1 + uéj2 > B, (ui-l) j1 + uéj2 < B, and (of course)

Y(u]'_"'ué) = yl(u.i); and the set B of non-negative integers uj' and
W' such that uj'ji* wj'j, > Buj'j;t (wy'-1)j, <8 and y(u]'_'+u§') =
yZ(ué') where j. = N./n'iN. The sets A and B include all of the

values of U = u1+ u, as.well as an identification of the stratum fram

which the (u1+ uz)-th order statistic (in the cambined sample) cames.

Thus,
Ply, <Y 3= 7 P{Y vy <Y eq} * PV iyt tat 1Y ey}
02T 7l o T @ gy T @
(g
= Y (ot gont Yo o -y}
(uj,up)eA izo Yojruy) T e
£- (u] "+uj")
* z . Z P‘r}’(, Ity T Y(,._,\}
Lul:’ué:)sb i=0 S e 2 N

(gt Vet t
z t (ul’fuz ) tii
+ 2, P{y, vi ooty =Y _: I
(ui',uy"eB is0 jr=ul (u; ") (t-1)
Y } P{Y

t-1) = Yom ) P¥e-1) T Yagm? - (3.81)
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Then, it is easily seen that

PV reu) = Yee-ny ey = Ya?

I

3-1\[Np-3 \[t-i-] (NZ-(t-i-j) N[N,
ui-l nl-ui‘ ué \ nz-ué n, [\n, (3.82)

PO ) = Ve Y1) = Y2gm!

j*-1 Nz-j* t-i-j* Jl-(t-i-j*) Nl N2
ué'- nz-ué' ui' nl-u]'_' . n, fin, * (3.83)

Thus, P{yU < Y(t)} may be obtained from (3.82) and (3.83) and a

and,

1 3 R = N 1% . = . .
determination of P{Y(t-l) Yl())} and {Y(t"l) Y, (3*)}
To find the camponents of the set A, note that for each value of
wy (W = 0,1,..., ny), if 0 < {[(8-u}j,) /j;1+1} <ny,

then ([(8-wyj,) /j;l*1,ul)eA. Similarly, for each value of uj'

-

(ui! =0,1,..., nl), if 0 < {[(B’Ui'jl)’/jzl.‘-l} -f-nZ’ then

(@', [(8-v1'3p) /3,1*D)eB.

n
n
}a
C
=t
(]
<&
[}
i
]

To determine P{y, < Y, .} one must enumerate the pc
P \»J
of L. Consider the set C of non-negative integers Qi and g5 such

that 2131 *+ 23Jp <o (27 + 1)jq + zéjz > a, and (of course),

Y(£i+£2.+1) = yl(zi*‘l)' Also, set D consists of those non-negative
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integers 2;' and £3' such that £]'j; *+ £3'J, < o, 21'3; + (23"*1)j>e

and (eof course), The sets C and D include

y(‘q']'_'+2é'+l) = yZ(lé'*-l) .
all of the values of L = 21 + 22 as well as an identification of the
stratun from which the (21+22+1) -th order statistic (in the cambined

sample) comes. Thus,
tlrh) N n

P{y < Y } =
L—-"(%) (%, %)eC i-z—~0 j=1 m=tzi+1 p=§+1

P+ = Yy N Yieogy = Yah)

NG =Yg V) = Y’

t-1 m

*11 2

C 1 j*1 m p=t-1-j*+1
Pty (2+23) ~ Y(t-i)n Tee-1) = Y2(3%)

Ar1epn = e N e = Yo!

_ I L
i 3 m

(21'5%;")eD pr=t-i-j+1
P{ 1 ' = . . .
Yayreayn) T Ve M Yeeeny T Y1)

Ny, (231+1) - YZ(p*{\ 7 (®*) Y(m)}



jo] s |

0
i

I
P\}’(zi'_,_zé

)

1

x?
f\f2(15'+1)

)

"
X~
Hda~

PIY. .
x 1(3)

e~
[P e

X P{Yz G*)

3o
et~

fad

P ()

el
(S S

e~

x P{y

j m p Ri-l nl-z‘l-

~13

p*=j*+1
Y1) Ye-1) T Y205

“Yaen M a0 T Y

Z j-1\[ N;-p ) t-i-j Nz-(m-pﬁ N

" Yy NV Y1) = Yy

=~

Cale [~}
H et

= Yie-n

1~

=

(j*'l) Nz' (m'P) 'i'j Nl'p

N

Yoy Vi) = Yy

;[P e /t-i—j N,-p*
*ore AL o g
PVt 2 e

Ny }

2(0%) ~ T(m)

5 fi%-1\/ N,-p* Xz-i-j*\ N - @-p*)
E R AL AL " _gQn
PR\ R NS N4 )

2% = Y1) N Yo% = Yy

(3.84)
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To find the camponents of the set C, note that for each value of 22'
(=0, 1,..., n)), if 0 <[(a-g)/j;] sny - 1, then
([(a - 22')/3'1], 92') ¢ C. Similarly, for each value of gf (z'l' =0,1,...,
n), if 0 <[(a- 2§51)/3,] <ny - 1, then (g} , [(a- £31)/i)]) ¢ D.
3 ol . = . n Y =Y }
The camputational expressions for P{Yl(J) Y(‘t-l) 1(p) (mf ,
etc., are now derived. They are rather involved, computationally-wise,

and no attempt has been made to program them.

Simplifying our notation, we derive an expression for

P{Y Ny =Y

@ =15 M e T Vi o ete

under the assumption Yl(s) < YZ (" We will not explicitly write this

assumption down; it is assumed to be implicit in each expression.

Now,
= - n - . 1
PY0 = e T g
= = I = | v =Y )
Py = Y597 P0(eny Yoo Yo =Ygt (389
2, &' =1, 2
The first temm has been derived earlier.
For the second temm, we have
= ‘ =
P Yorgn Yy = Yei M Vi) < Yo’
PY, .« =Y..,..« . | = .
Py T YN Vi <Y Y T Ya)!

) < Y =Y ..}
Ties) “ e 'Y T )



where

Using a

P{Y

" -

L P en™or 0NV 1(se) Y2 ® s+ Y () e (i)

g PUY) (v Y2 ()€ Tas+arn) Yy Ve ()]

= L PYen ™0 Mea® 2w e nN Y oY X P
(3.86)
pr = ") Yoo Vi YT Ve’ (3.87)

g P (sva) < Yoo Y1svas) Y (0)™ Yagi)'

technique previously employed, we spell out the various cases for

oIy

YorgnMissa)y < Yo < Vit N Yoy = Vet

Case 1 Case 11 Case III Case IV

© 15 Yo T Yo ) Yo Tz

Y

Y o =Y e Yoo =Y ey Yoo =Y ey Yo o =Y
16 Yen™2gn Yen™ign YenTgy

s+u+d E o o E

s +u-+d 1 2 3 4

s+u-+d E E E E
SiLol g 5 6 7 8
<s +u+d E E E r

et u+d 9 10 11 12
=s+u+d E E E E

e+ d 13 14 15 16
>s +u+d E E E E
e d 17 18 19 20



Case

Case

Case

Case

Case

Case

Case

Case

Case
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For each of these twenty cases we compute

ply

(t")

P{E;}

P{E,}

P{E;}

P(E,}

P{ES}

P{Eé}

P{E7}

P{E8}

P{Eg}

P{E.

=Yg Y

}.

t'-t-1\[s+d+(u-1)-t'| [o+d+(u-1)-t
j'-3-1 )K s+d-j

e
L
o

'-(t-3)-1

'ctﬂJ(

s+d-j

=Y Ny <
2(3) 1(s+d)

YZ (u) <

)

Yi(s+a+1)?

)(s+d+ (u-1)-t ') (s+d+ (u-1) -t)

(u-1)-(t-3)

(u-1)-j

s+d+(u-1)-t'

s+d-j'

s+d+(u-1)-t'
'-j-1 -1)-4"

(u-1)-j

otherwi

t'-(s+d+u)
j'-(s+d)-1

Se

)

{N-t'
\Nl'j

ik

s+d+(u-1)~t)

(u-1)-3

(s+d+u)
.- (s+d)

|

s+d+(u-1)-t
s+d- (t-3)

fomn

3

N

(3.

N
w
.

3.

.88)

89)

.90)

.91)

.93)

.94)

95)



Case

Case

Case

Case

Case

Case

Case

Case

Case

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P{Elo}

P{Ell}

P{Elz}

P{E,; 3}

P{E14}

P{E;g}

P{Ejg!

P{E;;}

P{E g}

P{E,
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t'-(s+d+u)-1\ [N-t' N- (s+d+u)
j'-u-1 Nz-j' Ny-u
P{E

97

P{Elo}

t'-t-1 N-t' N-t
if j=u
3= (s*d)-1]\N -3\ N - ()

L O otherwise

t'-t-1}/ N-t’ N-t
if j=u
'l_'_l :\" =1 ‘:_'

[ 0 otherwise

S

t-
( -(t-j)- 1 N ) \ - (t- J))

{t'-t-l 1)( SR S
\jY'(t'j)' *\1 J') \‘1 (t- J)/

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)
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t'-t-1\ [ N-t' N-t
Case 20. P{E,} = . (3.107)
SARSESY L SRS A VAR DR

I i P{Y =Y on 1Y,y = i i

n order to find P{ " G Y () Yz (J)} we must multiply
each of the above by P{Dd}/g P{D;} . In Section B we gave the expression
for P{Dd} .
In the case of ""Random'' Stratification,

PO 5y = Yy Va5 = Yoo

b-1\[ v-b-1\/ N-v| 4N

’ (3.1078)
3 - LI \] -3t \"
AREY AWRRS RV AR Ny

YoM Y25 T Y

(b-l)( v-b-1 \)( N-v) (N )
s (3.107b)
b-3 [\3'- -3)-1, ;\fz-j"’ N,

1}

P

. RN -

P T Te Vg T Yw!
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4.  Woodruff's Technique

As a special case of these results, we refer to Woodruff [1952,
pp. 635-646]. On page 642 of his article we read:

"In conclusion, it appears that confidence intervals for the

median and other quantiles can be approximated for any samp-

ling design where the variance of items less than a stated

value can be acceptably estimated (in general, where large

samples are involved)."

The technique employed by Woodruff is similar to that which we have
been discussing, with the following exceptions.

The discreteness of the empirical C.D.F. is ignored, and hence the
inequality which we display in (3.76) 1s eliminated.

Woodruff makes no statements concerning confidence coefficients for
his intervals. Instead, his approach--using the median for an example--
is to pick for « and &8 the values (.5 - ksp) and (.5 + kcp)
respectively, where cé is the variance of the proportion of items in
the sample less than the true median, and k is a positive constant.
rence, e talxs about one, two, and three standard deviation confidence
intervals for a quantile, but unless he makes an assumption such as the
percentage of items in the sample which are less than the population
quantile follows a normal distribution, no exact confidence coefficients
can be given.

Also, since in most cases, oé can only be estimated, this also puts

same variability into the choosing of o« and g .
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Table 12 lists the exact confidence coefficients for the median for
(«,8) = (.5 - kO.S’ .5+kc.5) where k =1 and 2, where we are taking
a simple random sample of size 9 fram a population of sizes N = 15, 27,

99, 198.

Table 12. P{.5-ko, 5_%(Y(t)) < 5vko )}

N n ot o, P{.s-opiﬁ(y(t))<.s+op} P{.s-zopff(Y(t))<.s+ch}
15 9 8  .1091 .6853 .9594
27 9 14 .1387 .5803 .8968
99 9 50  .1597 .5130 .9692
198 9 99  .1633 .5024 .9651

Applying Woodruff's method to our C.D.F. technique, he would say

pi-1.96 <« £ EE) 796} = .95 (3.109)
-
F
or
P{E(F) - 1.96 ot <F < E(F) + 1.96 op} = .95 . (3.110)

That is, choosing

E(F) - 1.96 o

Q
]

(3.111)

E(F) + 1.96 oz

F

[és]
1]
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would yield approximately a 95% confidence interval. Using for E(F)
the quantile we are considering (e.g., E(i:) = .5 for the median), we

now must came up with ok

Now
n n

N, 1 N 2
o 1)1 2
F(y) = 5<{=—= J) x;.+ == | X } (3.112)

N{n = 11 n, 54 21J
where
. - 1 if yz{i) <y
21 0 otherwise |,

Yo (i) being the i-th sample element from the g-th stratum. Then,

Var(xi) =T, - Hzi)’ where T, = p{yz(i) < Y}. Ignoring the F.P.C.,

P, (1-P)) . N5 P,(1-P,)

ng N —ﬁz_ (3.113)

NN

Var[F(y)] =

2}\)' HZN
i

where Pl = proportion of elements in Stratum 2 (2=1,2) with

@ 2w

In Monte Carlo Study III (see Section E.7) the actual values for P1

and P, were .6 and .2, respectively. llence, = .187. In note 7

°F
in Section E.7, we discuss the Monte Carlo findings in temrms of the

Woodruff technique.

Of course, if P1 and P2 were unknown, O would have to be

estimated fram the sample data.
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D. The Separate Strata Method
When it is known that, for example, Yl (s) < Y2 (w)? an alternative
form of confidence interval may be advantageous in some situations.
For instance, let N1 and NZ be odd and consider a confidence interval

for Y([Nl +N2] /2)--(approximately) the finite population median. If
Yl([Nfl] /2) < YZ([N2+1]/2) (i.e., the median within Stratum I is less
than the median within Stratum II), it is easily shown that

confidence interval for Y([N1+N2]/2) of the fom [yl(k) »Yo (r)] may be
desirable. In Section D.1, the confidence coefficient associated with

a sanewhat more general form of confidence interval for Y ) is
considered: If yl(’k) <Y, ()’ the confidence interval is [yl(k)’YZ(r)] s
whereas if Y, ) < yl(k) the interval is [yz ) ’yl(k)]‘

3 3 L. A LLI A2 ae
1. Derivation of the confidence coefficient

The confidence coefficient associated with the confidence interval

procedure defined in the previous paragraph is given by

P{yl(k) iY(t) < YZ( )} + P{VZ( y < < \(t) < l(k)} . (3.114)
Now,
P10 2 Y0y Y2’ T P LY 10!
!
R

450100 Y 22w iy
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* P Yy V1Y T Vi

x P ey = Yy(4)

4
o~
-~
el
~
<«
-
'~
L

=Yy YY) = Yagm!

* Py 2 Y V100 Y T Y2gm

* P T 2gm’
N

1
= L% Yo Yo T o) P 2 Yo e T )

Py Yy Y T 1) Y0 2 Y Y T ag)
* ey T Yi?
N

#2 FN10Y 0 Mo e P e @ Y o® 2en

+

P YT Y260 P Y1002 @) YT YaiHy?

X PY oy = Vyes) - (3.115)

Looking at these terms individually, P{Y(t) = Yl(j)} and
P{Y(t) = YZ(j*)} have been given earlier in (3.14), (3.15), (3.41), and

(3.44) under the assumptions of ''randaom'' stratification and

{Yl(s) < YZ(u)} .
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Also,
PV LYo e T ey
RATSIRSTOE

min[jinl] J Nl'j Nl
i=max[k,j+n1 N1 i n1 ny
P2 Y)Yy = Yagh!

_ M[E-J ,n] t-j Nz_ (t-3) NZ
i=r i nz-i n,

P00 2 Yy Yoy = Yig!

1Py =Y15-1)!

mini-1,n,] /11\/\4”\/\
R

P 2 ¥ Yoo = Y1)’

=1- Py ¥ Ve = Yigy?

Similarly,

{ < l =
RECIEMCINORETCOK

mintay e 3459
i=k i nl-i ng

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)
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= 7 - (3.121)
1= 1 n—)"l nz
P{ Y oY =Yoo
BRI O ORRAGL)
=1 - Piy F oy = 1 312

P S e T g’ (3.122)

REIOEOIN ORI
min[j*-1,n,] [%-1}[N,-(j*-1) N,
=1- ) c (3.123)

i=r 1 nZ-i n,
If the probability that y?(r) < Yl(k) 1s small, an approximation
for the confidence coefficient, (3.114), is given by
P{yl(k) S.Y(t) f-YZ(r)I s Ptyl(k) f-Y(t)! - P{YZ(r) < Y(t)j‘ (3.124)

Note that each of the temms of the right-hand side of (3.i24) can be

expressed in a relatively simple form. For the first temm,

y B WA TNEE W AN
PV 1) < V(o) J:,;l L l)knl'i.}/KnJ PIY 4y = Yl(j)}
E nl t'J*\I&z'(t'j* Nl
+ ) ; - .
J*il i=k\ 1 }nl’i n PtY(t) ngj*)f
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Similarly,

;72 _
(;Z)P{Y(t-l)" 15y}

P{Y(t_1)= Y2 (j*)}

(3.126)

2. _f_\_ lower bound for the confidence coefficient

One may obtain a lower bound for the confidence coefficient asso-
ciated with the confidence interval [y:L X))’ Y2 (r)] for Y(t) when it
is assumed that Y1 (s) < Y2 () This lower bound may be evaluated very
easily, and, therefore, should be useful in many applications. Three
cases must be considered:

Case I. u<t<s+u-1.

With u <t <s +u- 1, it is easily shown that Y(t\ > Y, (t-ut1) and
J L e-as

Y(t) iYZ(u—l)' Let A, denote the event 'yl(k) in(t-u+1) , and

A2 the event 'y2 () > Y2 (u)”' Then it can be shown that Al, Az, and

Yl(s) < YZ(u) lmply that y1(k) -<-Y(t) =Y2(1) for any value of Y(t)

in the intervals specified above. Thus,

Py < Yooy < Vo)t 2 PPy (3.127)

where Py = P =P fVi(rewy) B Py =PI S

P{YZ(r) ZYZ (u)}' It should be noted that both Pl and ‘DZ may be
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evaluated very easily (see (2.7)) since each of Al and A2 refers

to simple randem sampling from a single stratum.

Case II. s +u+1c<1t<s+N\,

‘ith

With s +u+ 1<t <s+NX,, it is casily shown that Y(t) i-Yl(s+1)
and Y(t) f-XZ(t-s)' let By denote the event Y1 (k) 5_X1(S) » and
B, the event "y7(r) i-Y7(t—s)”‘ Then, it can be shown that B,, B,,

. e ) ) o .
and Yl(s) < \2(u] imply that Y100 g_Y(t) <Y2(r) for any value of

Yff) in the intervals specified above. Thus,

. N P -
PYigo Y 22’ 21 P (3.128)

*—

where P1

(B.) = D¢ 1 * _ =
P\Bl, “yl(k) :-Yl(s)’ and PZ P{BZ} P{yz

™) = Y2(t-s)"
Again, P; and P: are easy to evaluate.

Case III. t=s+u

With Y

’ = . 2 ~anfi ; T Af +he
105 ° YZ{U)’ X(t} YZ(u}' Thus, a confidence intervai of the

form [y, s y7(r)] is appropriate for this case.
2(kY> 72

5. Tables for the Separate Strata Method

PR SSY

In Tables 13-17 we tabulate the probability of coverage of Y by

(t)
the interval determined by yl(k) and YZ(r)’ under the assumption

(%)
O
93]

Yl(q) < YZ(u)' The ca are conpletely analogous to Tables 5-9 in Sec-

3 3 : 3 - wpsd r
tion C on the Combined method. Notationally, ’PLLyl(k),)z(r)} covers

Y(t]}Yl(s) < Yz(“\}” means ''the probability that the interval determined by

)

alld ) COVETS "’ gi ren Y < VvV VV.
Yo(ry COVETS Yigys EVER Tyigy T iy
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. , Y Y
Table 13 P{{yl(k) yZ(r)} covers Y(t)[ 16s) < Z(u)}
N1 = N2 = 10, n, =n, = 3, t=4
r=1 r=2 r=273
k s u= 1 5 10 1 ) 10 1 5 10
1 1 .667 .664 .667 619 .564 .560 .596 .520 .512
5 .833 .667 .667 .833 .619 .561 .833 .596 .513
10 .833 .695 .667 .833 .681 .575 .833 .671 .533
2 1 .501 .556 .560 174,171 174 .126 .092 .091
5 .333 .502 .559 .333 .174 .173 .333 .126 .092
10 .333  .447 .546 .333 .200 .174 .333 .176 .100
3 I .427 .506 .512 .057 .087 .091 .007 .007 .007
5 .033 .427 .511 .033 .056 .091 .033 .007 .007
10 .033 .327 .491 .033 .037 .083 .033 .011 .007
Table 14. P{{y1(k), YZ(r)} covers Y(t)lyl(s) < YZ(u)}
N1 = N2 = 10, n; =n, = 3, t =38
r=1 r=2 r=3
e s = 1 g i M 5 13 1 5 10
1 1 .434 430 .434 .745  .716 .715 .838 .809 .805
5 .637 .434 .433 .939 .79Z2 .715 .960 .891 .806
10 1.000 .531 .434 1.000 .882 .733 1.000 .943 .826
2 1 .684 .711 .715 .549 .546 .549 .416 .382 .380
5 .645 .637 .714 .682 .548 ,548 663 .480 .381
10 .933 .627 .697 .933 .639 .549 933 .617 .404
3 1 .772 .803 .805 .344 375 .380 .097 .096 .097
5 .574 .719 .804 .248 .279 .379 .181 .097 .097
10 .467 .611 .784 .467  .252 .356 467 .159 .097




)
Table 15. 1{{y1(k), yz(r)} covers Y(t)IYl(S) < Yz(u)}
N1 = = 10, n, = 2, n, = 4, t
T =1 T = T = T =4
k S = 1 5 10 1 5 10 1 5 10 1 5 10
1 1 .649  ,677 .681 .499 ,481 .482 .442 .384 .380 .439 .375 .369
5 667 .650 .681 .667 .498 .482 067 .442 .381 .667 .438 .369
10 667 .638 .673 .667 .535 .486 667 .507 .396 667 .505 .386
2 1 +555 .635 .640 41 .186 .192 .050 .044 .045 .046 .032 .032
5 133,556 .639 33 .141 .192 133 .050 .045 133 .046 .032
10 133 .451 .619 133 .115 .180 133 .067 .046 133 .066 .035
) -
Table 16. l({yl(k)’ YZ(r)} covers Y(t)|Y1(s) < Y2(u)}
N1 = N2 = 10, n, = 2, n, = 4, t
T =1 r=2 r = T =4
k s U= 1 5 10 1 5 10 1 5 10 1 5 10
1 1 L4720 .486  .490 .0653 .638 .639 .706 .681 .679 .694 .662 .658
5 572 .445 ,489 .844 670 .639 .862 .751 .680 .860 .755 .659
10 978 .494 480 978 770 .6406 .978 .833 .696 978 .835 .682
2 1 .807 .835 .837 .550 .584 .589 274 280 .283 .180 .162 .161
5 .050 .762 .836 439 .480 .588 .347 .258 .283 .340 .214 .161
10 .622 .675 .818 .022  .440 .563 622 .322 .277 622 .308 .174

Q6
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‘ . P , . s Y Y., <Y }
Fable 17 1{{yl(k) y2(r)} covers (t)l 1(s) 2 (u)
Ny =N, = 10, n, =4, n,=2,t=38
r=1 r=2
k s us 1 5 10 1 5 10
1 1 .508  .489  .490 .867  .840  .837
5 .743  .534  .490 .983 .912  .838
10 1.000 .642  .500 1.000 .958 .855
2 1 .625  .636  .639 .628 .591  .589
5 .722 .608  .639 .864  .697  .590
10 1.000 .668  .632 1.000 .819 .615
3 1 .652  .676  .679 .293  .282  .283
5 .594 608 .679 LA75 0 U309 .283
10 .867 .594  .663 .867  .431  .290
4 1 .622  .655  .658 .142  .158 .161
5 .422  .561  .657 L1133 .108  .160
10 .333 457  .634 .333  .109  .148

In studying these tables, we note some interesting points.

1. In Tables 13 and 14, for (s,u) = (1,10) (essentially random
stratification), the probabilities associated with (k,r) = (a,b) are
equal to those for (k,r) = (b,a), a=1,2, 3, b=1, 2, 3. This is
due to the fact that, for random stratification, P{y1 (x) < Y(t)} =
P{yz X) f—Y(t)} under proportional allocation.

2. In Table 13, the entries for any fixed k and (s,u) pair are
non-increasing as r 1increases. This is due to the fact that, whilc
increasing r does increase the length of the confidence interval
[yl(k)’ YZ(r)]’ at the same time it decreases the length of [y2(r)’)'l(k)]'

Hence, since we are working with a low quantile (t = 4), the interval
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[y2(r)’ y1(k)] will cover Y(t) less often, and so decrease the proba-
bility of coverage. Similar comments can be made for the remaining
tables.

3. The entries for a fixed (k,r) pair differ considerably for
various cambinations of (s,u). Considerable gains (or losses) in con-
fidence coefficients are possible. llence, if good estimates of (s,u)
are known, considerable gain can be made in the coefficients using the
"'separate'' technique.

4. Comparing Tables 16 and 17, in the entries for (s,u) = (1,10),
for (k,r) = (a,b) in Table 16 and (k,r) = (b,a) 1in Table 17,
a=1,2, 3, 4; b =1, 2; we have equality in confidence coefficients.
Keeping in mind that (s,u) = (1,10) corresponds to random stratifi-
cation, this result is not surprising.

5. In all tables, the entries for (s,u) = (10,1) (complete order-

ing of strata), the confidence coefficient is constant for k fixed,

T =

}=?

2; 3, a4 T'h-y_c iS hearance A% Te 1 S+vratim T onA honco N7

’ - m T QISR T
is greater than Y(t) and the confidence interval depends only on yl(k)'

E. Methods of comparing the alternative procedures
Using any of the confidence interval procedures suggested in
Chapters II and II1 one may obtain a confidence interval with known
confidence coefficient. However, it is not apparent which of the methods
to use. First, given that a stratified simple randam sample is to be
selected, the '"combined strata" approach, the sample C.D.F. method, and

the '"'separate strata' approach should be compared. For instance, one
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may wish to determine his '"loss'" by using the simpler 'combined strata"
approach rather than the C.D.F. method when proportional sample size
allocation has not been used. Second, it is desirable to compare simple
random with stratified simple random sampling.

Making assumptions camparable to those used in deriving the confi-
dence coefficients, one may campare (1) simple randam with stratified
simple randam sampling, and (2) the three confidence interval methods
for stratified sampling.

1. Simple randam sampling vs. the ''cambined" method

We first caonsider the comparison of confidence intervals obtained by
using (a) simple random sampling, and (b) stratified simple randam
sampling with the cambined method. For simplicity, we consider one-sided
confidence intervals for Y(t): let r be such that P{Y(t) iy(r)} : y,
in the simple random sampling method, and r' be such that
P{Y(t) f-y(r')} = vy 1n the combined method. Then,

N-(n-1)
PV Y@t L P e Y YW P T Y
(3.129)
The first term has been derived earlier in this Chapter in (3.8) ff.

Also,
fv-1\/N-v\ //N’\

P{y(r) = Y(V)} = kr_lAn_r)/kn) . (3.130)

2. Simple random sampling vs. the C.D.F. method

Turning to the comparison of confidence intervals obtained by using

{a) simpie random sampling, and (b) stratified simpie random sampling



100

with the C.D.F. method, we have: let r and g be chosen sc that
P{Y(t) f—y(r)} = vy and P{Y(t) :yU} 2 vy . Then, to campare the two
intervals (one-sided) one may use P{yU =Y }:

N- in- T)

Phyy 2yep? = Py <Yy Yy = Yoy} Py = Yo (3-13D)

v=r
where P{y(r) = Y(v)} is given in (3.130) and P{yU < Y(v)} may be
obtained fram (3.81).

3. Simple random sampling vs. the Separate method

let r and r' be chosen so that P{Y(t) iy(r)} = y and
P{Y(t) iyZ(r‘)} = v. Then
N-&n-r)

L e I@ oY m P m?

(3.132)

POy ¥ ! =
The latter tem is given in (3.130), and
P20 Y T e Y e Me) P ™o

! i = 1 - 1
T x2S m T w T 2an P w g
(3.133)
The latter temms correspond to P{B;.‘} and P{BJZ.*} as given in (3.14)
and (3.15) for "randam" stratification and (3.41) and (3.42) for
rYl(s) <Y2(u) . P{yz(r,) iY(v) ]Y(V) = Yl(j)} is given in (3.117),

and P{yz(r,) < Y(v) lY(v) = YZ(j*)} is given in (3.121).
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4, Cambined method vs. the C.D.F. method

Let y .y be such that P{Y ., <y} #y in the combined method,
and 3 such that P{Y,, < ¥} *v in the C.D.F. method. We then have

P{yy <_y(r)} = % P{yy iY(V)[y(r) = Y(V)} P{y(r) = Y(v)} . (3.134)

Now,

P =Yy =P Yy - Py Yyt o (3.135)

which can be found in Section B of this chapter.

P{yU iY(V)} is given in (3.81).

5. C.D.F. technique vs. separate strata method

Let Y2(1) be such that P{Y(t) <Y, (r)} = vy, and 2 such that
P{Y(t) iyU} 2 yv. Then

Py < Yot T 1PV 2V Vo) T Y P BV T Yy - (34139)

The first term in the summation is contained in (3.81), and

N,

W} L PYm T Y2 M T Y PN T Yo

{p-1\N,-p\ /N
L 2 2l PiBz*} , (3.137)
plr1l n,-T)f \n, p

where P{B;*} is found in Section B/of this chapter.

=Y

6. Comparison of SRS confidence intervals with the separate strata

techniq;ue - 2 sided

We wish to compare the SRS confidence interval {y(k), }'(r)] to

the separate strata interval {[yl(k')’ Yo (r')] or D’Z(r')’ yl(k')]}
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where k, r, k', and r' are picked so that the confidence coefficients
of the two intervals are appraximately the same.

In particular we want to find
PG 2710 7@ N Ve <20 V@)

1" .
=Py < <y o, (3.138)
(k) _YZ(r') (r)

This is interpreted as meaning the probability if the separate strata

confidence interval is included inside the SRS confidence interval.

Y1 (k!
16|y

ael
<
=
A

1

i} 71x") _ VI
=LiPYg < YoVew Yo Vm T YW’

YZ(I")
Yo T Ve T YW (5« v
ry
= ST 1 _ _
g gp%) = Y P e YV (™ Y
726 (3.13
.139)

Looking at the temms individually, we have

b-1\ [v-b-1\[ N-v\ {{ N
Pygg = Y(b)n Yir) = Y(V)} = 1 . (3.140)

r-k-1/\n-r/| \n



3

YZCT')
Y1
=1L Py 2 <Yi59)!
s5 sy 1G 1)
Py <YM g < Y
Y 1
77 ply, < TR ey )
35 1(3) Y2 (et 2(3")
<P YoV Yo T Y
Y 1
+ 5y ) ply < 1) <Yy ]
ST S EREch
x P05y = Yy N Y10y = Yy
Y \
+ Z Z Ply.. .. < [.1(k i] <Y, 8
j jl Z(J) - y’)(“'\ - 2(3 )
L=y /4
xP{YZ(j) =Y(b)f\ Yz(j,) =Y(V)} . (3.141)

In this expression, the formulas for

= = } 1 1! = 1
i) “Ye Mg Y s B L

7

Pl

3 > 4 3 <
are derived in the Section C.3. under the assumption Yl(s) YZ(u)'
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P{Yl( y = y _<_Y1( ,)}
2(r
=Py © Mgy Yagn?
X p{}’z(rv) € [YZ(b'j+1)’ Y2(V°j')]} . (3.142)
Now,

Py = Mgy Yignl

= P{)’l(kv) in(j')} - Pt}’l(k') in(j'l) h (3.143)

P20y & Mae-jen)r Y230l

s - 4 1 I ~
=Py S Ym0t T Py 2 Yom-y) (3.1445

Similarly,

1"
P{Y, ... < <Y, 0t
1(3) —[YZ(r'J— 2(3")

= [ps <« Vv N 1 - P:’v v L. }7
Sk S C1v-30 T Y1) S 1Gg-n

X [P{YZ(r') iYZ(j')} - P-.Iyz(r.) iYZCb—j)}] , (3.145)



2(5) < ey’

Piaey NGy~ P e < e’

X [P{YZ(r') S-YZ(V’j')} - P{YZ(r') E-Yz(j-l)}] s (3.146)
and

yl(k') oy

250’

| A

P05 oo
r'

= POy Y5’ 7 PYa < Vie-5 )

b [P{YZ(r') in(j.)} - P{yz(r,) in(j_l)}] . (3.147)

The expressions for zach of the component parts of the form
P{yi(a) < Yi(c)} are given in Chapter II.

Comparing alternative methods by evaluating expressions such as
P{yU < y(r)} in (3.131) seems to be a formidable numerical task: for
given values of t and v, it is necessary to detemmine those values of
r and g8 satisfying P{Y(t) iy(r) Y2 v and P{Y(t) _<_yU} = y. Then
for each such (r,3), (3.131) must be evaluated.

A camon way of choosing among alternative (two-sided) confidence
interval procedures is to campare their expected lengths. However, this
requires that for each stratum the distribution of Y must be specified.

Further, even for randem sampling, simple (exact) expressions for



106

E(y(r)) etc., are available only for a few distributions. Thus, it is
even difficult to give general rules for choosing (in simple random
sampling) among those values of k and r for which P{y(k) i-Y(t) <
y(r)} =y where Yy and t are specified. llence, we turn to Monte

Carlo studies to comparc the methods.

7. ionte Carlc results--two strata

Several Monte Carlo studies were performed to compare the techniques
we have suggested. In Monte Carlo Study I, the fixed parameters were
N=20,n=6, and t = 8. The population HZO was Y(i) =1,
i=1,..., 20. For the Simple Random Sample technique, discussed in
Chapter II, a S.R.S. of size 6 was selected for HZO’ and then for pairs
k,r) = (1,3), (1,4), (1,5), (2,5, (2,6), and (3,6), the proportion of

times the random interval covered Y = Y(S) = 8 was calculated, along

(t)

with the mean interval length and the standard error of the mean lcngth.

Table 18 gives the results of this studyv for 1000 replications.

LAy +h e ATt~y e D e~ PSR ol
PSS

P P o
~CT e MAQlNing LOEWigquls, Scraciiicanidn oo

& POpulation was
required. In Monte Carlo Study II, this was achieved by first randomly

1 2
10 @d g

respectively, and then checking if the stratification met the specifi-

stratifying g in Study I into T for Strata I and II,
cation Yl(s) < YZ(u)’ s and u predetermined. If not, another
random stratification was made, and the specification was checked again.
Upon achieving the appropriate specificatior,, simple random samples of
sizes n, = 4 and n, = 2 were drawn from Hio and Hio, respectively.
The three techniques of the '"Cambined', 'Separate', and "C.D.F.'" methods

were then applied, in each case recording the coverage or non-coverage
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Table 18. Monte Carlo Study I - S.R.S. results

Y(i) =1, t =28

k T pa pz 1© s.d.d
1 3 .642 .640 6.18 .090
1 4 .904 .898 9.09 .092
1 5 .971 .969 12.10 .094
2 5 .803 .805 8.97 .095
2 6 .808 .808 11.97 .095
3 6 .460 .455 8.99 .095

a -
proportion of coverages

hthcoretical proportion of coverages

“mean length 1000 5
.E (Ri_ Q)u
dstandard error of mean length v 1=l
999 (1000)

~

o1 Y(t) = Y(S) = &, and the length of the interval. For each stratifi-
cation scheme the latter process was repeated five times, and then a
new stratification was made. The entire process was repeated 400 times
for each parameter pair for the three techniques. The parameters used
for (s,u) were (1,10) (essentially random stratification), (5,5),
and (7,4). Table 19 gives the results of this study.

In Montc Carlo Study 111, we cmploved as data the population of

the twenty largest cities in the United States in the 1970 census. These

flgures. In Table 20 we list these cities and their populations, as



Table 19.

Monte Carlo Study Il Y(i) i, t =8
Canbined Method Separate Method C.D.F. Method

s u k r 4 pg 2© s.d.d kpr, P Pe 2 s.d. o B p 2 s.d.

1 10 1 3 .648 .640 6.04 .001 1 1 .492 .490 5.16 .084 .26 .51 .721 7.44 .073
1 4 .904 .898 9.04 .007 1 2 .83% .837 10.20 .111 .26 .63 .860 9.75 .077
1 5 .971 .969 12.00 .068 2 1 .637 .639 5.34 .076 .26 .76 .896 11.68 .077
2 4 .73 .735 5.96 .060 2 2 .586 .589 7.04 .094 .26 .88 .918 13.84 .072
2 5 .806 .805 8.93 .008 3 1 .68 .679 7.15 .093 .38 .76 .745 9.64 .077
2 6 .809 .813 11.92 .068 3 2 .286 .283 5.40 .077 .38 .88 .752 11.49 .075
3 6 .445 .455 8.95 .066 4 1 .656 .658 10.19 .109

5 5 1 3 .598 .594 5.70 .060 1 1 .526 .534 5.75 .090 .26 .51 .727 7.30 .071
1 4 .882 .885 8.64 .0067 1 2 .916 .912 11.56 .100 .26 .63 .856 9.81 .077
1 5 .973 .975 11.86 .068 2 1 .606 .608 4.97 .072 .26 .76 .893 11.55 .079
2 4 .753 .7157 5.94 .0061 2 2 .704 .697 8.34 .096 .26 .88 .910 13.39 .072
2 5 .854 .847 9.07 .008 3 1 .606 .608 6.06 .088 .38 .76 .745 9.64 .078
2 6 .864 .858 12.18 .060 3 2 .37 .309 5.78 .078 .38 .99 .755 11.33 .072
3 6 .530 .521  9.31 .008 4 1 .560 .501 8.72 .109 .38 .88

7 4 1 3 .541 .543 5.33 .055 1 1 .630 .63 7.12 .097 .26 .51 .745 7.19 .009
1 4 .880 .3872 8.47 .064 1 2 .960 .961 12.96 .087 .26 .63 .857 9.32 .072
1 5 .978 .981 11.40 .069 2 1 .650 .656 5.64 .076 .26 .76 .921 11.72 .073
2 4 .782 .784 5.71 .059 2 2 .827 .823 10.06 .089 .26 .88 .925 13.04 .008
2 5 .895 .893 9.07 .006 3 1 .582 .580 5.09 .072 .38 .76 .722 9.23 .076
2 6 .905 .906 12.36 .0066 3 2 .430 .420 7.02 .083 .38 .88 .734 10.96 .073
3 6 .592 .595 9.50 .0066 4 1 .462 .454 7.16 .104

a . .
proportion of coverages

b

“mean length of interval

dstandard error of mecan length

theoretical proportion of coverages

801
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stratified. One thousand replications of the following procedures were
performed; the results are found in Table 21. A simple random sample
of size 6 was drawn from the entire (unstratified) population, and for
given (k,r), the coverage or non-coverage of ch) noted, as well as
the length of the confidence interval. Then simple random samples of
sizes 4 and 2 were drawn fram Strata I and II, respectively. For fixed
(k,r) (for the combined method), (kl,rz) (for the separate method),
and («,8) (for the C.D.F. method), the coverages and lengths were

recorded.

Table 20. Monte Carlo Study III - data

City Stratum I Stratun II
Phoenix 5802
New Orleans 586
St. Louis 60R
Memphis 621
Boston 628
San Antonie 588
San Diego 676
San Francisco 704
Milwaukee 710
Cleveland 730
Indianapolis 743
Washington, D.C. 764
Dallas 836
Baltimore SCR
Houston 1212
Detroit 14073
Philadelphia 1527
Los Angeles Z78L
Chicago 33IC
New York it

apopulaticrf aivon in *housanls

[ 4
<



Table 21. Monte Carlo Study III

110

City Data. t = 8
S.R.S. Method Combined Method

k r pa lb s.d.© k r P 1 s.d.

1 4 .892 342.10 12.73 1 4 .871 184.96 4.18

15 .971 958.32  26.24 1 S5 .982 569.37 19.13

2 5 .807 907.70  25.96 2 5 .923 534.37 18.98

2 6 .815 3336.63 82.09 2 6 .93 2572.94 76.43

aproporticm of coverages

bmean length of interval

Cstandard error of mean length

Table 21. (continued)

Separate Method C.D.F. Method

k1 r, P 1 s.d. a 8 P 1 s.d.

1 1 .620 415.95  20.75 .26 .51 .751 419.21 19.88

1 2 .974 2573.22 77.78 .26 .63  .888 532.55 18.82

2 1 .657 393.12  20.36 .26 .76  .931 2592.32 78.11

2 2 .879 2516.98 77.78 .26 .88 .941 2569.12 75.97
.38 .76 .699  2500.00 77.21
.38 .88 .718 2588.81 76.86
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Camparing the Monte Carlo studies, several points are obvious.

1. The (s,u) = (1,10) stratification is essentially random
stratification, and the S.R.S. and combined methods are, of course,
equivalent.

2. In the case of the C.D.F. method, the lowest « that can be
used is a > .25, since a > ay = max{jl,jz}. Furthemmore, because of
the sizes of the possible jumps in our study (.25 or .125), the only
"critical" points we need to look at are .25, .375, .50, .625, .75, and
.875; hence the limits for o« and B8 as they appear in Tables 19
and 21.

3. In Monte Carlo Study III, with the highly skewed distribution,
the average length "exploded' when using confidence interval limits that
included 'high'" data values. Hence, in using any of the techniques with
highly skewed data, care should be used to pick, if possible, intervals
that will not include unnecessarily large (or small) data values.

T ~———— = - L~ —— VY
aia

- PR B ——d Mt T A4 S P
AL AL LlC S-x\-S. alitd v ined meenous 1i l'ion,LC warao

FEY

Study III, it is seen that large gains in probability of coverage and
smaller interval length can be made using the Cambined method.
) 5. In the case of a "uniform" distribution, the interval lengths
for the Separate method and the "C.D.F.'" method are longer than for the
canbined method, holding confidence coefficients approximately equal.
6. In the Skewed distribution study, the combined method was
highly superior to the separate and the C.D.F. method in temms of interval

length.

-y
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7. In considering the Woodruff method (see Section C.4), for the
city data we have GD = .187. Hence, ZcD confidence limits, in terms
of o and 38, would‘be .4 + 2 (.187) = (.026, .774). Because of the
.25 1lower bound for «, the best approximation we have is (.26, .76),
which yielded a coverage proportion of .931, indicating, in this par-
ticular example, that the Woodruff technique may be quite accurate for
even small samples and populations.

8. Good agreement between the proportion of coverages by the Monte
Carlo method and the theoretical proportion is found throughout the
tables.

9. Another camparison, obtainable from Tables 19 and 20, can be
made by choosing a desired confidence coefficient and tabulating the
intervals which most nearly achieve this number, along with their expected
lengths. In Table 22 we do this for 65%, 90%, and 95% confidence levels.

10. For the city data (Table 20), we have Y1(8) < YZ(4)' Comparing
the probabilities in Table 21 to those in Tables 18 and 19 for (s,u) =
(7,4), it is nuted that they are in fairly good agreement. This would
indicate that making ''slight" errors in estimating the (s,u) appro-
priate for a given situation would not seriously effect the resulting
outcames, and also that the actual confidence coefficients for
Yl(s) < YZ(u) apply to specific populations--the city size data is only

one possibility out of those permutations represented by Y1(8) < Y2(4).



Table 22. Comparison of intervais for fixed confidence wefficients

Method  Stratification level: 65% Ievel: 90% Tevel:s 95%
Specification

s u_ Limits P length Limits p _ length Limits p  length

SRS - -

Combined 1 10 } 1-3 L6040 6.18 1-4 .898  9.09 1-5 969 12,10

Combined 5 5 n.a.® 1-4 .885  8.64 1-5  .975  11.86

Combined 7 4 n.a. 2-5 .893  9.07 1-5  .981  11.40

Separate 1 10 2-1 037 5.34 n.a. n.a.

Separate 5 5 n.a. 1-2 912 11.50 n.a.

Sceparate 7 4 2-1 050 5.04 n.a. -2 .961 12.96

C.D.F. 1 10 .26-.51  .721  7.44 .26-.76 .896 11.068 n.a.

C.DUF. 5 5 .206-.51 727 7.30 .26-.76  .893%5 11.55 n.a,

C.D.F. 7 4 .38-.76 L7220 9.23 .26-.76 921 11.72 n.a.

a .
none applicable

eIl



F. Joint Confidence Intervals--2 Strata

Our notation for the population and sample is as defined earlier.

We wish to find a joint confidence interval for Y (

(t <t') of the fom

Yy =¥

where k <k', r <r', k <1, k' < T,

Now

PV =¥y = YN V) =Yy =¥ @n)?

= P{y(k) iY(t)n Y(k') iY(t')}

TP <Yyl

- p{}’(rv) < Y(t')}
@ YN Ve < Yany)

= P{A} - P{B} - P{C} + P{D} .

We see first that

P{B}

1]
e
-~
<
-
e/
| A
v

and

PICY = Plypry < Y(piiqy?

The formulas for computing these are given in Section B.

®) <T@ N Yk <Yy 2V

(3.148)
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P{D} can be found fram P{A} by replacing

k by

8]

k' by 1
t by t-1

t' by t'-1

We now turn to the evaluation of P{A}. We break up our work into
four cases.
=Yy, .. AY =Y, ..
(t) 1(3) (t") 1G")

© = Y1) MYan = Y21

Case 1: Y

Case 2: Y

Case 3: Yy = Yp(5y MY ey = Y150y
Case &: Y1) = Yoy MYy = Yy5m,
Hence,

= ; { 7 r ! - -1
p{A} iél Pty(.k) :Y(t)f\ Y k") iY(t,)xCase i} x P{Case i’ .

(3.149)
Turning to the first temm, we have

P{y(.k) )/\ Yy 2 Y(t ),Case 1}

t t' n-k n-k-k'+i
) D2

j=1 j'=3+1 i=0 i'=i+k-k'

P{exactly (k+i) observations —<-Y(t) and

exactlv (k'+i')-(k+i) observations in [Y

- l ( 1( \nY(+' ; )
=11 11IprG . (3.150)
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Similar expressions can be given for the other three cases, call

them § 7] J PG}, 1=2,3, 4.

\[t-3 \[i'-3\ [ @&-t)-(3"-])
Case 1. P{G;} =] )
2 2 (k'+1i')-(k+i)-2'

Ny-3 " Ny-(t'-3") N, NZ)

nl-(z+2') nz—(k'+i')+(2+z') n,f\ny; . (3.151)

In this case, 2 represents the number of sample observations in
Stratun I less than or equal to Y(t); L' represents the number of

sample observations in Stratum I in the range

[Y(t+1) > Y(t')] .

J\ft-3 \[3'-(E-3)\ [tr-3"-]
Case 2. P{G,} =] ]
- 2 2"\ 2\ k+i-2 %! (K'+i0- (k+i)-g!

) N3 Np-(E'-50) Np\ /N,
n,- (k+i-2)-2 \np-2-[(k'+i")- (k+i)-2'] [ \n

(3.152)
Here, 2 1s as in Case 1, ' represents the number of sample observa-

tions in Stratum II in the range

[Y(t'*'l)’ Y(tv)] .

3 \G\[3"- -3 [tr-5-5
Case 3. P{Gg} =] )
2 2 \k+i-2f\2 2! (K'+i')- (k+i)-2!
IN. - (WA

- (-3 /I\l %2\

(n - (k+i-2)- 1)( o~ [K'+1")- (k+1)]"9'"2)/(n1 (n)
(3.1

I

In Case 3, 2 1s the number of sample observation in Stratum I

in the range [Y(t+1)’ Y(t')]’ 2' 1s as in Case I.
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t-3 \[3\[(t"-3")-(-3) i't-3

Case 4. P{G,} = )
2 2" \k+i-g\ 2 \Nk'+1')-(k+1)-2' 2!
N.-(t'-5") N,-3! N.\/N
x |1 2 12 (3.154)
nl-(k'+i')+i+2' n,-(2+2")f[\n

n

1/\"2

Here, 2 1is as in Case 3, &' as in Case 2.
In Section C we derived the expressions for P{Y(t) = Yl(j),\

Y. v = Y.,..\1, etc., ' Y. . .. Sub-
") Yl(] )} etc., under the assumption of Yl(s) < Yo ub

stituting these expressions into (3.149) yields P{A}.



117
IV. CONFIDENCE INTERVALS WITH THREE STRATA

In this chapter we extend the results of the previous chapter to

three strata.

A. Definitions and Notations
let Ty be a population of size N whose elements have distinct

Y-values Y(ll < Y(Z) <enn< Y(\,). Assume that iy has been divided

into three strata of sizes Nl, Nz and .\23, where Nl

Denote the (ordered) Y-values associated with the elements of Stratum

+ N, + N. = N.
o]
2 3

h by

Yh(l) < Yh(Z) Cine< Yh(Nh) , h=1, 2, 3.

Stratified random sampling is performed, the sample sizes within
the strata being n,, n,, and n., respectively. We denote the Y-values
1° 72 3 :
r
\

—~—— -

eI I
ULWL\/M} ad

yh(l) < yh(z) <iau< yh(n'},) , h=1, 2, 3,

Combining and ordering the sample values yilelds the cambined sample

\”(1) < y(z) <eunx< y(n) » R =npta, *ng.

B. The Combined Method

We first investigate confidence intervals for Y of the form

()

[y(k)’ y(r)]’ where 1 <k < r <n. As earlier,
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PO <Yy <Y =P 2 Yy? = P L¥e-py? - (441D

We confine our attention to the temm P{ka) < Y(t)}'

1. General derivation of P{y(k) iY(t)}

Let Ai be the event ''exactly 1 observations in the canbined

sample have values less than or equal to Y(t)"; Dz(j) the event

Yooy =Y ", A= ; y
2(3) Y(t) s 1, 2, 3; and Ez(p} the event 2 (p) < Y(t) <
Y™ 27 L 53
Then
P{y(k) iY(t)} = P{at least k sample observations have values less
than or equal to Y(t)}
t
{Izl}
= {A.}
i=k  *
min{t,N-] min[t-j,N,]
=7 1 F ) ZopiND NE, )
i j=max[1,t-(N-N;)] p=max[0,t-]-N.] ) “\p
min[t,N,] min{t-j,N,]
+ 7 2 ) 1 PIAMD) NE )]
1 j=max(1,t-(N-N,)] p=max[0,t-3j-N;] J P
min{t,N.] min{t-j,N,;]
R T w1 PUN Dy VE ()
1 j=max[1,t- C\'Ns)] pqnax[oyt'j_Nz]
(4.2)
Furthemmore,
P - 2= I ! - 1
PtAif\Dl(j)f\nz(p)r PIA{ID; (53N Ey oy 3 PID \/\r.z( ) (4.3)
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and
1 J\NT\ [P
P IDy Byt = I x) 1
mlmz-o myf\ny-my fim,
N,-p | [t-i-p )Ns-(t-j-p)
X
ny-my [ \i- (my+my) [\ no- (i- (my*my))
N\ O\ N T
x 1) 2) 3) (4.4)
M1\"2/\"3
i*
where ) indicates the summation is over all non-negative integers
m,+m,=0
172

my and m, such that 0 < my+m, < i. Also, we have

0 j L
max ] <m; < min (4.5)
1

n1+j-I\ nlJ
0 '(n2

max <m, < min i (4.6)
0PN, P
‘5 } | t-3-p|

max < (i-ml-mz) < min . (4.7)
n3+(t-j-p) -NS n,

P NE i Ficatio i i
{Dl(J)n Z(p)} depends on the stratification assumptions and is

derived in Subsections 2 and 3.

P{A.f\DZCj)I\ El(p)} = P{Ai|D2(j)f\El(p)} P{El(p)f\Dz(j)} , (4.8

and



i [3\[N-3 \[p \[N;p
PIAID, (5N Byt = 1 2 ) 1 )
My EAM\ 2 M\ AP ™

t-j-p Ny~ (t-j-p)
b
i- (my+my)f\ns- (3 (m *m,))

NAVARYARY !
x 2y 3 . (4.9)
T A\™2/\"3

PIA{ADy yNEy (3] = PIA[D

Also,

s M E1e)? FEEN Py > 410

and

i, [3 VN3 \[p\ [Ny
LU L ) 3 ) ) 1 )
m3+m1—0 m‘.5 ns-ms m1 nl-m1

t-j-p  \[N,-(t-j-p) )
)

X
i- (m1+m3)} \ n,- (i- (m1+m3)

IRVRRY R

e

2. Randam stratification

We say stratification is random if each possible stratification 1s
equally likely to occur. Under this assumption, we have the following,

using the notation of the previous subsection:
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P{D NE } = P{E } P{D

2p) 201015y PP1y!

(t-jXN-Nl— (t-j)\llt-l)(N-t )
p hne b\

1(3)

- , (4.12)
NZ N
DYV E1pyt = Py D25y PAD2 (5]
)( o ”)(t'l)(m)
N .
Y ) 27 , (4.13)

and

Ny AN
30V Erpy? = PE1p) ID3(5)7 P03y

(t- j)(N-NS— (t- j)) (t-l)(l\"-t )
X - i-1/\N.-j
I 1P A T (4.14)

(I

Theorem 3.1 tells us that the '"'cambined' method with random strati-

P{D

fication is equivalent to simple randam sampling fram the non-stratified

population.
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Yl(s) < Y2 (W < Y3L‘L): Ordered' Stratification

We assume that the strata are such that Yl (s) < Y2 () < Y3 )’
analogous to subsection B.5 of Chapter III. We wish to find expressions
. . {D...,. E .
for PDy(5N Bapyh> Py (5y M Brpy?> 4 P55/ By

Our approach is to consider the event

,

1ser) < Y2 < Viserpen)
Yi(strpry) © Y30 < Vi(str ar,tD)
(4.15)
1 Y, (wry) T30 C Y2(urrgeD) )
Y =Y
2(w (ry)
Y =Y .
3V (@) )
.
The last expression is equivalent to
q‘=s+r1+r2+u+rs+v_ (4.16)

These events are illustrated in Figure 7.
By P{*|R=71 N(s,u,v)} we mean the probability of event ('},
conditional on a specific configuration as given by (4.15) and

T
1
Y (s) <Y, @) < YS(V)' By r we mean the vector /fz\| . When we write

RS
\=3)
* . - . .
)" we mean the sumation over all camponents of r which are consistent
T

with the logic of the situation.



¢ -+ } —} -+ Stratum I

]
Y Y Y Y
1(s)  Yi(s+r) 1(strp*1) Vi(serprry) Y1(s+rp#ryt1)
} 4 + Stratun 11
Y2 2y Y2(uerg)
H
~9
' Stratum I11 !
Y3 )
t t et + } } $ - } —Population
Y Y Y Y
() (r,) (@ )

Figure 7. Stratification notation.
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P{Dl (J]f\ Ez ®) ] (s,u,v)}

* -_—

x P{R = 1|(s,u,v)}

= z* P{EZ(p) lDl(j)n R=1N(s,u,V)}
T

X P{Dl G) [B = rN\(s,u,v)}
x PR = r|(s,u,v)}
Similarly,

P{D2 (j)n E1 ®) [ (s,u,v)}

and

D (5,u,v) }
AT TSR

= 7 P{El(p) EDS(j)f\B_ = rN(s,u,v)}
T

x P{Ds5y iR = ri(s,u,v)?

x PR = ri(s,u,v)}

(4.18)

(4.19)

(4.20)
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We first consider Pi{R = _xj (s,u,v)}. For fixed s, u, v, Ty, T,
T3y Tys Nl’ NZ and N3, we count the number of possible arrangements
of the population into the three strata.

For Stratum I, we have
r,-1\/q-r,-1\ [N-q
4 4 (4.21)
] -
s+1q T, I\l (s+r1+r2)
possible arrangements.

Then, for Stratum II, we have

7, (57 -1) q-r4-1-r2‘) N-g- (N, - (5+7,+T,) ))
u-1 T ‘\Iz-(u+r3)

(4.22)
3
possible arrangements.

Stratun III is then detemmined.

Hence,

PIR=1 |(s,u,)}

) r4-1 q-r4-1 N-q
She e 1 (s+rl+r2)

(s+r1) 1\ (g~ Ts" 1- T, N-g- (Nl- (s+rl+r2))
Ty N2~ (u+r3)

* 1 q-T, N-q
x|}
T s+r1 N1~ (s+rl+r2)

(5+r1) 1Y a-Ty-1- rz\/N'q-(Nl-(s+r1+r2))\'1

s\ Np-(urrg) / (4.23)



126

To evaluate P{E (D

AR =1 N(s,u,v)} = P{Bl}, we consider
2(p) = = 2

1(3)
five cases:
Case I: t < T,
Case II: t =
Case III: T, <t<gq
Case IV: t =g
Case V: t>q

Case I:
( t-j) (r4- (t-3)- (s+7y) -1)
PI{B%} = D u-1-p
-(s+ry)-1
T4 1
u-1 t-3
for 0 <p < min
-1
= 0 otherwise . (4.24)
Case II:
P {Bl} = 0 for all 4.25
11152 p - (4.25)
Casec III:
t-r,- (- (s+r1))) q-1-t- (s+1,*T,- )
1 p-u u+r3-p
Prirtéz’ =
q-r4-r2-1)
3

for u<p < urr,

ctherwise

-~
i
to
o)

N~
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Case IV:
P.{BY = 0 for all (4.27)
IVt °2’ P .
Case V:
t-q- (j- (s+r1+r2)) N-t- (Nl'j)
1 p- (utr,) N,-p
PV{BZ} - 3 2

N-g- (- (s1#7+T) ))

N,- (u*r)
for utry <p <N,

= 0 otherwise . (4.28)

Introducing an indicator function

a 1 if a<t <3
Bt = (4.29)
b 0 otherwise

we have
DIEP_ \!D,_”f\ _D‘=r'f\‘fs L’.‘.’\}
Zp)r1Qg) = =
1, ¢ 1. @ 1N
=P {B,}gt +P {B,} g t + P {B.} 8t . (4.30)
172 II1'72 \)
r4+1 g+l

To evaluate P{Dl(j) | R=1 N(s,u,v)} = P{Cl} we consider the
same five cases:

Case I:

(4.31)
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Case II:
PII{Cl} = 0
Case III:
t-r4-1 q-t-1
j-(s*+ry)-1)\s+T,+T,-]
P___{C.} = 1 1°2
II1 ™1 -1
q-1, )
)
Case IV:
PIV{Cl} = 0
Case V:
t-q-1 N-t
j-(s+ry+ry)-1 Nl-j}
PV{Cl} = .
-q
\Nl-(s+r1*r2y
Hence,
p{Dl(j) | R=1 N (s,u,v)}
P_{C.} 8 r4 + P 'C. by + P. {C. 7} :
= P_{C t 1C B t 1C, 1 B
I P 1111 rg+l e SR

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

2
P{E N = =
To evaluate P{ 1(p) { DZ(J) NR=r1N(,uV)} P{Bl}, we use

a technique parallel to that just given, using the same five cases.
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Case 1I:
t-j r4-(t-j)-u
2, _ \PJ\ S'T;P
PI{Bl; = -
S*T t-j
if 0 <P <
S+T4
= 0 otherwise (4.37)
Case II:
2 1 1if p = S+T
Pr7{B} = (4.38)
0 otherwise
Case III:
t-r4—(j-u)) q-l-t—(u+r3-j))
p- (s+r,) S+T,+T,-p
p {BZ} - 1 1°2
I11 71
q-r4—r3-1
T,
if S*Ty < P < S*T T,
= 0 otherwise (4.39)
Case 1IV:
P..(B°} = 0 for all p (4.40)
Fa 4
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Case V:

t-q- (- (utrg))\[ N-t- (N, - 3)
p-(s+ryvr,) Ni-p

P(B} = (

N-q- (X, (u+r3))
Nl- (s+rl+r2)
if S*T *T, < P iNl

= 0 otherwise
Thus, we have

P{El(p) I Dz(j)/\ B_ = Eﬂ (S,U,V)}

_ 2. . 4 2. .
= PI{Bl} g t + PH{Bl: °t,r
0 4
q N
+ PIII{Bi} 8t o« pv{sf} 5t
r4+1 g+l

Also, to evaluate p{DZ(j) i R=rAN(s,u,V)} = P{C,}, we have

Case I:
(t—l)(r4—1-t)
- Vj-1Ru-1-j
PI{CZ} .
u-1
Case II:
{ { 1 if j=u
P._{C,} =
I 0 otherwise

(4.41)

(4.42)

(4.43)

(4.44)
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Case III:
t-r4-1 q-1-t
j-u-1 f\u+r,-j
PIII{CZ} = 3 (4.45)
q-r4-l
T3
Case IV:
PIV{CZ} = 0 (4.46)
Case V:
t-q-1 N-t
j-(utr)-1f N,-j
P (C,} = 3 2 (4.47)
[
\N2°(u+r3)
Then
P{D.... | R=1=r ./‘_(S,’_l,‘.ﬂ:‘
~ ALJ) | e - N s
T4
= PG sttt P {CY sy
0 4
q N
+ Poo{C,} 8 t +P {C,} 8t . (4.48)
1112 rel V2 g

. . _ _ 3,
Finally, to evaluate P‘*El(p) | DS(j) AR=r1N(s,u,V)} P{BlJ,

using the same five cases, we have:
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Case I:
t-j) s+r1+u-1— (t-j))
S+r.-p
PI{Bi} _ AP 1
ut (s+1,)-1 \
sty ) 0 t-j
if <P =
t-j-u-1 S*+Tq
= 0 otherwise (4.49)
Case II:
3.
Py;Bj} = 0 for all p (4.50)
Case III:
t-(s+ryw) -3\ fa-1-t- ((v-1)-5)\
3 pr{stry) ]\ s*1y*Ty7p }
PIII{Bl} =
g-v-u- (s+r1)
2
if S*T, < < S+T i+,
= 0 otherwise (4.51)
Case IV:
1 1f p=s+r,+r
PIV{Bi} = 12 (4.52)
0 otherwise
Case V:

(t-q-(j-v) )(N-t—(xs-j))
\p-(s-*r,*rz)!.\ N.-p

}

P,, 1B

<
b
—
.4 .?‘
| Ne N I'S
~ )
-
2
1
'
<
Nt
PN

if S¥T+T, <P :Nl

= 0 otherwise . (4.53)
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Thus,
SNR=
P{El(p) [ DS(J)' R=1N(s,uV)} .
-~ T q h
4 3 a3 3
= P.{BJ}8t” + P__ {BJ}8t + P_{BJ}S_ _ + P {BJ}Bt
1177 I V51 g T VLT
(4.54)
Also, to evaluate P{Ds(j) l R=1 (s,u,n}= P{C,}, we have
Case I:
t-l) r4-l-t
ji-1/\r,-(s*ry+u-1)-j
PC} = 4 1 (4.55)
r4-1
" (s+rl+u))
Case II:
PII{CS} = 0 (4.56)
Case III: t-r,-1 {q—l-t
j=(ry-(s*ryvu))-1 \v—l—j
PrpiCsd = FT T, (4.57)
(v- (r4- (s+r1+u) - l))
case 1v:
) {1 if j=v
P, {C,} = (4.58)
V=3 0 otherwise
Case V:
t-q-1\/N-t
. j-v-1 Ni-j)
PyiCs3 = AR (4.59)

N-q
Ng-
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Thus,
P{DS(j) | R=1 N (s,u,V)}
T, q
=P {Clat +P. {Cirst
I'~30 B o TS f
N
+ PIV{CS} Gt,q + PV{CS} 8 Z*‘l . (4.60)

Substituting (4.23), (4.30) and (4.36) into (4.18); (4.23), (4.42),
and (4.48) into (4.19); and (4.23), (4.54), and (4.60) into (4.20);

and these into (4.3), (4.8) and (4.10) yields P{y(k) iY(t) | (s,u,Vv)}.

C. Confidence Intervals Derived from the Sample C.D.F.

1. Definition of the confidence interval

We now consider the confidence interval procedure based on the
sample C.D.F. for L = 3 strata. First, the sample C.D.F. is defined by

[ 0 ify

if y(i)_<y<y(i+1) N Y(i) =1 () ny, X) q(i) ) (k+1)
Ny
n,N

~

>
i

-
d

= N ..
Eyy = X aw td gyt @-0H

EYHZYaaN Y 02N 100 Y @ V1 kD)
N1 NZ N3
k i~ ¢ (i-(j+x)) a‘zxq + ] -n—SN

| Y)Y an M Y3iN Via Vi) Y1)
(4.61)

1 if y _>_y(n)
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To each pair (o,8) where ay <a<B8<1 and o = mgx{(Ni/niN)},
_ i

there corresponds a unique pair of integers (k,r) where 1 <k <r <n

such that
i‘:()’(k)) sacx I;(y(k*'l))
- R (4.62)
F(y(r-l)) <8< F(Y(r))

where F(y(o)) =0, F(y(n+1)) = 1.
For given values of o« and &, the confidence interval for Y(t)
is given by [y(k), y(r)) where Y k) 'V(r) are defined by (4.62).

Of course, the integers k and r will vary in repeated sampling from

IT-N.

2. A lower bound for the confidence coefficient

Proceeding as in Section C of Chapter III,

Pty(k) iY(t) < y(r): iPtP(Y(t)) < 8t - P{F(Y(t)) < al. (4.63)
t D, .. . vy - :
Le £(5) be the event 'Y(t) 1) 2=1, 2, 3,; and El(p)
the event "Yz(p) < Y(t) < Yz(p+1)” for 2 =1, 2, 3.

Then,

P{F(Y(t)) < 8} = JZ P{F(Y(t)) < aichj)nEZ(p)} p{Dl(j)nEZ@}

:
L
p

"ELPEN ) <8I0y (3N Ey )} Dy ()N By

" LLPEN ) < By NE gy} Dy NEy ) -

(4.64)
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" 3
Letting F(Y(t)) = izl[mi(t)]Ni/ni;\.’ where mi(t) =m; denotes the

number of observations in the sample from stratum i with Y < Y(t) s

PE ) < 8iPy(5) N By =

8a I\ NP\ [Ny p | [t-3-D\ [No-(2-3-p)\ N7\ [N,) (N5
my 5Mmy ,mz=0\my J\ 0y -my f} my knz'mz My ng-My N\ /\n3
(4.65)
where Z* denotes summation over all non-negative integers m;, m, and
My such that iil (miNi/niN) < 8. One may obtain P{I:‘(Y(t)) < BiDZ(j)n
El(p)} fram (4.65) by interchanging (ml,nl,Nl) and (mz,nz,Nz); and
PAF(Y(4y) < 8{D5(5) (VE; ()3 may be obtained fram P{F(Y(y)) < 8/D55yn
El(p)} may be obtained from P{F(Y(t)) < leZ(j) N El(p)} by inter-
changing (mz,nz,Nz) and (m3,n3,N3).
Thus, (4.64) and, finally, (4.63) may be obtained by detemining
PM,,..NE,, \}, PD,,.."NE,, .} aad P{D....NE.

. .~ 1: severai
<\l -\ “\Js L P 207 RG]

suggestions have been explored in the previous section.

3. Derivation of the confidence coefficient

As in Section C of Chapter ITI denote the upper confidence limit,

Y(r)? by yy and the lower confidence limit, YK by Yy - Then,
To determine Piy; < Y(t) 1, first consider the set A, of non-negative

integers uj,uj,uj such that wj, + u}j, + uljz > 8,



(ul-l)Jl *uhj, *uljsocop and (of course) Y(Ui“'ué*“u's)) = yl(ui);

the set A, of non-negative integers u1 ,u7 ,ué' such that ul 31

t

ui'jz + ué'js > 2, ui!jl + (ué"l) jZ + ué'jS < & and V(u"+u"+u“)

and the set AS of non-negative integers ui",ué",ué" such

trr s trey g Try s S 2 Vll Ty Tt >
that wpttip ot uyt s rugt i > 8, uptip ruytti, (u 1)33 < 8

and vy = N, W j. = N./n.N. i i
‘(ui"+u§"+u"') v114» Where N l/nl\ Proceeding as in

; t-Zu.
Ply, <Y, .  } = ;* Ply = }
-U_ t) L L J Yt 4+ LW (+-31Y
(1) l,u; SJEA 1=0 (u uptuy iy -
t-Zul!
i

Ply, 1. =Y, .
(',uftupes, =0 BpTRUEY) (e

y t—‘z,ui"
+ L Ply s 1.
(uin u"’,u-")sA- i=0 (ul'v+uévv+uévv) (t 1)
- (4.67)
Now,
P{y (L"U"US) '(t‘l] ;=
) " o =Y. o ntonwt el ongl o
j=u p=u7 Ty T s i B P ) gy
(4.68)

ubcre D L) is the event ”Y(t-i) = YZ(j)” for (%=1,2,3); and
B he event 'Y ' ' =1,2,3

2 (p) 1s the even ¥ o) < X(t-i) < Xz(p+l) for (&=1,2,3).
Similarly,
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P{y(ui’w’"«m") (t l)}
PLY (o tgnrt 1t 9= Y bt oDk NEL 3
JZuZ piu.' oy ety Yo P2 By P02 5) 1cp)(4 N

and,

P{Y(uiv l+ué| '+u‘3' b = Y(t-i)}

= 1 i 1
Lo Lo POy T w3 M P03 B
> 01 (4.70)

Then, it 1is easily seen that

) TP UNN
PO upeugray) = Yee-1) P10y oy -

J=I\Np=3\ [P \[Nyop \ [t-i-3-p\[Ng- (t-i-5-p)\ /| [N, \[N2
u]'_-l nl—u ué nz-ué ' u:'() n3-ué n; J\n, [\nz

(4.71)

P’V{ui ) ruy) Y(t-i) iD;_(j).".E:iL(p)} can be ootained from (4.71) by
terchanging (ui,nl,Nl) and (ué’HZ’NZ) and then replacing ul'( with
uk while Pky(u, . ""Ué' '+u' ry = .(t-i) }Dé(j)f\ Ei(p)} can be obtained

i . .
from PO gy oy = Yoo 2N Bl ) Y interchanging

ué',u. ,mz) and Lu'3',n3,N3) and then replacing uf(' with ul‘(".
Thus, P{yU < Y( } may be obtained from the expressions given

1 i i
t P 3 . :
above plus a determination of {Dl( ) Z(p) 3, PD, (J)f\ El(p)} and

D(J)nEl(p)} Ply; < Y(t)} may be derived in an analogous manner.
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To find the camponents of the set Al’ note that for each value
of uz' (u§=0,l,...,n2) and ué (ué=0,l,...,n3), if
0 < {[(8 - uhiy - ugig) /iyl + 13 <my, then ([(6 - ubj, - ugiz) /il +
1, ué, ué) € Al The camponents of the sets A2 and A3 may be

determined in a similar manner.
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V. ADDITIONAL APPLICATIONS AND EXTENSIONS

A. Applications

1. Tolerance regions - two Strata situation

We now demonstrate how our work in Chapter III can be converted
into the context of tolerance regions. In particular, assume a fixed
8, 0 < 8 < 1, and consider the interval [y(k), y(r)] in the method
of the cambined sample approach. Then, [y(k), y(r)] is a g-content

tolerance region at confidence level y if

P{[y(k), y(r)] contains at least 100 g%

of population values} = v . (5.1)

We see immediately that if [y )’ y(r)] is to contain at least
100 8% of the population values, at least [8N]+1 elements fram our
population must have associated values in the interval. (If B8N is an

integer, replace [2N}+1 Dby AN 1in the following derivation.)

Turning to the camputation of Y, we have

<
1)

P{at least [8N]+1 elements from population
are in [YCK)’ y(r)]}

N- (n_r)—§[8N1+l) -k N-([BN]+1)-1
1o Lo PV YoV e gaeee-n

(5.2)
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For ease of notation, let t' = [gN]+1+t-i, and let D be the

£(3)
1 =Y on = 2; d L ' = ) 1
event 'Y(t) LG 2 1, an Dl(J') the event Y(t') YR(J') R

¢ =1,2.
Then,
Ve = YoV = Yer?
Ny §'-1
b L P e Yol Y w Yan P Mg’
X P{Dl(j)(\Dl(j,):
NZ Nl l }
kL PV YV T Y Py g
X P{Dl(j)nDé(j')}
N1 N2
* ..z- .z_ p{yﬂﬂ= Yﬁ»\nyrﬂ: er-'\lD?r;\nD-: r.-n}
J'=L J=L vy T = Ny ~“\J/ ~\J s
I 1
X Pknz(j)nnl(j,)}

N, 3'-1
Tk b PVt YT Yen PN g

N D!

x P{D, 2y (5.3)

(3)

The formmulas for PtDz(j)f\ D}, G1 } are given in Section C of
Chapter III.



Finally:

Py = YN ) = Yoy P11 Pign?
rk ko f3-1\[5-5-1\ N5\ [t
)
2'=1 2=1 \&-1J\ 2'-1 nl-(z+z') k-2
(£-0)-G D\ N, -3 | )N,
X
r-2'-k nz-(r-z-z‘) n,\n, (5.4)

POag = Y)W = Yy Piy M Digny?
g g [ ey
2" 2 \2-1)\r-k-¢' nl-(r-k)+(z'-z)

t'j\\(j"(t'j)'l Nz'j' Nl NZ

X

k-z,\ 2'-1 nz-(k-z)-z' n, \n (5.5)
PG YW T Yeny Doy Pi(5ny}

g [P\ e

2' 2 \k-2 2'-1 nl—(k-z)—z'

j-1\[t'-3"-] ( Ny-et-in | NN
X
2-1 Kr—k—i' \nz-(r-k)+(z'—z) n,/\n, (5.6)
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PYag = Yy Vo = Yeny 2N Pagny?

t=3\[£'3 D\ N (et-3h)

]
o~
1

2! k-2 r-3'-k ny-r+(g+e’)
. S N | 7 T
leJ'Jl(f\zJ N\ N,
2-1 [ 2'-1 \nz-z'—z n 0, . (5.7)

Using the C.D.F. method in contrast to the combined method, we

have

<
H

P{at least [3N] elements fram population in {yL,yU]

N-ESN] N- §BN]+1-i
i=0  t=1 Phyp = YoV Yu = Y((anp+reeei) ] (5.8)

These temms can be calculated using methods derived in Chapter III.

2. Best finite population problem

L P B . S e
w4l wic L

of Chapter 111, we now conslder ithe propiem:
Given two populations, we wish to arrive at a decision of which is
the 'better' of the two, in the sense that Pcpulation 2 is 'better"
than Population 1 if Y1 (s) < YZ O
The correspondence between Chapter II and this section is: irterpret
the strata to be the Populations, so that Yi ;) 1s the j-th ordered
element in the i-th population, i = 1,2; yi(j) is the j-th ordered

observation in the sample drawn from Population i.
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Our decision as to the 'better' of the two populations is based

on camparing Yy, ) and Yo (r)° If Y1 ®) <Y, ()’ we will say Popula-

tion 2 is 'better''. We now derive the probability of a correct decision.

Pigy < Ve M) < !

1
il t~1
r~
A
lan)
~<
-
=

V2NV T Y
NYar = Yy i) < Yz’

L P19 < Yo ia0 = Yo Yam = Y

m<n
NYisy) < Yo'

x p{ym() = Y(m)f]yz(r) = Y(n)lYl(s) < Yz(u)} . (5.9

S 41z —— _
1 [

The first temm in this sumnation is identically 1, so it remains

to find an expression for the latter tem.

= vV =V ] <
PY100 T Ym M2 T Y Vi) < Yew’

L1 Mgy T Y em T Y
Y = 1M m = Y2600 s < Lw’
x P{Y =

™ =1 Y = Y20 M) Yo

-~
wn
.
}—‘
(o)

()
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. N }
Y = Y10 Y = Y20M Y1) < Yo
3-1\[1\[N;-5 (j'-l /1 (Nz-j'
k-1/V1/n,-k -1 (1 n,-T
- LA\ V2 . (5.11)
N\ (N,
AR

= . = o Poi IT in th
Also, P{YOn) Yl(J)rlY(n) YZ(J')Iyl(S) < YZ(u) is Case in the
Section F of Chapter III.

Hence, in the case of two populations, the probability of a correct

decisicn is obtainable.

B. Extension: Cluster Sampling

h Trtwadrr~+ A

- ——— e A A e e

The problem of finding a non-parametric confidence interval for the
population median with cluster sampling as the sampling design has been
investigated by Chapman [167C]. In his (unpublished) Ph.D. thesis, the
confidence coefficients for the confidence intervals in cluster sampling
are approximated. His assumptions include that the random variable of
interest has a continuous distribution over the entire population as well
as within each cluster. Hence, it is assumed that each cluster is of

infinite size, and that there are an infinite number of clusters.
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We approach the same problem, but with the following assumptions:
1) Population size: N.
2) Each element of the population has a distinct Y-value
associated with it.
3) There are K clusters, of sizes Mi’ i=1, 2,..., K,
QM =N
4) When sampling fram the i-th cluster, a simple random

sample of size m, is drawn.

2. One cluster chosen

We first consider the situation in which one cluster (say cluster i)
is chosen from the X clusters, and then a simple random sample of
size me chosen fram that cluster. Letting Q be the number of items

in the sample with associated Y-values less than or equal to Y(t)’ we

have
and
t
ey <Ypy! = o PIQ=al . (5.13)

If we iet Ai be the event ‘'cluster 1 is chosen'" and Bt the
i

event ''exactly t, elements in cluster i have Y-values less than or

equal to Y(t)"’ it follows that
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K M.
PiQ=q} = ] [ P{Q=qNANB }
i=1 t.=0 i
1
=7 ] P{Q=aqlANB, 3 P{B, A} PIAT . (5.14)
1t 1 i

Considering the components of (5.14) separately, we have

PQ=qlaNB 1= [P M) (5.15)
1 T ARG\
and

PtAir = ii s (5.16)

where i o= 1/K if the cluster is chosen by simple random sampling,

= Mi/N if the cluster is chosen with probability proportional to

size, etc.

Turning to P{B, IAi}, we consider several cases.

If we assume random clustering,

t\ [N-t N
P{B !Ai} = ) (5.17)

“i t )\ M. -t. ) M.
\ i i i

I " Tt 3 3 " . . <V~' : = 2
f we assume '"'ordered" clustering, i.e., Yl(s) 2(w) for KX

3 clusters, previously

clusters, or Yl(s) < YZ(u) < YS[V) for K

derived formulas can be slightly altered to obtain P{Bt [Ai}.
i

Referring to Chapter III, P{B, iAi} is quite analogous to
i

,‘vri«= { -V ~ c 7 !.~= . N
PEBIY = PIY 4y = Y5y, for P.Bti[Alf PIY; ey 2 Y <Y.l(t_1+1);.
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5

Thus, referring to (3.41) and (3.44}, for K =21 clusters and

3 . o . i e 1 ty t_l 1 . 1" t (K]
Yl(s) h \z(u)’ replacing "i'" by '"t.", j-l) with (t;) ,

"Ni” by ‘“.\ii", and Keeping in mind that we just require that

"

£y s We have
3

A T + Tt - »
\(t) and not \li(t ) \(

Yy <
i(e) < t,

S*d‘*(h‘x) T\ N- (S+d+u) .

S+d—t1 Ml_ (S*d) S+d+(u-1)

-1\ [N-t
+ I .
t- ‘\I- 't_, t ’S*d+u

1 1 1
N-T\ _ [s+d+(u-1)) [ t- (s+d+u)
+ ) (1—~t+.+ )
M-ty d s+d t)- (s+d) s*dru
- : -1
_[s+d+ (u- D\ [N- (s+d+u)
x fl (5.18)
d s+d Ml- (s+d)
and
, 4’ t\ _ [s+a+ (u- 1)-; {\ (S+d+u) t
PR CA Y = ;
) Bt')’:\?“ R £ i 1_- i . ! S"'d‘*‘(l)‘ij’
‘ O Ny B W) Y]
t \/ \-t
+ ! 3 .
- e - t,S+Q+U
“2 V“z’“z
[ Nt \ _ [s+as 1)\ [ t- (seasu) .
+ ’ ‘ /_ ' (1-a§+d+u)
\\MZ-tZ/ d | ul AL ) J
M /s+d+(u-1)\/x-(s+d+u)V]‘1
X !i l} (5.19)
i + { - =)
Ld \ s+d My- (s+d)
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3. Two clusters selected

We now consider the situation in which two clusters (say Cluster 1
and j) are selected fram the K clusters. Simple randam samples of
sizes m, and mj are selected from these clusters, and the samples

ordered as Y1) Letting Q be the number of items in

Yy .
(mg+m;)
the ordered sample with associlated Y-values less than or equal to Y(t)’

we have, as before

t
PV 2 Yyt = qgr PQ=aq} . (5.20)
Now
t*
P{Q=q} = J° P{Q=qNANANB NB_}
Pt = s R R S o
1<] ti+tj-0 i j

*
Il PQ=alA4NANB AB )
1 J
x P{B, A B, [ANA Y X PIAJAALY . (5.21)
i j v -
Then

p{Q = q]AnAf\B nB

1

N
Ut
[S]
[\S]

N

Also,

PIANAY =5, (5.23)
-~ J
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where Hij = 1/(12() if the two clusters are chosen by simple
random sampling.
Under the assumption of random clustering, we have

- N\ - o -
t \[t-t\[ N-t \[N-t- 04 -t,)

t.J\ t. M-t |\ M.-t.
P{B, N\B_ |A.NA} = 2 J '\ 1 1 L] . (5.24)
t. t. "1 J ' '
i j N N-M.
1
M\
j

A different approach to this same problem is suggested by Chapman.
We alter our assumptions by having all X clusters equal-sized, M. Let
P be a random variable, representing the proportion of elements in an
individual cluster with associated Y-values less than or equal to Y( )"

2

In this case, P ¢ {0, l%f s ff 2ee o 1}.

4. One cluster chosen

Suppose one cluster is selected at random fram the X clusters,
and a simple random sample of size m chosen from it. Letting
R = number of items in sample with Y f.Y(t)’ and f(-) the density
function of P, we have

m
Plygy =¥y = rzx P{R=T} . (5.25)

Now

P{R=r}= ) P{R=rNP=p}= ] P{R=r|P=p} x P{P=p}
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Tuming to f(+), if the number of items in the selected cluster

less than or equal to Y(t) has a hypergeametric distribution, that is

t\ /N-t N\
f(t'/m) = , (5.27)
tf| M-t M)
then, after same simplification
t\/N-t\ JIN
P Y. . 3= 5.2
Yag <Yy = .2 ’ (.28)

i=k (1 [\m-i{/\m

which is equivalent to taking a simple random sample of size m from
the entire population, ignoring clustering. Thus, the hypergeametric
assumption is equivalent to '"'random' clusteriig.

If, instead, we have

b+t'-1\[N-t'+a-1\ [[N+a+b-1

£(t'/N) = , (5.29)

b-1 a-1 a+b-1

which is the negative hypergeametric density with parameters (b,a),

and is the discrete analogue of the Reta distributicn, we have

b+i-1 a+m-i-1\-

m . ;
Piyy <Y 1= 7 = ol (5.30)
(k) (t) i=k m+a+b-1
m
Similar work can be done for the situation in which two clusters are

selected.



-
195
tv

VI. BIBLIOGRAPHY

Abdel-Aty, S. H. 1854. Ordered variables in discontinuous distribu-
tions. Statistica Neerlandica 8: 61-82.

Abramowitz, Milton and Irene A. Stegun. 1965. Handbook of mathematical
functions. New York, N.Y., Dover Publications, Inc.

Anderson, T. W. and S. M. Samuels. 1967. Some inequalities among
binomial and Poisson probabilities. In Proceedings of the Fifth Berkeley

Symposium. Vol. I. pp. 1-12. Berkeley, California, University of
California Press.

Blom, Gunnar. 1958. Statistical estimates and transformed Beta-variables.
New York, N.Y., John Wiley and Sons, Inc.

Bradiey, James V. 1968. Distribution-free statistical tests. Englewood
Cliffs, N.J., Prentice-Hall, Inc.

Chapman, David Welland. 1970. Cluster sampling and approximate distri-
bution-free confidence intervals for a median. Unpublished Ph.D. thesis.
Ithaca, N.Y., Library, Cornell University.

Chung, J. H. and D. B. DeLury. 1950. Confidence limits for the hyper-
geametric distribution. Toronto, Canada, University of Torontc Press.

Cochran, W. G. 1963. Sampling techniques. 2nd ed. New York, N.Y.,
John Wiley and Sons, Inc.

David, F. N. and N. L. Johnson. 1954. Statistical treatment of censored
data. Biometrika 41: 228-240.

David, H. A. 1970. Order Statistics. New York, N.Y., John Wiley and

Sanc Tne
>Q0ns,

~srara o

David, H. A. and R. S. Mishriky. 1968. Order statistics for discrete
populations and grouped samples. J. Amer. Stat. Assn. 63: 1390-1398.

Feller, William. 1957. An introduction to probability theory and its
applications. Vol. 1. Znd ed. New York, N.Y., John Wiley and Sons, Inc.

Fisher, R. A. and F. Yates. 1949. Statistical tables for biological,
agricultural, and medical research. London, Oliver and Boyd, Ltd.

Gupta, Shanti S. 1560. Order statistics fram the Gamma distribution.
Technometrics 2: 243-262.



153

Guttman, Irwin. 1967. Tolerance regions--a survey of its literature: I.
Introduction and discussion of distribution-free tolerance regions.
University of Wisconsin Department of Statistics Technical Report 123.

Hansen, Morris, William Hurwitz, and William Madow. 1953. Sample survey

methods and theory. Vol. II: Theory. New York, N.Y., John Wiley and
Sons, Inc.

Harter, H. Leon. 1961. Expected values of nommal order statistics.
Biametrika 48: 151-16S.

Harter, H. leon. 1970. Order statistics and their use in testing and
estimation. Vol. 2: Estimates based on order statistics of samples
from various populations. Washington, D.C., U. S. Govt. Print. Cff.

Hastings, C., Frederick Mosteller, John Tukey, and Charles Winsor. 1947.
Low maments for small samples: a camparative study of order statistics.
Amn. Math. Stat. 18: 413-426.

Hill, Bruce M. 1968. Posterior distributions of percentiles: Bayes'

theorem for sampling from a population. J. Amer. Stat. Assn. 63:
677-691.

Hoeffding, Wassily. 1956. On the distribution of the number of suc-
cesses in independent trials. Ann. Math. Stat. 27: 713-721.

Hogg, Robert V. and Allen T. Craig. 1970. Introduction to mathematical
statistics. 3rd ed. New York, N.Y., The Macnillan Company.

Johnson, Norman L. and Samuel Kotz. 1969. Discrete Zdistributions.
Besten, Mass., Houghtan Miffiin Campany.

Kabe, D. G. 1969. Same distribution problems of order statistics fram

discrete distributions. Institute of Statistical Mathematics Amals 21:
551-556.

Katz, Leo. 1953. Confidence intervals for the number showing a certain
characteristic in a population when sampling is without replacement.
J. Amer. Stat. Assn. 48: 256-261.

Kempthome, Oscar. 1967. The classical problem of inference--goodness
of fit. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability. Vol. I. pp. 235-249. Berkeley, California,
University of California Press.

Kendall, M. G. and A. Stuart. 1963. The advanced theory of statistics.
Vol. 1: 2nd ed. London, Charles Griffin and Company, Ltd.



154

Khatri, C. G. 1963. Distributions of order statistics for discrete
case. Institute of Statistical Mathematics Annals 14: 167-171.

Knuth, Donald E. 1968. The art of computer programing. Vol. 1:
Fundamental algorithms. Reading, Mass., Addison-Wesley Publishing

Company .

Knuth, Donald E. 1969. The art of computer programning. Vol. 2: Semi-
numerical algorithms. Reading, Mass., Addison-Wesley Publishing Campany.

Krishnaiah, P. R. and M. Haseeb Rizui. 1967. A note on moments of
Gamma order statistics. Technametrics 9: 315-318.

Lehmann, E. L. 1959. Testing statistical hypotheses. New York, N.Y.,
John Wiley and Sons, Inc.

Lieberman, G. J. and D. B. Owen. 1961. Tables of the hypergeometric
probability distribution. Stanford, Calif., Stanford University Press.

Loynes, R. M. 1966. Some aspects of the estimation of quantiles. =royal
Stat. Soc. J. 28: 497-512.

MacKinnon, W. J. 1964. Table for both the sign test and distribution-
free confidence intervals of the median for sample sizes to 1000.
J. Amer. Stat. Assn. 59: 035-956.

McCarthy, Philip J. 1965. Stratified sampling and distribution-free
confidence intervals for a median. J. Amer. Stat. Assn. 60: 772-783.

Madansky, Albert. 196Z. More on length of confidence intervals.

J. Amer, Stat, Acesn, E£7: E85-59C

LRV RV

Mosteller, Frederick. 1946. On some useful "inefficient' statistics.
Ann. Math. Stat. 17: 377-408.

Nair, K. R. 1940. Table of confidence intervals for the median in
samples from any continuous population. Sankhy@ 4: 551-558.

Noether, Gottfried E. 1967. Elements of non-parametric statistics.
New York, N.Y., John Wiley and Scns, Inc.

Noether, Gottfried E. 1948. On confidence limits for quantiles. Ann.
Math. Stat. 19: 416-419.

Parzen, Emanuel. 1960. Modern probability theory and its applications.
New York, N.Y., John Wiley and Sons, Inc.

Pearson, Karl. 1901. Note on Francis Galton's problem. Biometrika 1:
390-39S.



155

Plackett, R. L. 1958. Linear estimation from censored data. Ann. Math.
Stat. 29: 131-142.

Pratt, John W. 1961. Length of confidence intervals. J. Amer. Stat.
Assn. 56: 549-566.

Rao, C. R. 1965. Linear statistical inference and its appllcatlons
New York, N.Y., John Wiley and Sons, Inc.

Riordan, John. 1968. Combinatorial identities. New York, N.Y., John
Wiley and Sons, Inc.

Sarndal, Carl-Eric. 1964. A unified derivation of same non-parametric
distributions. J. Amer. Stat. Assn. 59: 1042-1053.

Savur, S. R. 1937. The use of the median in tests of significance.
Proc. Indian Acad. Sci., Sect. A, 5: 564-576.

Saw, J. G. 1960. A note on the error after a number of terms of the
David-Johnson series for the expected values of normal order statistics.
Biametrika 47: 79-86.

Scheffe, H. and J. W. Tukey. 1945. Non-parametric estimation. I.
Validity of order statistics. Ann. Math. Stat. 16: 187-192.

Sedransk, J. 1S69. Some elementary properties of systematic sampling.
Skandinavisk Aktuarietidskrift (1969): 39-47.

Sen, Pranab Kumar. 1959. On the maments of the sample quantiles.
Calcutta Stat. Assn. Bull. 9: 1-20.

Sillitto, G. P. 1951. Interrelations between certain linear systematic

statistics of samples from any continuous populaticn. Biometrika 38:
377-382.

Steck, G. P. and W. J. Zimmer. 1968. The relation between Neyman and
Bayes confidence intervals for the hypergeometric parameter. Techno-
metrics 10: 199-203.

Teichroew, D. 1956. Tables of expected values of order statistics and
products of order statistics for samples of size twenty and less from the
normal distribution. Ann. Math. Stat. 27: 410-426.

Thompson, W. R. 1936. On confidence ranges for the median and other
expectation distributions for populations ¢f unknown distribution form.
Ann. Math. Stat. 7: 122-128.



156

U. S. Atmy Ordinance Corps. 1952. Tables of the cumilative binamial
probabilities. Washington, D.C., U. S. Govt. Print. Off.

Walker, A. M. 1968. A note on the asymptotic distribution of sample
quantiles. Roy. Stat. Soc. J. - B - 30: 570-575.

Walsh, John E. 1962a. Handbook of non-parametric statistics. Princeton,
N.J., D. van Nostrand Company, Inc.

Walsh, John E. 1962b. Non-parametric confidence intervals and tolerance
regions. In Sarhan, Ahmed E. and Bernard G. Greenberg, eds. Contribu-
tions to order statistics. pp. 136-140. New York, N.Y., John Wiley

and Sons, Inc.

Wilks, Samuel S. 1962. Mathematical statistics. New York, N.Y.,
John Wiley and Sons, Inc.

Wilks, Samuel S. 1948, Order statistics. Amer. Math. Soc. Bull. 54:
6-50.

Woodruff, R. S. 1952. Confidence intervals for medians and other position
measures. J., Amer. Stat. Assn. 47: 635-646.



157
VII. ACKNOWLEDGMENTS

This thesis has been prepared under the direction of Dr. Joseph
Sedransk, whose persistent efforts, guidance and encouragement have been
invaluable in its campletion.

For financial support of my graduate studies and thesis work, I am
indebted to the National Aevcnautics and Space Agency for the NASA
Traineeship awarded to me while 2 student at Iowa State University (1964-
1966). I am also grateful for the National Science Faculty Fellowship,
granted by NSF, which enabled me to continue my studies and research at
the University of Wisconsin (1969-1970).

In addition, my employer, Cornell College has provided financial
support and computer facilities during my thesis preparation.

The efforts of the staff and faculty of the Statistics Department
at Iowa State University have been greatly appreciated. Dr. T. A.
Bancroft advised and counsellied me 1n my early graduate work. I also
thank Dr. H. T. David who kindly consented to be the chairman of my
Graduate Commnittee.

Through all the trials and tribulations of graduate work and thesis
preparation, my wife, Sue, has been at my side (or at hame with our
children) offering both encouragement and sympathy. Thanks, Sam!

Finally, I wish to recognize Mrs. Dale Donald, skilled typist and

translator, whose artful talents have produced this finished product.



	1972
	Confidence intervals for quantiles in stratified random sampling
	John Sigmund Meyer
	Recommended Citation


	tmp.1412356140.pdf.bEZtF

