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Abstract:

e This study focuses on the estimation of population variance of study variable in strat-
ified random sampling using auxiliary information when the observations are contam-
inated by measurement errors. Three classes of estimators of variance under measure-
ment error are proposed by using the approach of Srivastava and Jhajj [18] for the
study variable. The properties of the estimator viz. bias and mean square error of
the proposed classes of estimators are provided. The conditions for which proposed
estimators are more efficient compared to usual estimators are discussed. It is shown
that the proposed classes of estimators include a large number of estimators of the
population variance of stratified random sampling and their bias and mean square
error can be easily derived.
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1. INTRODUCTION

In survey sampling, the auxiliary information is mainly used in order to gain
efficiency for the estimation. The literature on estimating the population variance
by using auxiliary variable is substantial and widely discussed. Some authors in-
cluding, Das and Tripathi [4], Srivastava and Jhajj [18], Isaki [5], Upadhyay and
Singh [19, 20], Singh et al.[15], Prasad and Singh [8], Biradar and Singh [2],
Singh and Biradar [12] have paid their attention towards the estimation of pop-
ulation variance of study variable using auxiliary information in simple random
sampling. While dealing with planning surveys, in case of heterogeneous popula-
tion, stratified random sampling has more importance in precise estimates over
the simple random sampling. Singh and Vishwakarma [14] discussed a general
method for the estimation of the variance of the stratified random sample mean
by using auxiliary information.

The theories of survey sampling assume that the observations recorded during
data collection are always free from measurement error. However, this assump-
tion does not meet in many real-life situations and the data is contaminated with
errors.The mean square error and other properties of the estimator obtained with
significant measurement error may lead to serious fallacious results. Cochran [3],
has discussed the source of measurement errors in survey data. Many authors
such as Shalabh [9], Srivastava and Shalabh [16], Maneesha and Singh [7], Allen
et al. [1], Shalabh and Tsai [10], Singh and Vishwakarma [11] have studied the
impacts of measurement errors in the ratio, product and regression methods of
estimation under simple random sampling.

Let us consider a finite heterogeneous population of size N, partitioned into L
non-overlapping strata of sizes N, h = 1,2,--- , L, where Zﬁ:l Np = N. Let
(Ynj, xnj) be the pair of observed values instead of true pair values (Y3, Xj;) of
the study character y and the auxiliary character x respectively of the j* unit
(j =1,2,---,Nyp) in the A" stratum. Also, let (ys;, z1;) be the pair of values on
(y,z) drawn from the ht" stratum (j = 1,2,--- ,ny;h =1,2,---, L). It is famil-
iar that in stratified random sampling an unbiased estimator of the population
mean (py = Zﬁ:l Whpyn; Wy, = %) of the variable y is given by

L

(1.1) st = > Wi,
h=1

where 45, = nih ;Lil Yp; is the sample mean of ht" stratum and pyy, = Nih Z;V:"I Yhj

is the population mean of ht" stratum. Let the observational errors be

(1.2) Unhj = Ynj — Ynjs Uhj = Thj — Xnj,

which are normally distributed with mean zero and variances UZh and Ugh re-
spectively. Also let pp be the population correlation coefficient between Y and
X in ht" stratum. For simplicity in exposition, it is assumed that the variables
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up; and vy are uncorrelated although (th, X h]-) are correlated.
To obtain the bias and mean square error we define

6vn =oyvn(1+cm), 6xn=0xn(l+em), Zn=pxn(l+ean).

such that F(g;) =0, Vi =0,1,2;

B = gy =2 g2y S gl = L)
Oh — h e ) = - ,
1 1
E(e1nean) = —(603nCxn), FEl(eoncan) = —(021n.Cxn),
np np
where
ot 2 H40R OXh
Ayh =vovh + Yaun—32 + 7 Bon(Y) = daon = —5—, Cxp=—,
Y Yh M20h HXh
TV 2 Ho4h
Axn =v2xn+Y2vh—+ + 2 Ban(X) = boan = —5—,
Oxhn Xh Ho2n

Yovn =Pan(Y) — 3, Yoxh = Pan(X) — 3, Youn = Pan(U) — 3,

U%/h Ug(h

Y2Vh 252}1(‘/) -3, Oyn = ) 2 Oxn = 2

Oy T O, oxntovn
u 1 ZNh

h
6rsh = TS 19 Hrsh = yh] ,uYh) (xh] ,uXh) .
roos )2 N

(MZOhMO%) J=1

(r,s) are positive integers, uy ), and pxp are the htt stratum population mean of
study and auxiliary variable respectively. C'xj is the coefficient of variation of
hth stratum, Oy, and 6y are the reliability ratio of A" stratum of study and
auxiliary variable respectively and lying between zero and one.
The variance of the stratified random sample mean is given by

O'
(13) ZWh Th - st7

where 0%, = Nih Zévz"l (yij — fiyn)? is the population variance of h" stratum.

The unbiased estimator of o2, i.e. V() is given by

(1.4) st—z W2 yh

2 _ 1 np a2 : : 2 :
where s;;, = ijzl(th Urn)® is an unbiased estimator of ¢Z. But in

the presence of measurement error szh is not an unbiased estimator for o2. In
the measurement error case the unbiased estimator of o2, is given by
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2 Yh 52 2 2
6% = Zh W ny , where 6y, = (s Syh — Toun)-
The variance of 52, in the presence of measurement error is given by

L
. W, * .
(15 viez) =Y Wl ) - vsml)
h=1 h

Singh and Karpe [13] have studied the impact of measurement error on separate
ratio and product also combined ratio as well as product estimators for the popu-
lation mean under stratified random sampling. We have considered the problem
of estimating population variance using information on the auxiliary variable by
adopting Srivastava and Jhajj [18] method in stratified random sampling in the
presence of measurement error. Three classes of estimators for the estimation of
population variance are proposed under stratified random sampling when both
the study and auxiliary variables are commingled with measurement errors as:

i)  Estimator of variance o2, when the mean jx, of the auxiliary variable x in
the ht" stratum of the population is known.

ii)  Estimation of variance o2, when the variance 0%, of the auxiliary variable
z in the A" stratum of the population is known.

iii)  Estimation of variance o2, when the mean pyj, and the variance 0%, of the
auxiliary variable z in the h"* stratum of the population are known.

The crux of this study is to exhibit the effect of measurement errors on the esti-
mates of the variance of the stratified random sample mean while using auxiliary
information.

2. THE PROPOSED CLASSES OF ESTIMATORS

2.1. Estimation of population variance o2 of the stratified simple ran-
dom sample mean when mean puxj of ht* stratum of the auxiliary
variable x in the population is known

By using information on population mean pyp, of the A" stratum of auxil-
iary variable, a class of estimators of population variance o2, for the study variable
is proposed as

L

(2.1) => <W2>0Yhah(lh)

h=1

where l;, = Zp/uxpn and ap(-) is a function of I such that ap = 1. It satisfies
conditions given by Srivastava [17] viz. function are continuous and bounded
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also the first as well as second order partial derivatives of the function exist.
Expanding the function about the point ‘unity’ in a second order Taylor’s series,
we have

(22) ah(lh) = ah(l) + (lh — 1)a1h(1) + %(lh — 1)2a2h(1),

where a1y, a9y, are first order and second order derivative with respect to [, about
point unity.

L 2
62 = Z <Ijl/:>052/h(1 +eon)[1+ (I — Dan(1) + %(lh — 1)%agn (1)),

(2.3)
1

Seanazn (D],

L
) W3
62 = E <h>o52/h(1 + eon)[1 + e2na1n(1) + 7

L
(2.4) (62 —02) =) <Wh > (0% 1) [€on + €2na1n(1) + €oneznain(1)

h=1 \
L, 1 2
+§52ha2h(1) + §8Oh52ha2h(1)]'
Taking expectation on both sides of (2.4) we get
R W, 1C%
(2.5) Bzas(ag) = Z < h)O'Yh |:521hCXhCL1h(1) + 5 eXh agh(l) .
h=1 n, Xh
For the mean square error we have
2 242 Wi 2
(2.6) (65 — o) = Z < h >0Yh{50h + e2na1n(1)}°.

h=1

L 2

. w7

@0 @2 =% (N8 ohaleh + itV + 2meman(D)
h=1

Taking expectation up to terms of order ngg‘, we get the mean square error of G2

as

L 2
(28)  MSE(62) =) W[A L& " a3, (1) + 20218 Cxpatn(1)].

h=1 h Oxn

The MSE in (2.8) is minimized for

(2.9) arp(1) = _<52gthh>

Thus, the resultant minimum MSE of 2 is given by

= (Whoyn)!
(2.10) min MSE(62) =Y %[Am — 631,0x1)-
h=1 h

Hence, a theorem can be established as follows.
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Theorem 2.1.  Up to terms of the order n}_L3,

min .M SE(6 Ayh — 521h9Xh]

Mh

h=1

with equality holding if ap(1) = — (W) .

Xh

The following estimators

L wp ZL Wi
A2 h\s2 jalh A2 h\ A2
Og1 = E <nh)Uth% ) Oa2 = ( - >0Yh[2 - lﬁlh],

h=1 h=1

L L

W2 ay, +1 Wi

~2 h\~2 1h h ~2 h a2
T =2 (o) Tt o= 2 (S )l + 1= awn,

=t Nt
L
. Wi
0'27 = Z < n: )O'Yh[alh + (1 - alh)lh]
h=1

are some of the members of the proposed class of estimators 62. The optimum

values of the scalars vy, and agj, can be derived from the right-hand side (2.9) of
and the minimum mean square error of the listed estimators can be derived from
(2.8). The lower bound of the MSE of estimators 62, (i = 1 to 7) is the same as
given by (2.10).

Following by [17] and Srivastava and Jhajj [18] we have proposed a wider class
of estimators of 02, as

(2.11) EL: <W2>Dh (6%n: 1n),

h=1
where function Dy(.,.) satisfies

9Dp(.)
Dy(o¢y,1) = 0%y, = Din(o¥y, 1) = 952 l02,1) = L.
Yh

It can be shown that the minimum MSE of 6% and the minimum MSE of 62 are
equal. We can state that the difference type estimator

L

. W2\ |, .
(2.12) Etdl Z <n:> {65 + dun(ln — 1)},

h=1

is a member of class 6,23 where dyy is a suitably chosen constant.
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2.2. Estimation of population variance o2 of the stratified simple ran-

dom sample mean when variance ag(h of ht" stratum of the aux-

iliary variable x in the population is known

A class of estimators of the variance o2, of the stratified simple random
sample mean when the variance O'gf p, of the auxiliary variable x of the hth stratum
in the population is known, is defined as

L W2
2.13 52 = —h )62, b
( ) Op 1;1 < - >‘7Yh n(mn),

)
where my, = ;ﬂ, and bp(my,) is a function of my such that by(1) = 1. The
Xh

function is continuous and bounded in R and its first as well as the second order
partial derivatives exist. Now expanding the function at point ‘unity’ in a second
order Taylor’s series, we can write

(2.14) bh(mh) = bh(l) + (mh — 1)b1h(1) -+ %(mh — 1)2b2h(1),

where by;,(1) and byp (1) are the first order and second order derivative with respect
to my, of the function by (my) about the point ‘unity’.

L 2
215) 67 =3 (S0 o b (1) + (s = Doun(1) + F0m, — (D),
h=1
L 2
(2.16) 62 = Z <I;Z’Z)a;2/h(1 + eon)[1 + e1nbin(1) + %E%thh(l)]'
h=1

To calculate the bias and the MSE of the estimator we can write
L W2
(2.17) (67 —02) =) (h)%z/h[é?oh + e1nb1a(1) + cone1nbin(1)
ho1 \ h

1 1
+§6%hbgh(l) + igﬂhg%thh(l)]-

Taking expectation on both sides of (2.17) we get the bias of 67 as

L 2
(2.18) Bias (63) = Z <‘f;h>a%h[(522h — D)byp(1) + %Athghu)].
h=1 h

For the mean square error we have

L 2
. w2
(2.19) (62 —02)* = E (nZ) oy nleon + e1nbin(1)]2.
h=1
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L 2
. W
220 (0F o2 =30 (0 ot + B + 2emcmbun (L]
h=1

3

Taking expectation up to terms of order n, °, we get the mean square error of &g

as
~ (Whoyn)*
(221)  MSE(6}) = ) "5 [Ayn + Axnbiy (1) + 20220 — Dbia(1)),
h=1 h
which is minimized for
(2.22) bip(1) = — (%)
Xh

Thus, the resultant minimum MSE of 67 can be written as:

L

0% 4 Saon — 1)?

(2.23) min.MSE(67) = 27( h?h) [AYh _ Lo 1) }

h=1 n Axh

Hence, a theorem can be established as follows.

Theorem 2.2.  Up to terms of order n,:S,

Axp,

L VV2 L M/Q
~92 ~2 ~2 ~2
Op1 :Z (:)Uyhm}l“, Op2 = Z (n:)UYh[Q —my™"],
h=1 h=1
g i(W’%)AQ Vthrmh] 7 i(W’%)AQ s + (1 )my]
o = — g 5T . . |» g = - g - m )
b3 2\ Yh|1 ¢ MRS b4 2\ 'y Yhlh R )Mh
L
. W2\ . _
G5 =Y <nh>ffx2m[mh + (1 —mn) m;, '],
h=1 N
L /w2
5136 = Z <nh>5'52/h[7]1h +(1— mh)mZ”‘],
h=1 N\ h
L
. W2\ . _
Gy = Z <n:>‘7§2fh[771h + (1= mp)mn] 1,
h=1

are some of the members of the proposed class of estimators &g. The optimum
values of the scalars 7y, and 7o), from 67 to 67, can be derived from (2.22) and
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the minimum mean square errors of each of the listed estimators can be derived
from (2.21). The lower bound of the MSE of the estimators 62, (i = 1to 7) is
given by (2.23) .

A wider class of estimators of ¢% than 67 is

L W2
(2.24) 5= <h> en(6%,,mp),

n
h=1 NP
where ej,(6%,,mp) is a function of (6%, ,my) and

en(02,,1) =02 = ein(0%,) = 1 with eyp(0%,,,1) =

o 2 .
80’%/% ‘(Uy;“l)

It can be exhibited that up-to third order, the optimum mean square error
of 62 and 67 is the same as given by (2.23). It can also be shown that the
difference-type estimator

L W2
(2:25) P, =3 (S )63+ dan(onn — 1)
h=1

is a specific member of the class of estimator 62 but not of the 67 class, where
dap, is an appropriately chosen constant.

2.3. Estimation of population variance o2, of the stratified simple

random sample mean when the population mean pux; and the
variance O'g(h of h'" stratum of the auxiliary variable = in the
population are known

We define a class of estimators 2 for the estimation of variance of the

stratified simple random sample mean when the mean p x5, and the variance ag( h

of the auxiliary variable z of the ht"* stratum in the population are known
L
w2
) h | A2
(2.26) 0. = hE—l <nh>UYhCh(lhamh)a

where ¢ (I, my) is a function of I, = Zp/uxp and my, = 6%, /0%, such that
cn(1,1) =1 and it also satisfies similar conditions as mentioned in [18].

(2.27)
chlnsmn) =len(1,1) + (I — ern(1,1) + (mp, — 1)can(1,1)

+ %{(lh — 1)2011h(1; 1) + 2(lh — 1)(mh — 1)612h(1, 1) + (mh — 1)2622h(1, 1)}
+ é{(lh — 1)%crnn(l;, my) + 3l — 1)%) (m — V)crion (U, mi)

+3(l, — 1) (my, — 1)2caoon (I, mi) + (mu, — 1)2canon (U, mi) 3],
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where
h=1+¢(n—1),m;, =14+ ¢(mp —1),0< ¢ <1
{c1n(1,1), con(1, 1)}, {c11n(1,1), c1on(1, 1), coon(1, 1)},
{eriin(ly, my), crion(ly, my,), c12an Uy, my, ), cooon (U, mp)
respectively denote the first, second and third order partial derivatives of the

function ¢y (I, mp). Expressing (2.27) in terms of egp, €15, and g9y, using ¢;(1,1) =
1 we have

(2.28)

L /w2
=> <h)UYh (1 +eon) {1 + e2nc1n(1, 1) + erpcan(l, 1)}
h=1

1
+ 5{5%}&11}1(1’ 1) + 251h52hcl2h(17 1) + 6%;1622}1(1, 1)}

1 X
+ E{E%hclnh(l;mh) + SElh&‘%hCthlZmz
+ 3elpemcraonlmy, + ey canan(lmy) ]
To calculate the bias and the MSE of the estimator we can write (2.28) as
(2.29)
2 2 W2
Oc =0y = Z ( - >0Yh[{€0h + eoncin(1,1) + e1ncan(1, 1) + eoneancin(l, 1)
h=1 \ P
1
+eoncincan(1, 1)} + 5{5§h011h(1a 1)
+ 2e1peanci2n(1, 1) + €3 c00n (1, 1)}
Taking expectation of both sides of (2.29) we get the bias of the estimator 62
(2.30)

. W3
B’LGS(Ug) = Z < n >0Yh[521hCthlh(1 1) (522h — 1)Cgh(1, 1)
h=1 h

02
+ = <9))§:Cllh(1 1) + 2503hCthl2h(17 1) + AXh022h(1,1)>:| .

For the mean square error we have

L 2
. w,
(2.31) (62 —0%)? = Z (h) oy nleon + eanein(1,1) + erpcan(l, 1)]2
= N\
(2.32)
L W2
(62 =22 = 3= (T ) oda b+ k0,1 + hiha(11) + 2emmemenn(1,1)

h=1

+ 2e1pe2nc1n(1, 1)can(1,1) 4+ 20pe1nc2n(1,1) |
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Taking expectation up-to order n}_L3, we get the mean square error of 62 as
(2.33)
L (Whoyn)* C?
MSE(6 27 [A + GXhC%h(Ll) + Axnciy(1,1) 4 2001,Cxpern(1, 1)
h=1 h Xh

+ 20803nCxnein(1, 1)ean(1, 1) 4 2(022n — 1)ean(1, 1)] ,

where ¢15(1,1) and ¢o5(1, 1) denote the first order partial derivatives of ¢p, ({5, mp,)
with respect to I, and my, respectively about the point (1,1).

(2.34) CxnOxn 503hCXh} [cm(l, 1)} _ [égthXh] '
0021nCxn  Axn con(1,1) daon — 1

By solving (2.34) we can determine the minimum values of ¢15(1,1) and cgp(1,1)
respectively as

[6031 (0220 — 1) — d21n Axh]
[Cxn(Axn/Oxn) — 0gap]

[603n0211 — (0221, — 1)/0x1]
[(AXh/QXh) - 5§3h] '

Putting (2.35) in (2.33) we obtain minimum MSE of 2 as
(2.36)

L
| A Wyoyn)t (692n — 1)* + 62, 0xnAxn — 20x10211603n (5221, — 1)
min .MSE(U?) = Z g [AYh_ 21h(AXh — (5(2)%9)(}1) .

Clh(l, 1) =
(2.35)

CQh(l’ 1) =

(2.37)

- 4 ar — 12
min.MSE(62) = Z (Whoyn)® |:AYh 62, 0xn — {521h9()12;;(5§3f 52((5;?}1) D} ]
03h

Hence, a theorem can be established as follows.

Theorem 2.3.  Up to terms of order n,;3,

WhUYh ) [ 9 {02110 x 10030 — (0221 — 1)}2}
min . MSE(6 Ay —05,0x1—
z( ¥ e e

with equality holding if

[603h (0220 — 1) — d21n AxH]
[Cxn(Axn/0xn) — 05sy,]
[603n0215 — (G221 — 1)/0x4]
[(Axn/O0xn) — 025,

Clh(l, 1) =

(2.38)

CZh(]-v 1) =
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The present estimators

L
~2 W]% ~2 l alp . Q2h
Oc1 —Z T Oy hlh m s
h=1 \ P
L
A2 Wl% A2 asn
O = Z (n>JYh[alhl1h + (1 —aqp )mlh ls
h=1 N h
L 2
Gl =Y Wi\ 62 famnlss + (1 — agpyms
[ T YhIH¥3hi1p 3h)op 1s
h=1
L W2
o2 =3 (S )atafexpann( = 1) + az(m, ~ 1)
h=1
6_2 _i ﬁ &%h
= el np [1 + alh{llho‘%mgé’h — 1}] ’
L w2
5% =3 () o311 — ann(tn — 1) + aza(my ]
h=1

are some particular members of the suggested class of estimator 2. The mean
square error of these estimators can be obtained from (2.33) by choosing the
suitable value for the constants. The lower bound of the MSE of the estimators
62 (i =1 to 7) is the same as given by (2.37)

A class of estimators for o2, wider than 2 is proposed as

L W2
(2.39) 6=y (n:) fu(6%, 1, my)
h=1

where fh(r%)?,h7 lp, mp) is a function of (652/}“ lp, myp,) such that

O fn(0F 1, thy M)
fh(o-%/hv L1) = 0-52/h = flh(g}%h’ 1,1) = gﬁg |(a2 1) — L
O-Yh Yh
It can unveil that up-to order n;?’ the optimum MSE of 6’]% is same as the
optimum MSE of 62 at (2.36) or (2.37) and is not reduced. The difference-type
estimator

L

. W2\ .
(2.40) Oty = (n:) {651 + dan(ln — 1) + dan(mp, — 1)}.
h=1

is a specific member of the class (2.39) but not (2.26) , where d3;, and dy, are
acceptable constants.
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3. Efficiency Comparisons

To obtain the conditions for which the proposed classes of estimators 62,

62 and 62 perform better than usual unbiased estimator 6%, from (1.5), (2.10),
(2.23) and (2.37) we can write

L 4
(3.1) MSE(6%) — min MSE(67) = > WdéthXh >0,
h=1 h
L (Whoyn)? (Sa2n — 1)2
(3.2)  MSE(6%) — min MSE(67) = Z AUDAS >0,
— ny Axn
(3.3)
L 4 2
- ~1
MSE(6%)—min . MSE(52) = Z M |:5§1hexh+{9Xh5(th52lh 52(5;% )} >0.
h=1 h ( Xh = %03 Xh)

Remarks: To exhibit the impact of measurement error on MSE of the estima-
tors, let the observation for both the study variable and auxiliary Variable be
recorded without error. Now the MSE of the proposed class of estimators 62, to
the third degree of approximation is given as

L
. Wyoys )4
@) msE (62 =3 WO 50, 1) 4 0%t (1) + 26 Cxnann1)]
h=1 h
which is the same as the obtained by Singh and Vishwakarma [14].
From (2.8) and (3.4) we have

L

(W, 1—0yn\° 1-0
MSE(62) — MSE*(6 Z "U” [ (Yaun + 2)( 5 Yh) + 4( ; Yh)
Pt Yh Yh

e exma%h(l)}

The difference is always positive in nature, thus we can infer that the presence
of measurement error incorporates larger mean square error than the absence of
measurement error.

To obtain the optimum value of the constant differentiating partially (3.4) with
respect to ay; and equate to zero we get

Thus, the resultant minimum mean square error is

L
(W,
(3.5) min M SE*(6 E hUYh [(640n — 1) — 6315].
h=1



14 Gajendra K. Vishwakarma, Neha Singh and Raj K.Gangele

Now the impact of measurement error can be obtained (2.10) and (3.5) from and
as

(3.6)

min.MSE(67) — min MSE*(6 E R Yh [ 2Uh+2)< 9 Yh>
1 Yh

-y
+4< ; Yh>4-gux1—exwy
Yh

The MSE of another proposed class of estimators 67 for the estimation of 0% in
the absence of measurement error is given in (3.7) and is similar to Singh and
Vishwakarma [14].

L
. W,
(3.7) MSE*(6 §: hUYh [040n — 1)+ (Soan — 1)), (1) +2(22, — )bra (1)),
h=1

From equation (2.21) and (3.7) we can write

(3.8)
L 2
(W, 1—-6 1—-6
M8 B(a) — 2B (5f) = 3 TRy 9y (1202 ) g (L2000
h=1 h HYh 9Yh
1—0xp)\> 1-6
+(vavh +2)< Xh) +4( Xh)b%h(l):|'
Oxn Oxn

The right hand side of (3.8) is always positive in nature thus we can infer that
mean square error of the proposed estimator is always larger when observation is
recorded with error.

MSE*(62) is minimized for

(39) (1) = - (221,

504—1

Thus, the resultant minimum mean square error is

L
. w22y~ (Whoyp) 1y (G9n —1)?
(3.10) min.MSE*(63) = hEZI w3 [(54% 1) o —1) } .

From (2.23) and (3.10) we can derive the impact of measurement error as

(3.11)

Lo 2
m 1-— 1—
min .M SE(6}) — min . MSE*(6 E ﬂ [(’YQUh 2)< - 9Yh> n 4(< - 9Yh>
= ny Yh Yh

(6925, — 1)? ( —9Xh>2 <1_9Xh>:|
02 T )y 42 +4
Axn(8a0n — 1) (v +2) Oxh Oxn




Variance Estimation in the Presence of Measurement Errors... 15

The mean square error of the third proposed class of estimators 62 for the estima-
tion of 42, in the absence of measurement error is given by Singh and Vishwakarma,
[14] as

(3.12)

L
(W)
]\451?k Z hUYh 540h — 1) + C’g(hc%h(l, 1) + (504h - 1)C%h(17 1)
h=1
+ 2021nCxnein(l, 1) + 20030 Cxncin(1, 1)ean(1,1)

+ 2(522h — 1)6211(17 1)]

From we can write as

(3.13)
L 2
W, 4 1—6 1—6
MSE(62) - MSE(02) = 3 I oy 4 ) (150 ) (10
h=1 ny, 9Yh HYh
1-0 1—0xp)\>
+Ckn (Xh ) An(1) + (vavn +2) ( Xh)
Oxr, Oxn,

1-6
(1))
Oxn
and M SE*(6?) is minimum for

[003n (6220 — 1) — 0211 (S0an, — 1)]
Cxnl0oan — 625, — 1]
[003n021 — (0221, — 1)]
[Boan — 5(2)3h 1] '

(3.14) cin(1,1) =

con(1,1) =
Thus we can write the resultant minimum MSE as
(3.15)

L
min MSE*(62) =) 5"~
h=1

{603n021n — (G221, — 1)}
Saon — 1) — 62, — ,
40h ) 21h (604}1 _ 583h _ 1)

which can be easily obtained from (2.37) by putting 0%, = 0%, = 0.
Hence, we can derive the impact of measurement error on the mean square error
of the estimator (62) as

min.MSE(62) — min .M SE*(62)
L 2
W ovr ) 1—6 1—-46
= ZU;%)[(’Y2Uh+2)< 7 Yh) +4< 7 Yh) + (1= 0xn)83
Pt ny Yh Yh

_{A1(504h — 08, — 1) — B1(Axn — 67930x4) H
(6O4h — 5(%3/1 — 1)(AXh - 5]%03€Xh) ,

(3.16)
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where

Ay ={803n021,0xn — (6221, — 1)},
By ={803n6215 — (8221, — 1)}

The right-hand side of (3.16) is the effect of measurement error in the mean square
error of the estimator which is always positive in nature. Thus, the proposed
classes of estimators have larger MSE in the presence of measurement errors in
both study and auxiliary variables than in the absence of measurement errors.
When the measurement error is insignificant, the inference based on these data
may remain valid. Nevertheless, when the amount of error is more significant in
observed data, the inference may be invalid and inaccurate and often may lead
to unexpected and undesirable consequences.

4. Discussion and Conclusion

The data available for statistical analysis are always contaminated with

measurement error and may lead to fallacious inference results. When data con-
tains heterogeneity among units in terms of value, survey users are advised to
form several homogeneous groups, and the sampling design is well known as strat-
ified sampling. To the best of our knowledge, the study of measurement error
for the estimation of variance in stratified random sampling has not been ad-
dressed yet. Singh and Karpe [13] have studied the effect of measurement error
on estimation of population mean in stratified random sampling. Estimation of
variance has vital importance as it has practical uses in real-life. It is discussed
by Lee [6], Srivastava and Jhajj [18], Wu [21] and Singh and Vishwakarma [14]
without the measurement error framework.
The present study deals with the problem of estimation of variance by using
auxiliary information under the stratified sampling framework when observations
are contaminated by measurement errors. Three wider classes of estimators have
been proposed. The theoretical comparisons show that the proposed classes of
estimators (62, 67 and 62) in the presence of measurement error are more effi-
cient than usual unbiased estimators. Since the proposed estimators are defined
as a class, a large number of estimators become the members of this class. So
the impact of measurement error on the bias and the mean square error of these
estimators can be obtained easily. We can also conclude that the MSE in the
presence of measurement error is larger than in the absence of it. Thus, the
present study for the estimation of variance under measurement error for the
stratified random sampling is useful and may attract others to carry out some
work of practical use in this direction.
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