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• This study focuses on the estimation of population variance of study variable in strat-
ified random sampling using auxiliary information when the observations are contam-
inated by measurement errors. Three classes of estimators of variance under measure-
ment error are proposed by using the approach of Srivastava and Jhajj [18] for the
study variable. The properties of the estimator viz. bias and mean square error of
the proposed classes of estimators are provided. The conditions for which proposed
estimators are more efficient compared to usual estimators are discussed. It is shown
that the proposed classes of estimators include a large number of estimators of the
population variance of stratified random sampling and their bias and mean square
error can be easily derived.
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1. INTRODUCTION

In survey sampling, the auxiliary information is mainly used in order to gain
efficiency for the estimation. The literature on estimating the population variance
by using auxiliary variable is substantial and widely discussed. Some authors in-
cluding, Das and Tripathi [4], Srivastava and Jhajj [18], Isaki [5], Upadhyay and
Singh [19, 20], Singh et al.[15], Prasad and Singh [8], Biradar and Singh [2],
Singh and Biradar [12] have paid their attention towards the estimation of pop-
ulation variance of study variable using auxiliary information in simple random
sampling.While dealing with planning surveys, in case of heterogeneous popula-
tion, stratified random sampling has more importance in precise estimates over
the simple random sampling. Singh and Vishwakarma [14] discussed a general
method for the estimation of the variance of the stratified random sample mean
by using auxiliary information.
The theories of survey sampling assume that the observations recorded during
data collection are always free from measurement error. However, this assump-
tion does not meet in many real-life situations and the data is contaminated with
errors.The mean square error and other properties of the estimator obtained with
significant measurement error may lead to serious fallacious results. Cochran [3],
has discussed the source of measurement errors in survey data. Many authors
such as Shalabh [9], Srivastava and Shalabh [16], Maneesha and Singh [7], Allen
et al. [1], Shalabh and Tsai [10], Singh and Vishwakarma [11] have studied the
impacts of measurement errors in the ratio, product and regression methods of
estimation under simple random sampling.
Let us consider a finite heterogeneous population of size N , partitioned into L
non-overlapping strata of sizes Nh, h = 1, 2, · · · , L, where

∑L
h=1Nh = N . Let

(yhj , xhj) be the pair of observed values instead of true pair values (Yhj , Xhj) of
the study character y and the auxiliary character x respectively of the jth unit
(j = 1, 2, · · · , Nh) in the hth stratum. Also, let (yhj , xhj) be the pair of values on
(y, x) drawn from the hth stratum (j = 1, 2, · · · , nh;h = 1, 2, · · · , L). It is famil-
iar that in stratified random sampling an unbiased estimator of the population
mean (µY =

∑L
h=1WhµY h;Wh = Nh

N ) of the variable y is given by

(1.1) ȳst =

L∑
h=1

Whȳh,

where ȳh = 1
nh

∑nh
j=1 yhj is the sample mean of hth stratum and µY h = 1

Nh

∑Nh
j=1 yhj

is the population mean of hth stratum. Let the observational errors be

(1.2) uhj = yhj − Yhj , vhj = xhj −Xhj ,

which are normally distributed with mean zero and variances σ2uh and σ2vh re-
spectively. Also let ρh be the population correlation coefficient between Y and
X in hth stratum. For simplicity in exposition, it is assumed that the variables
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uhj and vhj are uncorrelated although (Yhj , Xhj) are correlated.
To obtain the bias and mean square error we define

σ̂2Y h = σ2Y h(1 + ε0h), σ̂2Xh = σ2Xh(1 + ε1h), x̄h = µXh(1 + ε2h).

such that E(εih) = 0, ∀i = 0, 1, 2;

E(ε20h) =
AY h
nh

, E(ε21h) =
AXh
nh

, E(ε22h) =
C2
Xh

nhθXh
, E(ε0hε1h) =

1

nh
(δ22h−1),

E(ε1hε2h) =
1

nh
(δ03hCXh), E(ε0hε2h) =

1

nh
(δ21hCXh),

where

AY h =γ2Y h + γ2Uh
σ4Uh
σ4Y h

+
2

θ2Y h
, β2h(Y ) = δ40h =

µ40h
µ220h

, CXh =
σXh
µXh

,

AXh =γ2Xh + γ2V h
σ4V h
σ4Xh

+
2

θ2Xh
, β2h(X) = δ04h =

µ04h
µ202h

,

γ2Y h =β2h(Y )− 3, γ2Xh = β2h(X)− 3, γ2Uh = β2h(U)− 3,

γ2V h =β2h(V )− 3, θY h =
σ2Y h

σ2Y h + σ2Uh
, θXh =

σ2Xh
σ2Xh + σ2V h

,

δrsh =
µrsh(

µr20hµ
s
02h

) 1
2

, µrsh =
1

Nh

Nh∑
j=1

(yhj − µY h)r(xhj − µXh)s.

(r, s) are positive integers, µY h and µXh are the hth stratum population mean of
study and auxiliary variable respectively. CXh is the coefficient of variation of
hth stratum, θY h and θXh are the reliability ratio of hth stratum of study and
auxiliary variable respectively and lying between zero and one.
The variance of the stratified random sample mean is given by

(1.3) V (ȳst) =

L∑
h=1

W 2
h

σ2Y h
nh

= σ2st,

where σ2Y h = 1
Nh

∑Nh
j=1(yij − µ̄Y h)2 is the population variance of hth stratum.

The unbiased estimator of σ2st i.e. V (ȳst) is given by

(1.4) σ̂2st =
L∑
h=1

W 2
h

s2yh
nh

,

where s2yh = 1
(nh−1)

∑nh
j=1(yhj − ȳh)2 is an unbiased estimator of σ2st. But in

the presence of measurement error s2yh is not an unbiased estimator for σ2st. In

the measurement error case the unbiased estimator of σ2st is given by
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σ̂2st =
∑L

h=1W
2
h
σ̂2
Y h
nh

, where σ̂2Y h = (s2yh − σ2uh).

The variance of σ̂2st in the presence of measurement error is given by

(1.5) V (σ̂2st) =
L∑
h=1

(WhσY h)4

n3h
[AY h] = MSE(σ̂2st).

Singh and Karpe [13] have studied the impact of measurement error on separate
ratio and product also combined ratio as well as product estimators for the popu-
lation mean under stratified random sampling. We have considered the problem
of estimating population variance using information on the auxiliary variable by
adopting Srivastava and Jhajj [18] method in stratified random sampling in the
presence of measurement error. Three classes of estimators for the estimation of
population variance are proposed under stratified random sampling when both
the study and auxiliary variables are commingled with measurement errors as:

i) Estimator of variance σ2st when the mean µXh of the auxiliary variable x in
the hth stratum of the population is known.

ii) Estimation of variance σ2st when the variance σ2Xh of the auxiliary variable
x in the hth stratum of the population is known.

iii) Estimation of variance σ2st when the mean µXh and the variance σ2Xh of the
auxiliary variable x in the hth stratum of the population are known.

The crux of this study is to exhibit the effect of measurement errors on the esti-
mates of the variance of the stratified random sample mean while using auxiliary
information.

2. THE PROPOSED CLASSES OF ESTIMATORS

2.1. Estimation of population variance σ2st of the stratified simple ran-
dom sample mean when mean µXh of hth stratum of the auxiliary
variable x in the population is known

By using information on population mean µXh of the hth stratum of auxil-
iary variable, a class of estimators of population variance σ2st for the study variable
is proposed as

(2.1) σ̂2a =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y hah(lh),

where lh = x̄h/µXh and ah(·) is a function of lh such that ah = 1. It satisfies
conditions given by Srivastava [17] viz. function are continuous and bounded
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also the first as well as second order partial derivatives of the function exist.
Expanding the function about the point ‘unity’ in a second order Taylor’s series,
we have

(2.2) ah(lh) = ah(1) + (lh − 1)a1h(1) +
1

2
(lh − 1)2a2h(1),

where a1h, a2h are first order and second order derivative with respect to lh about
point unity.

σ̂2a =

L∑
h=1

(
W 2
h

nh

)
σ2Y h(1 + ε0h)[1 + (lh − 1)a1h(1) +

1

2
(lh − 1)2a2h(1)],

σ̂2a =
L∑
h=1

(
W 2
h

nh

)
σ2Y h(1 + ε0h)[1 + ε2ha1h(1) +

1

2
ε22ha2h(1)],

(2.3)

(σ̂2a − σ2st) =
L∑
h=1

(
W 2
h

nh

)
(σ2Y h)[ε0h + ε2ha1h(1) + ε0hε2ha1h(1)(2.4)

+
1

2
ε22ha2h(1) +

1

2
ε0hε

2
2ha2h(1)].

Taking expectation on both sides of (2.4) we get

(2.5) Bias(σ̂2a) =
L∑
h=1

(
W 2
h

n2h

)
σ2Y h

[
δ21hCXha1h(1) +

1

2

C2
Xh

θXh
a2h(1)

]
.

For the mean square error we have

(2.6) (σ̂2a − σ2st)2 =

L∑
h=1

(
W 2
h

nh

)
σ4Y h{ε0h + ε2ha1h(1)}2.

(2.7) (σ̂2a − σ2st)2 =
L∑
h=1

(
W 2
h

nh

)2

σ4Y h{ε20h + ε22ha
2
1h(1) + 2ε0hε2ha1h(1)}.

Taking expectation up to terms of order n−3
h , we get the mean square error of σ̂2a

as

(2.8) MSE(σ̂2a) =

L∑
h=1

(WhσY h)4

n3h
[AY h +

C2
Xh

θXh
a21h(1) + 2δ21hCXha1h(1)].

The MSE in (2.8) is minimized for

(2.9) a1h(1) = −
(
δ21hθXh
CXh

)
.

Thus, the resultant minimum MSE of σ̂2a is given by

(2.10) min .MSE(σ̂2a) =
L∑
h=1

(WhσY h)4

n3h
[AY h − δ221hθXh].

Hence, a theorem can be established as follows.
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Theorem 2.1. Up to terms of the order n−3
h ,

min .MSE(σ̂2a) ≥
L∑
h=1

(WhσY h)4

n3h
[AY h − δ221hθXh]

with equality holding if a1h(1) = −
(
δ21hθXh
CXh

)
.

The following estimators

σ̂2a1 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y hl

α1h
h , σ̂2a2 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[2− lα1h

h ],

σ̂2a3 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h

[
α1h + lh
1 + α1hlh

]
, σ̂2a4 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α1h + (1− α1h)lh],

σ̂2a5 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α1h + (1− α1h)l−1

h ],

σ̂2a6 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α1h + (1− α1h)l−α2h

h ],

σ̂2a7 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α1h + (1− α1h)lh]−1

are some of the members of the proposed class of estimators σ̂2a. The optimum
values of the scalars α1h and α2h can be derived from the right-hand side (2.9) of
and the minimum mean square error of the listed estimators can be derived from
(2.8). The lower bound of the MSE of estimators σ̂2ai, (i = 1 to 7) is the same as
given by (2.10).
Following by [17] and Srivastava and Jhajj [18] we have proposed a wider class
of estimators of σ2st as

(2.11) σ̂2D =
L∑
h=1

(
W 2
h

nh

)
Dh(σ̂2Y h, lh),

where function Dh(., .) satisfies

Dh(σ2Y h, 1) = σ2Y h ⇒ D1h(σ2Y h, 1) =
∂Dh(.)

∂σ̂2Y h
|(σ2

Y h,1)
= 1.

It can be shown that the minimum MSE of σ̂2D and the minimum MSE of σ̂2a are
equal. We can state that the difference type estimator

(2.12) σ̂2std1 =

L∑
h=1

(
W 2
h

nh

)
{σ̂2Y h + d1h(lh − 1)},

is a member of class σ̂2D where d1h is a suitably chosen constant.
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2.2. Estimation of population variance σ2st of the stratified simple ran-
dom sample mean when variance σ2Xh of hth stratum of the aux-
iliary variable x in the population is known

A class of estimators of the variance σ2st of the stratified simple random
sample mean when the variance σ2Xh of the auxiliary variable x of the hth stratum
in the population is known, is defined as

(2.13) σ̂2b =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y hbh(mh),

where mh =
σ̂2
Xh

σ2
Xh

, and bh(mh) is a function of mh such that bh(1) = 1. The

function is continuous and bounded in R and its first as well as the second order
partial derivatives exist. Now expanding the function at point ‘unity’ in a second
order Taylor’s series, we can write

(2.14) bh(mh) = bh(1) + (mh − 1)b1h(1) +
1

2
(mh − 1)2b2h(1),

where b1h(1) and b2h(1) are the first order and second order derivative with respect
to mh of the function bh(mh) about the point ‘unity’.

(2.15) σ̂2b =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h

[
bh(1) + (mh − 1)b1h(1) +

1

2
(mh − 1)2b2h(1)

]
,

(2.16) σ̂2b =

L∑
h=1

(
W 2
h

nh

)
σ2Y h(1 + ε0h)[1 + ε1hb1h(1) +

1

2
ε21hb2h(1)].

To calculate the bias and the MSE of the estimator we can write

(σ̂2b − σ2st) =

L∑
h=1

(
W 2
h

nh

)
σ2Y h[ε0h + ε1hb1h(1) + ε0hε1hb1h(1)(2.17)

+
1

2
ε21hb2h(1) +

1

2
ε0hε

2
1hb2h(1)].

Taking expectation on both sides of (2.17) we get the bias of σ̂2b as

(2.18) Bias (σ̂2b ) =

L∑
h=1

(
W 2
h

n2h

)
σ2Y h[(δ22h − 1)b1h(1) +

1

2
AXhb2h(1)].

For the mean square error we have

(2.19) (σ̂2b − σ2st)2 =
L∑
h=1

(
W 2
h

nh

)2

σ4Y h[ε0h + ε1hb1h(1)]2.
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(2.20) (σ̂2b − σ2st)2 =
L∑
h=1

(
W 2
h

nh

)2

σ4Y h[ε20h + ε21hb
2
1h(1) + 2ε0hε1hb1h(1)].

Taking expectation up to terms of order n−3
h , we get the mean square error of σ̂2b

as

(2.21) MSE(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h
[AY h +AXhb

2
1h(1) + 2(δ22h − 1)b1h(1)],

which is minimized for

(2.22) b1h(1) = −
(
δ22h − 1

AXh

)
.

Thus, the resultant minimum MSE of σ̂2b can be written as:

(2.23) min .MSE(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h

[
AY h −

(δ22h − 1)2

AXh

]
.

Hence, a theorem can be established as follows.

Theorem 2.2. Up to terms of order n−3
h ,

min .MSE(σ̂2b ) ≥
L∑
h=1

(WhσY h)4

n3h

[
AY h −

(δ22h − 1)2

AXh

]

with equality holding if b1h(1) = −
(
δ22h−1
AXh

)
.

The listed estimators

σ̂2b1 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y hm

η1h
h , σ̂2b2 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[2−mη1h

h ],

σ̂2b3 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h

[
η1h +mh

1 + η1hmh

]
, σ̂2b4 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[η1h + (1− η1h)mh],

σ̂2b5 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[η1h + (1− η1h) m−1

h ],

σ̂2b6 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[η1h + (1− η1h)mη2h

h ],

σ̂2b7 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[η1h + (1− η1h)mh]−1,

are some of the members of the proposed class of estimators σ̂2b . The optimum
values of the scalars η1h and η2h from σ̂2b1 to σ̂2b7 can be derived from (2.22) and
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the minimum mean square errors of each of the listed estimators can be derived
from (2.21). The lower bound of the MSE of the estimators σ̂2bi (i = 1 to 7) is
given by (2.23) .
A wider class of estimators of σ2st than σ̂2b is

(2.24) σ̂2e =

L∑
h=1

(
W 2
h

nh

)
eh(σ̂2Y h,mh),

where eh(σ̂2Y h,mh) is a function of (σ̂2Y h,mh) and

eh(σ2Y h, 1) = σ2Y h ⇒ e1h(σ2Y h) = 1 with e1h(σ2Y h, 1) = ∂eh(.)
∂σ̂2

Y h
|(σ2

Y h,1)
.

It can be exhibited that up-to third order, the optimum mean square error
of σ̂2e and σ̂2b is the same as given by (2.23). It can also be shown that the
difference-type estimator

(2.25) σ̂2std2 =
L∑
h=1

(
W 2
h

nh

)
{σ̂2Y h + d2h(mh − 1)}

is a specific member of the class of estimator σ̂2e but not of the σ̂2b class, where
d2h is an appropriately chosen constant.

2.3. Estimation of population variance σ2st of the stratified simple
random sample mean when the population mean µXh and the
variance σ2Xh of hth stratum of the auxiliary variable x in the
population are known

We define a class of estimators σ̂2c for the estimation of variance of the
stratified simple random sample mean when the mean µXh and the variance σ2Xh
of the auxiliary variable x of the hth stratum in the population are known

(2.26) σ̂2c =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y hch(lh,mh),

where ch(lh,mh) is a function of lh = x̄h/µXh and mh = σ̂2Xh/σ
2
Xh, such that

ch(1, 1) = 1 and it also satisfies similar conditions as mentioned in [18].

ch(lh,mh) =[ch(1, 1) + (lh − 1)c1h(1, 1) + (mh − 1)c2h(1, 1)

+
1

2
{(lh − 1)2c11h(1, 1) + 2(lh − 1)(mh − 1)c12h(1, 1) + (mh − 1)2c22h(1, 1)}

+
1

6
{(lh − 1)3c111h(l∗h,m

∗
h) + 3(lh − 1)2)(mh − 1)c112h(l∗h,m

∗
h)

+ 3(lh − 1)(mh − 1)2c122h(l∗h,m
∗
h) + (mh − 1)3c222h(l∗h,m

∗
h)}],

(2.27)
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where
l∗h = 1 + φ(lh − 1),m∗

h = 1 + φ(mh − 1), 0 < φ < 1;

{c1h(1, 1), c2h(1, 1)}, {c11h(1, 1), c12h(1, 1), c22h(1, 1)},
{c111h(l∗h,m

∗
h), c112h(l∗h,m

∗
h), c122h(l∗h,m

∗
h), c222h(l∗h,m

∗
h)}

respectively denote the first, second and third order partial derivatives of the
function ch(lh,mh). Expressing (2.27) in terms of ε0h, ε1h and ε2h using ch(1, 1) =
1 we have

σ̂2c =

L∑
h=1

(
W 2
h

nh

)
σ2Y h(1 + ε0h)[{1 + ε2hc1h(1, 1) + ε1hc2h(1, 1)}

(2.28)

+
1

2
{ε22hc11h(1, 1) + 2ε1hε2hc12h(1, 1) + ε21hc22h(1, 1)}

+
1

6
{ε32hc111h(l∗hm

∗
h) + 3ε1hε

2
2hc112hl

∗
hm

∗
h

+ 3ε21hε2hc122hl
∗
hm

∗
h + ε31hc222h(l∗hm

∗
h)}]

To calculate the bias and the MSE of the estimator we can write (2.28) as

σ̂2c − σ2st =
L∑
h=1

(
W 2
h

nh

)
σ2Y h[{ε0h + ε2hc1h(1, 1) + ε1hc2h(1, 1) + ε0hε2hc1h(1, 1)

(2.29)

+ ε0hε1hc2h(1, 1)}+
1

2
{ε22hc11h(1, 1)

+ 2ε1hε2hc12h(1, 1) + ε21hc22h(1, 1)}].

Taking expectation of both sides of (2.29) we get the bias of the estimator σ̂2c

Bias(σ̂2c ) =
L∑
h=1

(
W 2
h

n2h

)
σ2Y h[δ21hCXhc1h(1, 1) + (δ22h − 1)c2h(1, 1)

(2.30)

+
1

2

(
C2
Xh

θXh
c11h(1, 1) + 2δ03hCXhc12h(1, 1) +AXhc22h(1,1)

)]
.

For the mean square error we have

(2.31) (σ̂2c − σ2st)2 =
L∑
h=1

(
W 2
h

nh

)2

σ4Y h[ε0h + ε2hc1h(1, 1) + ε1hc2h(1, 1)]2.

(σ̂2c − σ2st)2 =
L∑
h=1

(
W 2
h

nh

)2

σ4Y h

[
ε20h + ε22hc

2
1h(1, 1) + ε21hc

2
2h(1, 1) + 2ε0hε2hc1h(1, 1)

(2.32)

+ 2ε1hε2hc1h(1, 1)c2h(1, 1) + 2ε0hε1hc2h(1, 1)

]
.
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Taking expectation up-to order n−3
h , we get the mean square error of σ̂2c as

MSE(σ̂2c ) =

L∑
h=1

(WhσY h)4

n3h

[
AY h +

C2
Xh

θXh
c21h(1, 1) +AXhc

2
2h(1, 1) + 2δ21hCXhc1h(1, 1)

(2.33)

+ 2δ03hCXhc1h(1, 1)c2h(1, 1) + 2(δ22h − 1)c2h(1, 1)

]
,

where c1h(1, 1) and c2h(1, 1) denote the first order partial derivatives of ch(lh,mh)
with respect to lh and mh respectively about the point (1, 1).

(2.34)

[
C2
XhθXh δ03hCXh

δ021hCXh AXh

] [
c1h(1, 1)
c2h(1, 1)

]
= −

[
δ21hCXh
δ22h − 1

]
.

By solving (2.34) we can determine the minimum values of c1h(1, 1) and c2h(1, 1)
respectively as

c1h(1, 1) =
[δ03h(δ22h − 1)− δ21hAXh]

[CXh(AXh/θXh)− δ203h]
,

c2h(1, 1) =
[δ03hδ21h − (δ22h − 1)/θXh]

[(AXh/θXh)− δ203h]
.

(2.35)

Putting (2.35) in (2.33) we obtain minimum MSE of σ̂2c as
(2.36)

min .MSE(σ̂2c ) =

L∑
h=1

(WhσY h)4

n3h

[
AY h−

(δ22h − 1)2 + δ221hθXhAXh − 2θXhδ21hδ03h(δ22h − 1)

(AXh − δ203hθXh)

]
.

(2.37)

min .MSE(σ̂2c ) =

L∑
h=1

(WhσY h)4

n3h

[
AY h − δ221hθXh −

{δ21hθXhδ03h − (δ22h − 1)}2

(AXh − δ203hθXh)

]
.

Hence, a theorem can be established as follows.

Theorem 2.3. Up to terms of order n−3
h ,

min .MSE(σ̂2c ) ≥
L∑
h=1

(
(WhσY h)4

n3h

)[
AY h−δ221hθXh−

{δ21hθXhδ03h − (δ22h − 1)}2

(AXh − δ203hθXh)

]

with equality holding if

c1h(1, 1) =
[δ03h(δ22h − 1)− δ21hAXh]

[CXh(AXh/θXh)− δ203h]

c2h(1, 1) =
[δ03hδ21h − (δ22h − 1)/θXh]

[(AXh/θXh)− δ203h]

(2.38)
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The present estimators

σ̂2c1 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y hlh

α1hmα2h
h ,

σ̂2c2 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α1hl1h + (1− α1h )mα2h

1h ],

σ̂2c3 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[α3hl

α1h
1h + (1− α3h)mα2h

2h ],

σ̂2c4 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[exp{α1h(lh − 1) + α2h(mh − 1)}],

σ̂2c5 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h

[1 + α1h{l1hα2hmα3h
2h − 1}]

,

σ̂2c6 =

L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[1− a1h(lh − 1) + α2h(mh − 1)],

σ̂2c7 =
L∑
h=1

(
W 2
h

nh

)
σ̂2Y h[1− α1h(lh − 1) + α2h(mh − 1)]−1,

are some particular members of the suggested class of estimator σ̂2c . The mean
square error of these estimators can be obtained from (2.33) by choosing the
suitable value for the constants. The lower bound of the MSE of the estimators
σ̂2ci (i = 1 to 7) is the same as given by (2.37)
A class of estimators for σ2st wider than σ̂2c is proposed as

(2.39) σ̂2f =

L∑
h=1

(
W 2
h

nh

)
fh(σ̂2Y h, lh,mh)

where fh(σ̂2Y h, lh,mh) is a function of (σ̂2Y h, lh,mh) such that

fh(σ2Y h, 1, 1) = σ2Y h ⇒ f1h(σ2Y h, 1, 1) =
∂fh(σ2Y h, lh,mh)

∂σ̂2Y h
|(σ2

Y h,1,1)
= 1.

It can unveil that up-to order n− 3
h the optimum MSE of σ̂2f is same as the

optimum MSE of σ̂2c at (2.36) or (2.37) and is not reduced. The difference-type
estimator

(2.40) σ̂2std3 =
L∑
h=1

(
W 2
h

nh

)
{σ̂2Y h + d3h(lh − 1) + d4h(mh − 1)}.

is a specific member of the class (2.39) but not (2.26) , where d3h and d4h are
acceptable constants.
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3. Efficiency Comparisons

To obtain the conditions for which the proposed classes of estimators σ̂2a,
σ̂2b and σ̂2c perform better than usual unbiased estimator σ̂2st, from (1.5), (2.10),
(2.23) and (2.37) we can write

(3.1) MSE(σ̂2st)−min .MSE(σ̂2a) =
L∑
h=1

(WhσY h)4

n3h
δ221hθXh ≥ 0,

(3.2) MSE(σ̂2st)−min .MSE(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h

(δ22h − 1)2

AXh
≥ 0,

(3.3)

MSE(σ̂2st)−min .MSE(σ̂2c ) =
L∑
h=1

(WhσY h)4

n3h

[
δ221hθXh+

{θXhδ03hδ21h − (δ22h − 1)}2

(AXh − δ2h03θXh)

]
≥ 0.

Remarks: To exhibit the impact of measurement error on MSE of the estima-
tors, let the observation for both the study variable and auxiliary variable be
recorded without error. Now the MSE of the proposed class of estimators σ̂2a, to
the third degree of approximation is given as

(3.4) MSE∗(σ̂2a) =

L∑
h=1

(WhσY h)4

n3h
[(δ40h − 1) + C2

Xha
2
1h(1) + 2δ21hCXha1h(1)],

which is the same as the obtained by Singh and Vishwakarma [14].
From (2.8) and (3.4) we have

MSE(σ̂2a)−MSE∗(σ̂2a) =
L∑
h=1

(Whσ
4
Y h

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

+ 4

(
1− θY h
θY h

)
+ C2

Xh(1− θXh)a21h(1)

]
The difference is always positive in nature, thus we can infer that the presence
of measurement error incorporates larger mean square error than the absence of
measurement error.
To obtain the optimum value of the constant differentiating partially (3.4) with
respect to a1h and equate to zero we get

a1h(1) = −
(
δ21h
CXh

)
.

Thus, the resultant minimum mean square error is

(3.5) minMSE∗(σ̂2a) =

L∑
h=1

(WhσY h)4

n3h
[(δ40h − 1)− δ221h].
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Now the impact of measurement error can be obtained (2.10) and (3.5) from and
as

min .MSE(σ̂2a)−minMSE∗(σ̂2a) =

L∑
h=1

(WhσY h)4

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

(3.6)

+4

(
1− θY h
θY h

)
+ δ221h(1− θXh)].

The MSE of another proposed class of estimators σ̂2b for the estimation of σ2st in
the absence of measurement error is given in (3.7) and is similar to Singh and
Vishwakarma [14].

(3.7) MSE∗(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h
[δ40h−1)+(δ04h−1)b21h(1)+2(δ22h−1)b1h(1)],

From equation (2.21) and (3.7) we can write

MSE(σ̂2b )−MSE∗(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

+ 4

(
1− θY h
θY h

)(3.8)

+(γ2V h + 2)

(
1− θXh
θXh

)2

+ 4

(
1− θXh
θXh

)
b21h(1)

]
.

The right hand side of (3.8) is always positive in nature thus we can infer that
mean square error of the proposed estimator is always larger when observation is
recorded with error.
MSE∗(σ̂2b ) is minimized for

(3.9) b1h(1) = −
(
δ22h − 1

δ04 − 1

)
,

Thus, the resultant minimum mean square error is

(3.10) min .MSE∗(σ̂2b ) =

L∑
h=1

(WhσY h)4

n3h

[
(δ40h − 1)− (δ22h − 1)2

(δ04h − 1)

]
.

From (2.23) and (3.10) we can derive the impact of measurement error as

min .MSE(σ̂2b )−min .MSE∗(σ̂2b ) =
L∑
h=1

(WhσY h)4

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

+ 4(

(
1− θY h
θY h

)(3.11)

+
(δ22h − 1)2

AXh(δ40h − 1)
(γ2V h + 2)

(
1− θXh
θXh

)2

+ 4

(
1− θXh
θXh

)]
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The mean square error of the third proposed class of estimators σ̂2c for the estima-
tion of σ̂2st in the absence of measurement error is given by Singh and Vishwakarma
[14] as

MSE∗(σ̂2c ) =

L∑
h=1

(WhσY h)4

n3h
[(δ40h − 1) + C2

Xhc
2
1h(1, 1) + (δ04h − 1)c22h(1, 1)

(3.12)

+ 2δ21hCXhc1h(1, 1) + 2δ03hCXhc1h(1, 1)c2h(1, 1)

+ 2(δ22h − 1)c2h(1, 1)].

From we can write as

MSE(σ̂2c )−MSE∗(σ̂2c ) =
L∑
h=1

(WhσY h)4

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

+ 4

(
1− θY h
θY h

)(3.13)

+C2
Xh

(
1− θXh
θXh

)
c21h(1) + (γ2V h + 2)

(
1− θXh
θXh

)2

+4

(
1− θXh
θXh

)
c22h

]
.

and MSE∗(σ̂2c ) is minimum for

c1h(1, 1) =
[δ03h(δ22h − 1)− δ21h(δ04h − 1)]

CXh[δ04h − δ203h − 1]
(3.14)

c2h(1, 1) =
[δ03hδ21h − (δ22h − 1)]

[δ04h − δ203h − 1]
.

Thus we can write the resultant minimum MSE as

min .MSE∗(σ̂2c ) =

L∑
h=1

(WhσY h)4

n3h

[
(δ40h − 1)− δ221h −

{δ03hδ21h − (δ22h − 1)}2

(δ04h − δ203h − 1)

]
,

(3.15)

which can be easily obtained from (2.37) by putting σ2Uh = σ2V h = 0.
Hence, we can derive the impact of measurement error on the mean square error
of the estimator (σ̂2c ) as

min .MSE(σ̂2c )−min .MSE∗(σ̂2c )

=

L∑
h=1

(WhσY h)4

n3h

[
(γ2Uh + 2)

(
1− θY h
θY h

)2

+ 4

(
1− θY h
θY h

)
+ (1− θXh)δ221h

−
{
A1(δ04h − δ203h − 1)−B1(AXh − δ2h03θXh)

(δ04h − δ203h − 1)(AXh − δ2h03θXh)

}]
,(3.16)
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where

A1 ={δ03hδ21hθXh − (δ22h − 1)}2,
B1 ={δ03hδ21h − (δ22h − 1)}2.

The right-hand side of (3.16) is the effect of measurement error in the mean square
error of the estimator which is always positive in nature. Thus, the proposed
classes of estimators have larger MSE in the presence of measurement errors in
both study and auxiliary variables than in the absence of measurement errors.
When the measurement error is insignificant, the inference based on these data
may remain valid. Nevertheless, when the amount of error is more significant in
observed data, the inference may be invalid and inaccurate and often may lead
to unexpected and undesirable consequences.

4. Discussion and Conclusion

The data available for statistical analysis are always contaminated with
measurement error and may lead to fallacious inference results. When data con-
tains heterogeneity among units in terms of value, survey users are advised to
form several homogeneous groups, and the sampling design is well known as strat-
ified sampling. To the best of our knowledge, the study of measurement error
for the estimation of variance in stratified random sampling has not been ad-
dressed yet. Singh and Karpe [13] have studied the effect of measurement error
on estimation of population mean in stratified random sampling. Estimation of
variance has vital importance as it has practical uses in real-life. It is discussed
by Lee [6], Srivastava and Jhajj [18], Wu [21] and Singh and Vishwakarma [14]
without the measurement error framework.
The present study deals with the problem of estimation of variance by using
auxiliary information under the stratified sampling framework when observations
are contaminated by measurement errors. Three wider classes of estimators have
been proposed. The theoretical comparisons show that the proposed classes of
estimators (σ̂2a , σ̂2b and σ̂2c ) in the presence of measurement error are more effi-
cient than usual unbiased estimators. Since the proposed estimators are defined
as a class, a large number of estimators become the members of this class. So
the impact of measurement error on the bias and the mean square error of these
estimators can be obtained easily. We can also conclude that the MSE in the
presence of measurement error is larger than in the absence of it. Thus, the
present study for the estimation of variance under measurement error for the
stratified random sampling is useful and may attract others to carry out some
work of practical use in this direction.
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