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■ 3.1 INTRODUCTION

Even though many different methods are used to sample fish populations, their
habitats, and anglers, sampling plans often share common traits. The appropriate
gear and protocol to collect data are important, but the sampling design and the
characteristics of the population determine the statistical properties of the esti-
mates obtained. Similarly, when experiments are conducted to determine the re-
sponse of fishes or their habitats to treatment, the overall experimental design
and underlying variability determine the power of the experiment and can limit
the questions or hypotheses that can be addressed. The goal of this chapter is to
describe some of the most common sampling and experimental designs used in
fisheries science. Our principal intent is not to teach the theory underlying these
topics but rather to illustrate common data analysis approaches based on that
statistical theory.

3.1.1 Populations and Samples

Fisheries scientists take samples from populations because data or information
from all individuals in the population typically cannot be obtained. Fundamental
to the idea of sampling is that a population of sampling units exists from which
samples are taken. Ideally, all sampling units in the population can be sampled,
but in many field sampling programs the sample frame, or the set of sample units
that are actually available to be sampled, may be only a subset of the entire target
population. In general, whenever the sample units in the sample frame differ
from the units in the target population, the design may provide results that reflect
the sample frame but not the target population (termed bias; see section 3.1.2).
The degree of bias due to this mismatch is generally case specific and is virtually
impossible to determine. Throughout this chapter, we assume that the sample
units in the sampling frame match the units in the target population and that all
units are sampled with equal efficiency.

Definition of the sampling unit is not always straightforward and often depends
on the objectives of the study. For example, individual fish are sampling units in a
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telemetry study of fish home range if the investigator wishes to know how indi-
vidual fish in a single population use available habitat. If the telemetry study is
conducted in several lakes, each lake may be viewed as a sampling unit, with indi-
vidual fish as secondary sampling units. In both of these cases, the sampling units
are naturally defined units. In contrast, consider a situation where sampling units
are defined as possible seining sites (Figure 3.1). Seining-site boundaries are de-
fined by the investigator, not by natural boundaries. The critical concept underly-
ing this example is that after the size of a seine site is defined, and an arbitrary
starting point is determined, a finite population of nonoverlapping sampling units
is defined. This example also illustrates a case in which some sample units are not
part of the sample frame because they cannot be sampled with the gear used.
Whenever some sites that are part of the target population are not part of the
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Figure 3.1 Example of a population of seining sites in a lake. Sites selected for sampling are
shaded in gray, whereas sites that could not be sampled because of obstructions or soft bottom
are crosshatched and were not considered part of the sample frame.
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sampling frame, the attribute being estimated will reflect the sample frame but
not the target population, so results of sampling will be biased in relation to the
true value for the target population.

3.1.2 Bias

The goal of a sampling program is to provide estimates about the characteristics of
a population. When used in the context of statistical sampling, bias is generally
defined as the difference between the true value of the population attribute and
the expected value (i.e., the mean across all possible samples) of the estimator
(Cochran 1977). As indicated earlier, a significant source of bias can occur when
units in the sample frame differ from units in the entire population or when sam-
pling units within the population are not all sampled with equal efficiency. There-
fore, the investigator must define the target population in a way that reflects this
mismatch or consider using gears and protocols that produce samples that more
accurately characterize the target population. Appropriate sampling gear and pro-
tocols are prerequisite for applying the methods covered in this chapter.

In addition to the potential biases described above, estimators such as ratio
estimators (section 3.2.2.3) may also result in biased estimates. Although a biased
estimator sounds like something to be avoided, for estimators such as ratio estima-
tors some degree of bias is unavoidable (see section 3.2.2.3). However, these bi-
ases differ from biases due to sampling frame problems in that the amount of bias
can be estimated (remembering that this is based on an average), and a decision
can be made whether the bias is acceptable. In some cases, the amount of bias
introduced is negligible and is more than offset by gains in precision. Bias is gen-
erally evaluated in combination with precision (described below), and their com-
bination is expressed as mean square error (MSE, in squared units of measure),
which is calculated as

MSE(y) = bias2 + var(y).^ ^ (3.1)

The word accurate is often used as a synonym for unbiased. In common use,
however, the word accurate is often used to convey more than simply being
unbiased but is used to mean correct. Therefore, we discourage the use of the
term accurate in discussions of the statistical properties of sampling programs.

3.1.3 Precision and Confidence Intervals

In addition to obtaining a point estimate of some characteristic of a population,
the degree of confidence we have in that estimate is also important to determine.
Unless we sample the entire population, our point estimate is unlikely to match
the true population value exactly. Thus, a critical concept is that the precision of
an estimate is a measure of how likely it is that our estimate is close to the un-
known true value. The precision of estimates is often expressed as the standard
error (SE) of the estimate or as a confidence interval (CI) around the estimate.
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When estimates are viewed as one possible outcome of many possibilities, such that
repeating the same procedure would likely result in a different sample being taken
with a different point estimate, the estimates can be treated as coming from a statis-
tical distribution, and the SE is simply the square root of the variance of that distri-
bution. For a normal distribution, 68% of the estimates would fall between one SE
on either side of the true mean. Similarly, a CI can be thought of as a range within
which most, commonly 95%, of the estimates would be expected to lie.

Assuming an unbiased estimator, the precision of estimates is affected by the
inherent variability of the attribute being measured and the number of observa-
tions of the attribute that are obtained during sampling, in addition to the sam-
pling design (covered later). In general, to obtain estimates of a given level of
precision, more samples are required for population attributes that are highly
variable than for population attributes that are relatively invariable. Before sam-
pling, the investigator should decide what level of precision is acceptable and
then determine how many samples are needed based on prior knowledge of the
level of variability that is expected for the attribute of interest, such as would be
obtained from a preliminary survey. The level of precision that is acceptable is
often determined from the practical needs of the investigator or agency. For ex-
ample, a fishery scientist may wish to know the mean length of walleyes in a par-
ticular lake following a new regulation and would like to have 95% CIs around the
mean that were less than ± 50 mm. Here, the acceptable level of precision (±50
mm) could be set to exceed the level of interannual variation that would occur in
the absence of a regulation change. Alternatively, the acceptable level of preci-
sion could be set at some arbitrary level that is deemed by the agency or investiga-
tor to be acceptable.

3.1.4 Random versus Nonrandom Sampling

Generally, samples must be drawn randomly from the population of interest to
ensure the sample is representative of the entire population. When samples are
drawn nonrandomly or using subjective criteria, measured attributes will usually
be biased, though the degree of bias cannot be determined from the samples. For
example, sampling is sometimes focused in areas where fish are known to aggre-
gate to avoid spending sampling effort in areas where fish are known to be scarce.
Unfortunately, attributes (e.g., length) of fish in areas where they aggregate may
differ from attributes of fish in areas where fish are scarce. Thus, such a sample
may not be representative of the entire population. The only way to avoid such
potential bias is to sample units randomly from the population.

■ 3.2 SAMPLING DESIGNS

3.2.1 Overview of Sampling Designs

In this section, we discuss four commonly used sampling designs, for which both
a naturally defined sampling unit (individual fish) and an artificially defined
sampling unit (sampling grid locations) can be used (Figure 3.2). Although other
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Figure 3.2 Sample frames and sampling unit selection for basic sampling designs. The column
on the left illustrates the case in which the sampling unit is individual fish or groups of fish for
cluster sampling. The column on the right illustrates the case in which the sampling unit is a grid
location in a lake or a group of grids for cluster sampling. Units shaded in black are selected for
sampling. The dotted line or shaded region in stratified random sampling indicates stratum
boundaries.

Simple random sampling

Stratified random sampling

Systematic sampling

Cluster Sampling

Not generally
feasible
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sampling designs are available (e.g., Cochran 1977; Thompson 1992; Lohr 1999),
we will cover the basic designs that are applicable in most situations. The critical
consideration distinguishing each sampling design is how sampling units in the
population are defined and how they are selected. In simple random sampling,
each sampling unit in the population has an equal probability of being included
in the sample, and each sampling unit is selected independently of other units
(section 3.2.2). In stratified random sampling, each sampling unit in the popula-
tion is first assigned to a stratum, and then a simple random sample is indepen-
dently drawn from each stratum (section 3.2.3). In cluster sampling, the popula-
tion is divided into primary sampling units, termed clusters, and secondary sampling
units, termed elements (section 3.2.4). In systematic sampling, all the sampling
units in the population are arranged in a sequence, and then from a random
starting point, every kth sampling unit is included in the sample (section 3.2.5).
In systematic sampling, selection of the first sampling unit determines all other
units in the sample, so sampling units are not independently selected. In large
populations, lack of independence does not generally lead to biased estimates of
the mean but typically results in a biased estimate of the variance if dependency
among sample units is not taken into account. Each of these sampling designs is
described in more detail below. To present computational methods concisely and
facilitate comparisons among sampling designs, we present the basic formulae for
estimating the mean in Table 3.1, which are summarized from Cochran (1977),
Thompson (1992), and Lohr (1999).

3.2.2 Simple Random Sampling

In simple random sampling, a sample of size n is randomly selected from a popu-
lation with N sampling units. Implementing simple random sampling is easiest
when all of the sampling units can be enumerated before sampling begins, as in
the example of seining sites within a lake (Figure 3.1) or in the example of sam-
pling grids within a lake (Figure 3.2). Sample units are often selected for sam-
pling without replacement (selecting each sample unit no more than once) by
using a random number table or generator (Wilde and Fisher 1996). When the
sampling frame is unknown before sampling begins, such as in the example of
fish within a lake (Figure 3.2), implementing true simple random sampling may
be impossible, thereby leading to the use of an alternative design (e.g., cluster
sampling, section 3.2.4). Simple random sampling is often less efficient and less
precise than are other designs but illustrates concepts and estimators that are
inherent in other designs and also provides a basis for understanding the effi-
ciency of other designs, as we will illustrate in the ensuing parts of section 3.2.

3.2.2.1 Estimation of Mean Values

An important property of simple random sampling is that the sample mean and
variance provide unbiased estimates of the population mean and variance re-
gardless of the shape of the distribution in the population being sampled
(Cochran 1977; Lohr 1999). The sample mean is simply calculated as the sum of
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the observations (yi ) divided by the sample size (n; Table 3.1; Box 3.1). Several
equivalent formulae are available for calculating the sample variance, but one ap-
proach is to sum the squared deviations (differences) between observations of the
sampling units (yi ) and the sample mean, and divide by n – 1 (Table 3.1; Box 3.1).
One can view the sample mean as a simple prediction for each observation, and
the sample variance is the average squared deviation between observations and
their predicted value. In most fisheries applications, the proportion of the popula-
tion that is sampled (also known as the sampling fraction, n/N) is small, and the
SE of the sample mean is estimated by taking the square root of the sample vari-
ance, divided by the sample size (Table 3.1). When the sampling fraction is large
(e.g., n/N > 0.5), the confidence in estimates of the sample mean is increased, and
consequently the SE is reduced:

SE(y) = – .
n
s2

1 –( n 
N ) (3.2)

The term (1 – n/N) is called the finite population correction. As the sampling
fraction approaches 1 (the entire population is sampled), the finite population
correction approaches 0, and the SE also approaches 0. In a census of the entire
population, the SE of the sample mean would be 0 because all possible sampling
units in the population would be included in the sample. Many books on sampling
theory include formulae and derivations that include the finite population correc-
tion, but it is typically negligible in practice. Therefore, our summary of formulae
(Table 3.1) excludes the finite population correction factor.

The SE is often used as a measure of precision of estimates and describes the
variability that would be expected if the sampling process could be repeated a
large number of times. For a normal distribution, approximately 68% of the distri-
bution is found between 1 SE above and below the mean. An alternative method
of conveying the precision is to estimate confidence limits (CLs) on point esti-
mates. Estimating CLs on the mean requires knowledge of the distribution of the
mean or assumptions about the shape of the distribution. For large samples (e.g.,
n � 50; Zar 1999), the distribution of the mean approaches a Student’s t-distribu-
tion with n – 1 df, so CLs can be estimated as

–Lower CL = y – t�, n – 1SE(y), and
Upper CL = y + t�, n – 1SE(y),––

–
(3.3)

where t�, n – 1 is the value of the t-distribution (commonly available from a table in a
statistics book or equation in a spreadsheet) for an � equal to the probability of
making a type I error (often 0.05) and an n of a given sample size. The SE(y–) is the
SE of the mean (see Box 3.1 for an example). The t-distribution is often used to
estimate approximate confidence limits for small samples, but the bootstrap method
can also be used to estimate CIs and is often recommended for small sample sizes
(see Efron and Tibshirami [1998] for details on this approach).
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3.2.2.2  Estimation of Proportions

Many characteristics of fishes or their habitats cannot be expressed quantitatively
as a continuous variable but can be expressed qualitatively as a categorical vari-
able. For example, the sex of a fish is a qualitative (categorical) trait. Sampling is
often undertaken to estimate the proportion of the population (p) that possess
some quality or attribute. An attribute that takes on one of only two values (e.g.,
male or female or mature or immature) is a single or binary classification system,
whereas an attribute that falls into one of several categories or classes (e.g., spe-
cies of fish or length intervals) is a multiple classification system.

For single classification variables, the observation (yi) is coded as 1 if the indi-
vidual possesses one attribute or trait and 0 if it possesses the other attribute or
trait. The proportion of individuals that possess the trait in the population (p) can

Box 3.1 Example of Estimating the Mean Based on Simple Random Sampling

Fifteen sites were randomly selected from an X – Y grid superimposed on a shallow lake. At each
site, the catch of central mudminnow in a throw trap (assumed to be equally efficient at all sites in
the lake) was recorded. The goal of the sampling was to determine the mean density of central
mudminnows in the lake.

Table Catch of central mudminnow from 15 lake sites randomly selected on an X – Y grid.

Coordinate and total

X Y Catch (Catch – mean)2

5 18 3 1.96
15 16 0 2.56

4 9 4 5.76
14 3 1 0.36
11 8 4 5.76
12 5 1 0.36

2 4 1 0.36
3 20 0 2.56

11 7 1 0.36
1 8 0 2.56
2 15 2 0.16

11 2 2 0.16
3 17 3 1.96
3 12 2 0.16
1 10 0 2.56

Total 24 27.60
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The mean catch and associated measures of precision are calculated as follows, using formulae
from Table 3.1.

�
y = – yi

n = 24
15

= 1.6 .

�
s2 = 

(yi – y )2

n – 1

–
= 27.6

15 – 1
= 1.97.

s2
SE(y ) = –

n
= 1.97

15
= 0.36.

Although the sample size is not large (<30), a normal approximation can be used to estimate
approximate 95% confidence limits (CLs).

Lower CL = y– – (t�, n – 1)(SE) = 1.60 – 2.145 · 0.36 = 0.83.
Upper CL = y– + (t�, n – 1)(SE) = 1.60 + 2.145 · 0.36 = 2.37.

This example can also be used to illustrate how to compute estimates of target sample sizes
(equation [3.9]). For example, if we wanted to compute the mean catch with a SE of 0.10, we would
start by guessing a sample size of 60 might be adequate. Using this preliminary guess (which is
needed to get an initial estimate of the t-statistic used in the formula for sample size), we would
estimate that the necessary sample size, to the nearest integer, would be

(1.97)(2.0)2

n = 0.10
~ 79.~

Even though this is different than our initial guess of 60, the actual t-statistic for 79 is 1.990, which
would change our integer estimate of the necessary sample size to only 78.

be estimated by summing the yi and dividing by n (Table 3.2; Box 3.2; Cochran
1977). The proportion of individuals lacking the trait (q) is termed the comple-
ment of p, and is computed as q = 1 – p. As with estimates of the mean for quanti-
tative measurements, the estimate of p is unbiased in simple random sampling, as
long as the attribute is identified correctly for each individual examined. Although
the estimator for the SE of p (Table 3.2; Box 3.2; Cochran 1977) is unbiased, when
p is close to 0 or 1 the distribution around p is skewed because p cannot be less
than 0 or greater than 1. Therefore, we recommend that CLs for p be estimated
from the F-distribution. The lower CL (L1) for p  is (Zar 1999)

L 1 = ,
a + (n – a + 1)F�, v1 , v2

 
a

(3.4)
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Box 3.2 Example of Estimating a Proportion in Simple Random Sampling

One hundred sixteen brown trout were collected at random from a population in a stream with the
goal of estimating the proportion in each age-group. The age of each fish was estimated from
scales to produce the following data.

Table Age distribution of a random sample of 116 brown trout from a stream.

Age n

0 55
1 22
2 10
3 18
4 6
5 3
6 1
7 1

The proportion in each age-class was estimated as follows.

�
p0 = 

yi
n

^ = 55
116

; p1 = ^ 22
116

; p2 = ^ 10
116

; p3 = ^ 18
116

; p4 = ^ 6
116

; p5 = ^ 3
116

; p6 = ^ 1
116

; and p7 = ^ 1
116

.

For example, for age 0 the SE (Table 3.2) and CLs (equations [3.4] and [3.5]) were calculated as follows.

p 0q0SE(p0) = 
n – 1

^
^ ^

= 0.47 · (1 – 0.47)
116 – 1

= 0.047.

Lower CL = a
a + (n – a + 1)F�, v1, v2

55
55 + (116 – 55 + 1)F0.05, 2 ·(116 – 55 + 1), 2 · 55

= = 0.3948.

Upper CL =
(a + 1)F�, v1, v2

n – a + (a + 1)F�, v1, v2

(55 + 1)F0.05, (2 · 55) + 2, 2 · (116 – 55 + 1) – 2

116 – 55 + (55 + 1)F0.05, (2 · 55) + 2, 2 · (116 – 55 + 1) – 2

= = 0.5545.

Estimates of the proportion in each age-class, and appropriate measures of precision, are given in
the table below.

Table Estimates of the proportion of brown trout in each age-class (page) and measures of precision.

Age page SE Lower CL Upper CL

0 0.47 0.047 0.3948 0.5545
1 0.19 0.037 0.1320 0.2596
2 0.09 0.026 0.0475 0.1418
3 0.16 0.034 0.1028 0.2214
4 0.05 0.021 0.0228 0.0995
5 0.03 0.015 0.0071 0.0655
6 0.01 0.009 0.0004 0.0402
7 0.01 0.009 0.0004 0.0402
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where a = �yi ; n = sample size; and the F-statistic is evaluated for the two-tailed
level of �, the numerator df v1 = 2(n – a + 1), and the denominator df v2 = 2a.
Similarly, the upper CL (L2) for p is (Zar 1999)

L 2 = ,
n – a + (a + 1)F�, v1', v2'

(a + 1)F�, v1', v2'
(3.5)

where the F-statistic is evaluated for the two-tailed level of �, the numerator df v1'
= v2 + 2, and the denominator df v2' = v1 – 2 (Box 3.2). The upper and lower CLs
for q are obtained by subtracting the upper and lower CLs for p  from 1.

For attributes in a multiple classification system, the problem can be simplified
by focusing on one class at a time and treating the attribute as a single classifica-
tion variable where the individual either has the attribute or not. The proportion
within any single class and the associated SE is then estimated exactly as for the
single classification situation. Box 3.2 illustrates how to calculate proportions, SEs,
and CLs for a multiple classification system, where any one class of the multiple
classification system can be used to illustrate a single classification variable.

3.2.2.3 Estimation of Ratios

Attributes of fishes or habitats are often expressed as ratios of variables that both
vary among units, which contrasts with proportions that describe the fraction of a
sample that possess a certain attribute, as in section 3.2.2.2. A familiar example is
angler catch per effort where both catch and effort vary among individual an-
glers. Unfortunately, situations in which ratios are estimated are often confused
with situations in which a proportion is being estimated. For example, in diet
studies, the amount of food consumed, by weight, among various prey taxa is
commonly referred to as a proportion but is more appropriate to view as a ratio of
the weight consumed of each prey taxon to the total weight consumed. These
types of data are best treated as a ratio because the weight consumed of each prey
taxon varies among sampling units and the total weight consumed varies among
sampling units.

In simple random sampling, the population ratio (R) is estimated from the
ratio of the sums of the sampled quantities (Box 3.3; Cochran 1977; Lohr 1999):

i = 1

n

� yi
.R = ^

i = 1

n

� xi

(3.6)

For catch per effort data, the numerator of equation (3.6) is the sum of catch
and the denominator is the sum of effort. For diet data, the numerator is the total
weight of one prey taxon and the denominator is the total weight of all prey taxa
(as in Box 3.3). This estimator is biased, but the bias tends toward 0 as the sample
size increases (Cochran 1977). Cochran (1977) showed that the degree of bias
relative to the SE of the estimated ratio can be approximated as
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Box 3.3 Example of Estimating a Ratio in Simple Random Sampling

Twenty yellow perch were randomly sampled from a lake, and weights of zooplankton, benthos,
and fish in each yellow perch stomach were measured. The goal was to determine the ratio of each
prey category to total weight of prey in the diet of the yellow perch population.

Table Ratio of three prey categories to total weight of prey in the diets of 20 yellow perch.
Squared deviations of the observed (y) minus the predicted (R

^
x, where x is the total weight for each

fish and R
^

 is estimated as shown below the table) allows for estimation of population ratios for
each prey category (sums of sampled quantities [y – Rx]2).

Weight in stomach (y – Rx)2

Fish Zoo- Total Zoo-
and total plankton Benthos Fish Weight plankton Benthos Fish

1 0.000 0.000 16.217 16.217 4.257 36.537 65.735
2 0.200 2.501 0.000 2.701 0.021 2.233 1.824
3 0.593 0.054 0.000 0.647 0.261 0.035 0.105
4 0.356 0.741 0.000 1.097 0.047 0.110 0.301
5 0.070 1.112 0.000 1.182 0.006 0.450 0.349
6 0.191 1.734 0.000 1.925 0.003 1.033 0.926
7 0.012 0.022 0.000 0.034 0.000 0.000 0.000
8 0.017 2.822 0.000 2.839 0.119 3.111 2.015
9 0.400 2.796 0.000 3.196 0.000 2.575 2.554
10 0.202 2.154 0.000 2.356 0.010 1.627 1.388
11 0.591 0.559 0.000 1.150 0.198 0.017 0.331
12 0.737 0.902 0.000 1.639 0.280 0.085 0.672
13 0.095 0.098 0.000 0.193 0.005 0.001 0.009
14 0.000 0.000 12.090 12.090 2.366 20.306 36.534
15 0.747 1.913 0.000 2.660 0.167 0.849 1.769
16 0.663 0.600 0.000 1.263 0.253 0.017 0.399
17 0.937 0.354 0.000 1.291 0.598 0.016 0.417
18 0.664 0.213 0.000 0.876 0.305 0.013 0.192
19 0.623 0.448 0.000 1.072 0.237 0.002 0.287
20 0.103 2.077 0.000 2.181 0.030 1.600 1.189

Total 7.202 21.099 28.307 56.608 9.160 70.617 116.997

The ratio (equation [3.6]) and SE (equation [3.8]) of each prey category in the diet is estimated as follows.

i = 1

n

� yi

= 0.127.Rzooplankton = 
^

i = 1

n

� xi

= 7.202
56.608

SE(R zooplankton) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

9.160
20 – 1

= 0.055.

(Box continues)
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^bias(R)
^SE(R)

= SE(x)
X

–
– , (3.7)

where X
–

, the population mean, generally can be estimated without bias using the
sample mean, x– (see Cochran 1977). Because the SE of x decreases to 0 as sample
size increases, the degree of bias also decreases as sample size increases. This
expression can be easily computed from sample data to determine if bias is large
enough to be problematic. Importantly, a ratio should not be estimated by averag-
ing the ratios for individuals (often termed a mean of ratios) but rather as a ratio
of totals (often termed a ratio of means), because a mean of ratios has a larger
degree of bias than does a ratio of means, and this bias does not diminish as
sample size increases (Cochran 1977). The SE of a ratio is derived from deviations
between the numerator of the ratio (yi s) and the product of the denominator of
the ratio (xi s) and the ratio (R

^
) (Box 3.3; Cochran 1977; Lohr 1999):

.
n – 1

^SE(R) = 1
n x – i = 1

n

� (yi – Rxi)
2^

(3.8)

Confidence limits around the estimated ratio are typically approximated using
the t-distribution, which is reasonable for large sample sizes but may not repre-
sent skewness in the distribution of the estimate for small sample sizes.

Box 3.3 (continued)

i = 1

n

� yi

= 0.373.Rbenthos = 
^

i = 1

n

� xi

= 21.099
56.608

SE(R benthos) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

70.617
20 – 1

= 0.152.

i = 1

n

� yi

= 0.500.Rfish = 
^

i = 1

n

� xi

= 28.307
56.608

SE(R fish) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

116.997
20 – 1

= 0.196.
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3.2.2.4 Estimation of Sample Size

The sample size required to estimate the population mean (for example) can be
derived for simple random sampling from knowledge of the variance of the yi in
the population when the desired degree of precision is specified. Various strate-
gies have been developed to simplify the process of estimating sample size re-
quirements (Wilde and Fisher 1996), but ultimately the investigator must specify
expectations for the outcome of sampling and acceptable levels of precision in
estimates. Precision can be expressed on an absolute scale (e.g., ± 10 mm) or on
a relative scale (e.g., ± 8% of the mean). When desired precision is expressed in
absolute terms (�), the sample size needed (n; ignoring the finite population
correction factor) can be estimated as (Cochran 1977):

n  = ,
�2

s2t 2
n – 1 (3.9)

where s2 is estimated from a pilot study or prior experience with similar situations
and the t-statistic is defined for a given � level from a statistical table or spread-
sheet function. Because tn – 1 depends on the sample size, the estimate of n must
be solved by trial and error. In practice, the first guess does not need to be close to
the true value, and only two or three iterations are necessary to obtain the solu-
tion because the t-statistic does not vary greatly with n.

When the desired precision is expressed in relative terms (r), an estimate of
the mean must also be included. As above, a preliminary estimate of the mean
can be obtained by a pilot study or prior experience, and sample size can be
estimated as

n  = .
ry

t n – 1s
–

2( ) (3.10)

The sample size that is necessary for specified precision for proportions is analo-
gous to that for a mean value (Cochran 1977):

n  = ,
�2

s2t 2
n – 1 (3.11)

where the variance is estimated as the product of p and q and the investigator
specifies the absolute error (�).

3.2.3 Stratified Random Sampling

Stratified random sampling performs as well or better than simple random sam-
pling in nearly all cases and results in substantial improvement in precision when
variation within the strata is less than variation among the strata. In stratified
random sampling, the total sample frame containing N sample units is divided
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into L subpopulations or strata, each containing Nh sample units. Within each
stratum, a simple random sample of nh sample units is drawn independently. For
example, in Figure 3.2 a lake with N sample grids is divided into two depth strata
(L = deep and shallow) with Nh sample grids in each stratum, and nh sample grids
are then sampled from within each stratum.

An estimate for the whole population is obtained by weighting estimates from
each stratum y–h by the fraction of the whole population contained in each stratum
(Wh = Nh /N). Stratified random sampling is advantageous over simple random
sampling because sampling can be allocated disproportionately among strata to
ensure adequate precision can be obtained for subpopulations represented by
strata. Stratified random sampling requires that the entire sampling frame be
divided into strata before sampling begins, so it should not be applied to situa-
tions where the strata are defined a posteriori.

3.2.3.1 Construction of Strata

To be most efficient, the strata means should differ widely from one another, so
that variability between strata is large and variability within each stratum is small.
However, the data necessary to specify strata that best partition the variability in
the population would require the investigator to complete the survey. Consequently,
other features that are readily obtainable and are correlated to the attribute of
interest are often used to construct strata. For example, when sampling fish, we
often assume that fish associate themselves with habitat conditions (such as water
depth), and we construct strata that coincide with habitat boundaries (as in Fig-
ure 3.2). Therefore, prior information about the attribute of interest can be used
to construct strata whenever available.

How many strata to develop is also a difficult question to answer. The number of
strata that can be sampled is obviously limited by the sample size (L < n), but a
minimum of at least two sample units must be sampled per stratum to allow calcula-
tion of the within-stratum variance. In our experience, the number of strata should
depend on the quality and amount of available information, so you should use few
strata when prior information is not available and more strata when better prior
information is available. The sample size within each stratum should be large enough
(e.g., at least 10) to provide reasonable estimates for each subpopulation.

3.2.3.2 Estimation of Mean Values

The mean value for a stratified random sample is estimated from the mean values
within the strata, weighted by the fraction of the entire population of sample
units in each stratum (Table 3.1; Box 3.4; Cochran 1977). Stratum means are
estimated as described for a simple random sample (section 3.2.2.1), and each
stratum mean is weighted (Wh) by the number of units in the stratum sample (Nh)
divided by the total number of units in the population (N). The SE of the mean
value for a stratified random sample is a weighted sum of the variances of the
mean values for the individual strata (Table 3.1; Box 3.4; Cochran 1977). As in
simple random sampling, estimates of the stratified mean and its SE are unbiased.
Likewise, estimating CLs on the mean requires an assumption regarding the
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Box 3.4 Example of Stratified Random Sampling

A grid was superimposed on the map of a shallow lake, and all grid cells were classified as being in
one of three depth strata (0–2 m, 2–4 m, >4 m). Ten grid cells were sampled in each depth stratum,
and at each site the catch of age-0 yellow perch in a throw trap (assumed to be equally efficient at
all sites in the lake) was recorded. The goal of the sampling program was to estimate the mean
density of age-0 yellow perch.

Table Catch of age-0 yellow perch at three depth strata within a shallow lake. Variance in
parentheses below mean.

0–2-m stratum 2–4-m stratum >4-m stratum

Catch and Catch and Catch and
mean (Catch – mean)2 mean (Catch – mean)2 mean (Catch – mean)2

0 2.89 4 1.21 7 1.69
2 0.09 2 0.81 5 0.49
2 0.09 3 0.01 7 1.69
2 0.09 5 4.41 7 1.69
3 1.69 2 0.81 5 0.49
1 0.49 4 1.21 5 0.49
3 1.69 1 3.61 7 1.69
2 0.09 3 0.01 6 0.09
2 0.09 2 0.81 3 7.29
0 2.89 3 0.01 5 0.49

1.7 (1.122) 2.9 (1.433) 5.7 (1.789)

Within each stratum, the mean catch and variance were computed using formulae for a simple
random sample (Table 1; Box 3.1 example). The lake contained 320 grid cells, which included 172 in
the 0–2-m stratum, 80 in the 2–4-m stratum, and 68 in the > 4-m stratum, so the weight for each
stratum (Wh) was

Wh
Nh

N
= .

W0–2
N0–2

N
= 0.5375.= 172

320
=

W2–4
N2–4

N
= 0.250.= 80

320
=

W>4
N>4

N
= 0.2125.= 68

320
=

The stratified mean catch was

Wh�
h = 1

L

yh  –y = – = (0.5375 · 1.7) + (0.2500 · 2.9) + (0.2125 · 5.7) = 2.85.

The SE of the stratified mean catch per effort was

SE(y ) = – W 2
hs 2

h
nh

�
h = 1

L

= 0.53752 · 1.122
10( ) + 0.25002 · 1.433

10( ) +
0.21252 · 1.789

10( ) = 0.222.

Approximate 95% confidence intervals can be computed (assuming normality) using the same
approach as for simple random sampling (Box 3.1).
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sampling distribution of the stratified mean. If the stratum means are normally
distributed, the t-distribution can be used to estimate CLs. In most situations, the
degrees of freedom are calculated as the total sample size minus the number of
strata. However, Satterthwaite (1946) showed that the effective number of de-
grees of freedom should be reduced when allocation of sampling effort is not
proportional to the weight for each stratum (when nh/n is not equal to Nh/N). If
the finite population correction term is ignored, the effective number of degrees
of freedom can be estimated by (derived from Cochran 1977)

�
sh

2

Wh .df = 

2( )
�

sh
4

Wh(nh – 1)
(3.12)

3.2.3.3 Allocation of Samples within Strata

An important feature of stratified random sampling is that estimates of the mean
are unbiased, regardless of the distribution of the target population and regard-
less of the sampling effort allocated to each stratum (assuming that at least one
sample is taken per stratum). Because of this property, estimates of the stratified
mean in different periods are directly comparable if the sampling allocation is
altered, or even if the strata boundaries are altered (assuming that the sampling
frame remains the same). Sampling effort is often allocated to each stratum pro-
portionally to the weight for each stratum (nh = Wh × n). Although this generally
results in higher precision than simple random sampling, the sampling effort can
be allocated to minimize the variance of the resulting estimate. Three general
rules have been developed to guide the allocation of sampling effort to minimize
the SE of the stratified mean. Using these rules, greater sampling effort should be
allocated to strata where (1) the stratum is larger, (2) the stratum has a larger
variance, or (3) sampling cost per unit is less expensive in the stratum. If the cost
per sample ch varies among strata, then the optimal allocation of sampling effort is
(Cochran 1977; Lohr 1999)

Nhsh

,nh = n 

h = 1

H

�
Nhsh( )

ch

ch
(3.13)

where n is the total sample size, Nh is the total number of units in stratum h, sh is
the standard deviation (SD) in stratum h, and ch is the cost per sample in stratum
h. If the cost per sample is the same in all strata, the optimal allocation, termed
the Neyman allocation, is (Cochran 1977)

Nhsh .nh = n 

h = 1

H

�Nhsh( ) (3.14)
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If variances are specified correctly, the Neyman allocation will always give esti-
mates with smaller SEs than will proportional allocation because larger samples
will be drawn from strata with larger variance (sh in equations [3.13] and [3.14]),
thereby reducing the SEs of the stratum means (SEy–h in Table 3.1), which are
inversely related to sample size.

3.2.3.4 Estimation of Proportions

Estimates of the proportion of sampling units in a population that fall into a de-
fined class are computed much like the stratified mean. Essentially, the proportion
is estimated for each stratum using the formula for a simple random sample and
the stratum-specific proportions are combined using the stratum weights (Table
3.2; Cochran 1977). Similarly, the SE of the estimate for the proportion in the en-
tire population is a weighted sum of the individual stratum variances (Table 3.2).

3.2.4 Cluster Sampling

In cluster sampling, the population is divided into primary sampling units (clus-
ters) and secondary sampling units (elements). In an example of sampling fish,
the secondary sampling units are individual fish and the primary sampling units
are groups of fish as might be caught together in a net (Figure 3.2). In an ex-
ample of sampling grid locations, the secondary sampling units are the individual
grid locations and the primary sampling units are blocks of four grid locations
(Figure 3.2). In cluster sampling, the primary units are selected independently at
random, which in the fish example may be thought of as having randomly se-
lected netting locations. Cluster sampling is single stage if each element (e.g.,
individual fish) in each cluster (e.g., net) is included in the sample and two stage
if only a subsample of each element from each cluster is included in the sample
(e.g., individual fish are subsampled from each net). Cluster sampling is distin-
guished from other designs in that the primary units are sampled independently
but the secondary units are potentially correlated. Put another way, fish caught in
a net may not be independent because they may be more similar to each other
than to randomly selected fish from the entire population.

Cluster sampling is commonly used when the sampling frame is difficult or
impossible to construct or the sampling process naturally results in clusters of
secondary units. For example, when fish are collected with nets set at random
points on a grid (as described in Box 3.1), the net is the primary sampling unit,
and the individual fish collected are secondary units. Although catch per net (in
numbers or weight) is appropriately treated as coming from a simple random
sampling design, the mean weight of fish estimated from this sampling design
should be treated as a cluster sample because individual fish within a net may not
be sampled independently.

In practice, cluster sampling often results in a situation in which individual
elements within each cluster are similar and differences in the means are larger
among clusters than within clusters. In the above example, a truly random sample
of individual fish in a lake would be very difficult to obtain because trying to
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collect one fish at a time would be very inefficient and would likely lead to a much
smaller sample size than would using nets that can capture multiple fish. In this
case, redundant information is provided by each fish measured (because of their
similarity or correlation), and the precision of the overall mean is reduced rela-
tive to a simple random sample with the same sample size. Although this seems
like a poor sampling strategy relative to simple random sampling, the advantage
of cluster sampling design is that sampling is often less expensive and a substan-
tially greater sample size can be obtained.

3.2.4.1 Single-Stage Cluster Sampling

In cluster sampling, estimates of several different quantities can be obtained (Box
3.5). For example, when individual fish caught in randomly placed nets are counted
and weighed, estimates of the mean number of fish caught per net can be ob-
tained by the usual estimator for simple random sampling. In addition, the mean
total weight of fish caught per net can be estimated, but this quantity is an ex-
ample of a cluster total. Cluster totals are sometimes interpretable statistics (such
as presented here) but in other cases are hard to visualize or interpret. If, for
example, the lengths of individual fish were measured instead of weight, the clus-
ter total would represent the total length of all the fish caught, a statistic that is of
little use. When the statistic of interest focuses on cluster totals, single-stage clus-
ter sampling reduces to a simple random sample for which each cluster total is
treated as a single observation.

The mean weight (or length) of individual fish is an example of the mean per
secondary unit, which is another statistic that can be computed in cluster sam-
pling. A further complication of single-stage cluster sampling is that simpler for-
mulae may be used when the clusters are of equal size (i.e., the number of second-
ary units is equal in all clusters) than when the clusters are of unequal size. In
most fisheries applications, clusters are of unequal size, so we will emphasize the
formulae relevant to such situations.

3.2.4.2 Estimation of the Mean per Secondary Unit

As indicated above, the process for estimating mean cluster totals follows simple
random sampling (Box 3.5). Estimating the mean per secondary unit, such as
the mean weight of individual fish, is conceptually related to stratified random
sampling because the mean for each cluster is weighted by the number of sec-
ondary units in each cluster. The principal difference, however, is that all strata
are sampled in stratified random sampling, whereas only a sample of all clusters
is selected in cluster sampling. Estimating the mean per secondary unit is also
related to ratio estimation because cluster totals and numbers of elements (sec-
ondary units) in each cluster are both random variables, and estimation of the
mean per secondary unit naturally uses the number of elements (secondary units)
as a divisor (Table 3.1). The mean per secondary unit is simply the sum of clus-
ter totals divided by the total number of secondary units (Table 3.1). Estimating
the SE is similar to the procedure for estimating the SE of a ratio, where each
cluster total is the y variable and the number of secondary elements in each
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(Box continues)

Box 3.5 Example of Cluster Sampling

Five throw nets were deployed at random locations along the shoreline of a lake to collect age-0
bluegill. Greater sampling effort would usually be required, but data from these five nets are used
to illustrate the procedure. The weight (g) of each of the age-0 bluegill was measured. The goal of
sampling was to estimate the mean biomass of age-0 bluegill per net, the mean catch per net, and
the mean weight of individual age-0 bluegill.

Table Catch per net and weight per individual of age-0 bluegill caught in five throw nets. Mean
fish weight is given by for which computations are shown below table.

Measure and
summary statistic Net 1 Net 2 Net 3 Net 4 Net 5

Catch (Mi ) 10 5 7 0 3

Weight (g) 0.495 0.319 0.514 0.610
0.391 0.419 0.497 0.572
0.274 0.503 0.374 0.681
0.470 0.451 0.457
0.309 0.491 0.388
0.369 0.521
0.381 0.539
0.308
0.420
0.326

Cluster total (yi ) 3.743 2.183 3.290 0 1.863
(yi  – R

^
Mi )2 0.47197 0.00102 0.03572 0 0.28516

Mean weight per
fish per net 0.374 0.437 0.470 0.621

The mean catch per net is

M
–

 = (10 + 5 + 7 + 0 + 3)/5 = 5.0 fish.

The mean cluster total (mean biomass per net) is

y–i = (3.743 + 2.183 + 3.290 + 0 + 1.863)/5 = 2.216 g.

The mean weight per fish, the SE of the mean, and the CLs are

= 3.743 + 2.183 + 3.290 + 0 + 1.863
10 + 5 + 7 + 0 + 3

= 0.443;
�

(R ) = 
yi^

�Mi

Mean fish weight = 

SE(R ) = 
^ 1

n M
–

� (yi – RMi)
2

n – 1

^

= 1
5 · 5

0.47197 + 0.00102 + 0.03572 + 0 + 0.28516
5 – 1

= 0.040;

Lower CL = R – t�, n – 1SE(R ) = 0.443 –2.776 · 0.040 = 0.332; and

Upper CL = R + t�, n – 1SE(R ) = 0.443 + 2.776 · 0.040 = 0.554.

^ ^

^ ^
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Box 3.5 (continued)

Now, instead of treating the data as a single-stage cluster sample, consider the situation where the
same number of fish per net are weighed but 48 fish are caught in Net 1 and 20 fish are caught in Net
3, thereby leading to a two-stage cluster sample with different numbers of fish caught in each net.

Table Catch per net and weight per individual of age-0 bluegill in five throw nets. Computation of
the mean weight per secondary unit (y=) is given below table.

Measure and
summary statistic Net 1 Net 2 Net 3 Net 4 Net 5

Catch (Mi ) 48 5 20 0 3

Weight (g) 0.495 0.319 0.514 0.610
0.391 0.419 0.497 0.572
0.274 0.503 0.374 0.681
0.470 0.451 0.457
0.309 0.491 0.388
0.369 0.521
0.381 0.539
0.308
0.420
0.326

Estimated cluster
total (y^i ) 17.966 2.183 9.400 0 1.863

Mean weight per fish
per net (y–i ) 0.374 0.437 0.470 0.621

Mi
2 (y–i  – y=)2 3.5044 0.0144 1.2996 0.0000 0.3894

The mean per secondary unit (mean fish weight) is

� yi

�Mi

^

y = –– 17.966 + 2.183 + 9.400 + 0 + 1.863
48 + 5 + 20 + 0 + 3

= 0.413.=

The SE of the mean per secondary unit is approximated by

Mi
2( yi – y )2

nM2(n – 1)

–�
i = 1

n ––

SE(y ) = –– – = 3.5044 + 0.0144 + 1.2996 + 0 + 0.3894
5 · 152 · (5 – 1)

= 0.034.

cluster is the x variable (Table 3.1). Confidence intervals are obtained as in esti-
mating ratios using the t-distribution.

3.2.4.3 Two-Stage Cluster Sampling

In two-stage cluster sampling, a simple random sample of n clusters is selected and
then a simple random sample of the elements (secondary units) is subsampled
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from within each sampled cluster. In our example of fish in nets (Figure 3.2), the
secondary sampling units (fish) are subsampled from the primary sampling units
(nets). This differs from single-state cluster sampling, where secondary sampling
units are all sampled completely rather than subsampled. Two levels of sampling
are employed, so means and variances at two levels are defined. First, the mean
per secondary unit within the ith cluster is estimated as in Table 3.1 (Box 3.5;
Cochran 1977), where yij is the measured value for the jth element in the ith
cluster and m is the number of elements sampled within each cluster (which has
Mi secondary units). From this, the total for each cluster and the mean cluster
total are estimated as in Table 3.1 (Box 3.5; Cochran 1977). From the estimated
cluster totals, the overall mean per secondary unit is estimated as in Table 3.1
(Box 3.5; Cochran 1977). The variance of the overall mean includes two compo-
nents that represent the variation between clusters and the variation due to
subsampling within clusters. When the number of clusters sampled is small rela-
tive to the number of clusters in the population, the SE of the mean per second-
ary unit can be approximated as in Table 3.1 (Cochran 1977).

3.2.5 Systematic Sampling

In systematic sampling, all sampling units in the population are arranged in a
sequence, and then from a random starting point every kth sampling unit is in-
cluded in the sample. Systematic sampling is often used for ease of execution and
convenience. Also, systematic samples are usually spread more evenly over the
population, so population attributes may be estimated more precisely than with
simple random sampling. However, a major difficulty with systematic sampling
based on a single starting point is that the variance and SE of the estimates cannot
be directly determined. This occurs because systematic sampling with a single
starting point is equivalent to cluster sampling with just one cluster being sampled
(the samples are not independent). One way of alleviating this problem is to take
a systematic sample with two or more randomly selected starting points. For ex-
ample, a lake could be divided into grids and several rows of grids could be ran-
domly selected as starting points of evenly spaced grids (Figure 3.2). When sys-
tematic sampling is implemented with multiple starting points, the formulae for
single-stage cluster sampling apply, with each group of observations associated
with each start point treated as a cluster.

Systematic sampling with a single starting point should be avoided whenever
sample units are ordered in a linear or nonlinear pattern. Under such circum-
stances, stratified random sampling produces more precise estimates because strata
can be constructed to account for the pattern in the sample units and thereby
reduce within-stratum variance that would not be accounted for by systematic
sampling (Cochran 1977). Therefore, the choice of systematic sampling versus
simple random sampling or stratified random sampling needs to be judged on a
case-by-case basis.

The mean value for a single-starting-point systematic sample is estimated in the
same way as for a simple random sample (Table 3.1), that is, as the sum of the



76 Chapter 3

observations divided by the number of observations. Assuming that the sampling
fraction is relatively small, estimates of the mean using systematic sampling are
unbiased, for the same reason that estimates of the mean using simple random
sampling are unbiased (section 3.2.2.1). A small amount of bias may occur when
the sampling fraction is large, if the number of sampling units in the population
(N) is not evenly divisible by the sample size (n) because some units would have a
lower probability of being included in a sample than would others. When mul-
tiple starting points are used, the mean is estimated as it would be for a single-
stage cluster sample (Table 3.1) and is also unbiased if the sampling fraction is
relatively small.

Several methods have been developed for approximating the SE for a system-
atic sample with a single starting point, but we do not recommend their use be-
cause they can lead to strongly biased estimates of the SE (Cochran 1977). With
two or more starting points, valid estimates of the SE of the mean can be obtained
using a single-stage cluster sampling approach (Box 3.6).

3.2.6 Model-Based Estimators

All of the designs we have discussed to this point have focused on sampling a
single variable or attribute of interest. Further, all of the designs, when properly
implemented, are designed to be unbiased for estimating the mean and propor-
tions. However, in many fisheries investigations, several variables are of interest.
Further, relationships among the variables measured provide an opportunity to
extract more information than is provided by each variable alone. A familiar ex-
ample is sampling fish when length and weight are both measured on a subset of
fish collected and only length is collected on the remaining fish. Because the two
are related, we can infer the weight of fish where only length data are collected.
This situation is an example of a model-based design.

Model-based designs are limitless in their variations, given the number of vari-
ables that can be measured and the number of relationships among variables that
might be considered. This being the case, we will describe a model-based design
that illustrates a commonly used approach. The key advantage of model-based
designs is that the additional information contained in auxiliary variables can
substantially improve precision of estimates. Improvements in precision, however,
come at the cost of losing the property of being design unbiased. When choosing
models (such as a linear regression) to represent a relationship among variables,
the right model is often uncertain. Thus, if the wrong model is chosen, estimates
of the mean or proportion can be biased. This is not to say that such an approach
is necessarily worse than using a sampling design that is design unbiased. In some
situations, the gains in precision may more than offset the bias introduced by
having the wrong model. As indicated earlier, precision is appropriately expressed
as mean square error (MSE) when bias is present. From equation (3.1), an estima-
tor that reduces the variance component faster than the bias2 term produces esti-
mates with a smaller MSE. In addition, the concept of MSE applies to situations
that are unbiased, but the bias term drops out (being equal to zero).
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Regression or double sampling. A commonly used model-based approach is regres-
sion sampling, sometimes referred to as double sampling. In this method, a sample
is collected where the auxiliary variable (xi = independent variable) is measured
on all units. A subsample is then selected where the variable of interest (yi = de-
pendent variable) is also collected. A linear regression between the two variables
is formed, and the regression is used to incorporate the information contained in
the auxiliary variable into the estimate of the mean for the variable of interest.
Typically, this approach is implemented when the auxiliary variable is much less
expensive to measure than is the variable of interest, thereby allowing for a greater
sample size. An example of this situation is that visual estimates of stream width
can be collected much more rapidly (and hence, less expensively) than can actual

Box 3.6 Example of Systematic Sampling with Two Starting Points

The width of a stream was measured at sampling locations arranged every 20 m from two random
starting points, with 15 points sampled for each random starting point.

Table Stream width measurements based on systematic sampling with two starting points.

Starting point 1 Starting point 2

Distance upstream Width Distance upstream Width
(m) (m) (m) (m)

3 6.1 4 10.3
23 11.4 24 6.5
43 13.7 44 9.0
63 11.3 64 7.6
83 11.7 84 6.3

103 13.3 104 12.0
123 12.1 124 6.2
143 11.5 144 13.1
163 6.4 164 10.2
183 34.8 184 26.5
203 31.7 204 32.1
223 27.2 224 28.6
243 26.7 244 29.2
263 24.1 264 33.5
283 10.1 284 6.0

The estimated mean width and its associated SE are

= 6.1 + 11.4 + 13.7 + . . . + 33.5 + 6.0
15 + 15

= 16.31, and
�

(R ) = 
yi^

�Mi

Mean width = 

SE(R ) = 
^ 1

n M
–

� (yi – RMi)
2

n – 1

^

= 1
2 · 15

56.347 + 56.347
2 – 1

= 0.50.

489.2
30

=
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measurements of stream width. Thus, the precision of estimates of the mean width
of a stream may be improved by taking many visual estimates of stream width
while measuring only a subsample of sites to provide a calibration, via linear re-
gression, between measured and visually estimated stream width (Box 3.7). An-
other example is that the percent water content of fish tissue is easily determined
by weighing, drying, and reweighing the tissue and provides a reasonable predic-
tor of the fat content of the tissue (Hartman and Brandt 1995). Fat content is
often determined on dry tissues and requires time-consuming extraction by use
of solvents in sophisticated equipment. Thus, the mean fat content may be esti-
mated by collecting many measurements on percent water content and only a few
concurrent measurements of actual fat content.

An important assumption of this method is that a linear relationship exists
between the two variables. If this assumption does not hold, estimates of the mean
can be biased, thereby offsetting any gain in precision. Another important consid-
eration is that the value of the yi for sampling units (e.g., stream width at a particu-
lar location or individual fish for fat content), where only the auxiliary (xi = inde-
pendent) variable is measured, can be estimated with the regression equation.
Therefore, the precision of individual sample units may be relatively poor be-
cause the prediction does not match the value that would be obtained by direct
measurement. However, the precision of the estimated population mean will usu-
ally be increased because of increased sample size. This general principal of sam-
pling reflects the fact that the SE of the mean is inversely related to the sample
size; that is, an increased sample size reduces the SE of the mean, which increases
precision of the estimated mean.

The formula for estimating the mean using a double-sampling approach is
given in Table 3.1, and an example of the application of this method is given in
Box 3.7. This example only brushes the surface of the diversity of applications of
model-based designs. For a more in-depth treatment see Draper and Smith (1981)
for linear regression models and Seber and Wild (1989) and Bates and Watts
(1988) for nonlinear regression models.

3.2.7 Advanced Designs

The designs we describe and illustrate above are intended to provide a basis for the
appropriate design and analysis of sampling programs. These relatively simple de-
signs provide useful approaches in many situations, and are sufficient for many of the
questions posed by fisheries scientists. For more complex situations, these designs can
be combined and adapted to suit the needs of the investigator. Many other designs
have been developed for specialized situations (e.g., hydroacoustic surveys). Thomp-
son (1992) covers additional designs. One extension to normal sampling designs
we would like to highlight are adaptive designs. In adaptive designs, additional
sampling is concentrated near sampling points where something interesting hap-
pens. For example, in surveys trying to estimate the density of rare species, addi-
tional sampling can be concentrated near sampling locations where the rare spe-
cies is found. Adaptive designs can provide improved precision of density estimates
and also have the advantage that more specimens can be collected for length,
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Box 3.7 Example of Regression or Double Sampling

The percent of coverage by woody material was visually (Table, column 2) estimated at 25 randomly
selected points along a stream (Table, column 1), and the actual amount of woody material
coverage was measured at 10 of these points (Table, column 3), with the goal of estimating mean
woody material coverage for this reach. The regression between the visually estimated coverage
and the measured coverage gave the following equation:

Measured coverage = 7.2937 + 1.0357(estimated coverage).

Table Measurement and visual estimation of percent of woody material coverage along a stream.

Woody cover (%)

Stream Visually
location estimated Measured
and mean (xi ) (yi) (y – y–)2 (y – y–)(x – x–) (x – x–)2

1 30 34 29.16 5.4 1
2 40 52 158.76 113.4 81
3 60 66 707.56 771.4 841
4 20 26 179.56 147.4 121
5 20 21 338.56 202.4 121
6 20 25 207.36 158.4 121
7 30 38 1.96 1.4 1
8 0 14 645.16 787.4 961
9 40 54 213.16 131.4 81
10 50 64 605.16 467.4 361
11 40
12 70
13 80
14 20
15 50
16 80
17 50
18 20
19 80
20 80
21 40
22 90
23 30
24 40
25 40

The estimated mean coverage using double sampling is

y–reg = y– + b(X
–

 – x–) = 39.4 + 1.0357 · (44.8 – 31.0) = 53.69,

where x– = the mean of visual estimates for the 10 subsampled stream locations, y– = the mean of
measured values for the 10 subsampled stream locations, and X

–
 = the mean of visual estimates for

all 25 stream locations.

The SE of this estimate is

�
SE( yreg) = 

(yi – y )(xi – x )2

n(n – 2)

– –[ ]
�(xi – x )2–� (yi – y )2 ––{ }1– = [2786]

2690{ }1
10(10 – 2)

3086.4 – = 1.58.
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age, or other biological variables. Because sampling is concentrated near hot spots,
the additional samples are not independent of the original sampling locations, and
specialized formulae must be used to reduce or remove biases that would occur if
the data were treated as coming from a sample of independent observations.

■ 3.3 EXPERIMENTAL DESIGNS

Developing an adequate design to an experiment is perhaps the trickiest and
most difficult task that a fisheries scientist faces. Fisheries scientists must balance
the need to control the experiment to understand better the results with the
need to assure that the design is relevant to natural systems (Yandell 1997). Many
experimental designs used by fisheries scientists come from disciplines such as
agriculture, where experiments are easier to develop and factors are easier to
manipulate. By necessity, fisheries scientists often rely on experimental units, such
as lakes or fish, over which they have little control. Lack of control over experi-
mental units is an important reason why developing a sound experimental design
and analysis is critical to the success of any fisheries experiment.

The first step in designing an experiment is to develop a clear statement of
objectives for the experiment (Cochran and Cox 1957; Yandell 1997). This step
should include the questions that are being asked in the experiment or the hy-
potheses being tested. In the first section of this chapter, we focused on sampling
designs for which the goal is generally to describe the attributes of a population.
When an experiment is conducted, the goal is often to answer questions focusing
on the response to a treatment or to determine the influence of natural or an-
thropogenic factors. Questions should be clearly focused and reasonably answered.
For example, the question, Are more large largemouth bass present after an in-
crease in the minimum length limit? is too vague to be answered through an
experiment. A clearer way to phrase the question is, Did the population density of
largemouth bass longer than 35 cm increase in lakes where the minimum length
limit was increased from 25 cm to 35 cm? The second question is more specific
than the first and helps to determine how the experiment should be designed.
The second question can now be turned into a testable statistical hypothesis. Hy-
pothesis testing is the formal approach that is used to assess whether evidence
supports your question. Hypotheses are set up in two competing claims, the null
hypothesis (H0) and the alternative hypothesis (Ha). The statistical test is set up
either to support or not to support the null hypothesis (see Chapter 1). In our
example, we could formulate the null hypothesis as the number of largemouth
bass longer than 35 cm is the same in lakes with the increased size limit and in
lakes with no change in the size limit. The alternative hypothesis is then the num-
ber of largemouth bass longer than 35 cm is not the same in lakes with the in-
creased size limit and in lakes with no change in the size limit. Remember the
statistical test is set up to support or not support the null hypothesis, so we can
either fail to reject or reject that the number of largemouth bass greater than 35
cm differs in lakes with and without the size limit. However, we cannot conclude
that the alternative hypothesis is true.
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After specifying the research question, the experiment should be described in
terms of experimental units, units being sampled (subsamples being taken from
each experimental unit), number and type of treatments, number of replicates
per treatment, and target population (Cochran and Cox 1957; Brown and Austen
1996). For the largemouth bass question in the previous paragraph, the experi-
mental units are lakes and the treatment is a regulation change. To complete the
study design, the fishery scientist would need to specify a population of lakes that
would be subjected to the regulation change, to select randomly a sample of lakes
for study (lakes = replicates), and to choose a sampling plan with an appropriate
gear for capturing largemouth bass longer than 35 cm. To differentiate effects of
the regulation change from background variation, sampling would also need to
begin before implementing the rule change (temporal controls) and need to
include a sample of lakes on which the regulation change was not implemented
(spatial controls). Finally, a well-designed experiment should also have an outline
of the method of analysis to be applied to the data after the experiment is com-
pleted (Cochran and Cox 1957). Methods of analysis for experimental designs
are provided in box examples below.

3.3.1 Completely Randomized Design

A completely randomized design is a design in which treatments are applied to
the experimental units completely at random, so that each experimental unit
has an equal probability of being selected for each treatment (Figure 3.3; Cochran
and Cox 1957). For example, we may want to determine how different creel
limits affect angler catch rates for walleye in Wisconsin lakes (Box 3.8). In this
example, the statistical population being considered includes lakes in Wiscon-
sin that contain walleye, and the experimental unit is an individual lake. Al-
though angler catch rates are determined through a creel survey program (thus
constituting a subsample of all anglers), we will treat catch rates as a single ob-
servation per lake. In this example, we decided a priori that we were interested
only in one factor (i.e., bag limits) and we were interested in three levels of this
factor: bag limits of one, two, or five walleye per day. The experiment was de-
signed to have six replicates, seven replicates, and nine replicates for the one,
two, and five walleye bag limit treatment, respectively, for a total of 22 lakes in
the experiment. Each lake was assigned a treatment level at random, complet-
ing the experimental design.

As with simple random sampling designs described earlier, completely random-
ized designs provide a basic standard against which to compare other designs.
Completely randomized designs have the advantage of allowing complete flexibil-
ity in the number of treatments and replicates allowed for the experiment (Cochran
and Cox 1957). Further, statistical analysis is relatively easy regardless of the num-
ber of replicates and treatments (Cochran and Cox 1957). This holds true even
when treatments or data are missing in the experiment (Cochran and Cox 1957),
a common problem with large-scale field experiments. Finally, completely ran-
domized designs have the advantage of maximizing the degrees of freedom for



82 Chapter 3

Figure 3.3 Examples of three experimental designs for testing how fish populations in lakes
(circles) in a landscape (rectangles) respond to the application of three different daily bag limits
in an angling fishery.

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Completely randomized design

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Randomized block design

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Random-effect block design
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Box 3.8 Example of a Completely Randomized Design

The goal of this study was to determine if walleye catch rates differed among Wisconsin lakes with
different daily bag limits (Beard et al. 2003). From the thousands of lakes in Wisconsin with walleye
populations, six lakes were randomly chosen to have a bag limit of one walleye per day, seven lakes
were randomly chosen to have a bag limit of two walleye per day, and nine lakes were randomly
chosen to have a bag limit of five walleye per day. For this analysis, the designation of North or
South was ignored. A fixed-effects general linear model (GLM, implemented in SAS; SAS 2005) was
used for the analysis of these data.

Program

* This data step reads the following information into a data set named

walleye;

data walleye;

input lake $ region $ bag_limit catch;

cards;

Willow North 1 2.21

Mud North 1 2.32

Pine North 1 2.74

Bass North 2 2.23

Perch North 2 2.25

Twin North 2 1.40

Park North 2 2.36

Mendota North 5 1.78

Silver North 5 1.64

Manistee North 5 1.97

Fox North 5 1.99

McGee South 1 2.70

Deep South 1 3.63

Round South 1 2.82

Long South 2 3.09

Portage South 2 3.63

Indian South 2 2.82

Wolf South 5 2.20

Gull South 5 1.74

Black South 5 2.85

Goose South 5 3.01

Fletcher South 5 1.72

;

run;

*These statements call the GLM procedure in SAS, declaring the variable

bag_limit to be a categorical variable, and catch to be the continuous re-

sponse variable. The lsmeans statement requests least-squares means and

standard errors of catch for each level of bag_limit;

proc glm;

class bag_limit;

model catch=bag_limit;

lsmeans bag_limit/stderr;

run;

(Box continues)
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Results and Interpretation

Table Results of the GLM procedure in SAS for the dependent variable catch of walleye in 22 lakes
with three different bag limits. Abbreviations are given for coefficient of variation (CV), mean
square error (MSE), sum of squares (SS), and least-squares means (LSMEAN).

Source df SS Mean square F-value P > F

Model 2 1.62317576 0.81158788 2.43 0.1153
Error 19 6.35613333 0.33453333
Corrected total 21 7.97930909

R2 0.203423 Root MSE 0.578389
CV 23.96337 Catch mean 2.413636

Source df Type I SS Mean square F-value P > F

Bag limit 2 1.62317576 0.81158788 2.43 0.1153

Source df Type III SS Mean square F-value P > F

Bag limit 2 1.62317576 0.81158788 2.43 0.1153

Least-Squares Means

Bag limit Catch LSMEAN SE P > |t|

1 2.73666667 0.23612614 <0.0001
2 2.54000000 0.21861033 <0.0001
5 2.10000000 0.19279619 <0.0001

The results of the analysis indicate that the daily bag limit had little effect on walleye catch rate.
Although the point estimates of mean catch rate (catch LSMEAN) differ somewhat among bag
limits, the differences were not greater than would be expected by random chance. The F-value for
the entire experiment was 2.43 and the resulting P-value was 0.1153, which is greater than the 0.05
alpha value commonly used when testing for significant differences among means. Therefore, we
would conclude that bag limits had no significant effect on catch rates.

Sums of squares can be computed in several ways. The simplest to understand and the most widely
reported in statistical analysis programs are type III SS, which are computed as the difference in SS
between two nested models in which one term is left out. Thus, the SS for each term is simply the
difference in SS between the full model with all terms present and a reduced model with the term
of interest absent. In contrast, SAS also reports type I SS, which are computed as the difference in SS
between hierarchical models in which each term is dropped in sequence, beginning with the right-
hand term and proceeding to the left. Thus, the SS for each term depend on the order in which the
terms are specified by the user. Type III SS are independent of the order in which terms are
specified in the model, so are generally preferred over type I SS.

Box 3.8 (continued)
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analysis (Cochran and Cox 1957), thus maintaining statistical power when the
number of replicates per treatment is small.

The main disadvantage of experiments using a completely randomized design
is that the power of these experiments to detect differences among treatments
may be relatively low (analogous to simple random sampling, where the precision
of point estimates may be low). Randomized designs are most commonly used in
laboratory studies, where experimental units are relatively homogeneous, thereby
increasing the power of the experiment. In field studies where experimental units
vary greatly from unit to unit (Cochran and Cox 1957), variation among units
may obscure systematic differences resulting from the treatment. One way to over-
come large variation among units is to increase the number of replicates in the
experiment, but this comes at additional monetary cost (Brown and Austen 1996).

Completely randomized designs have been used in fisheries management
projects mostly where sites were homogenous or where differences among sam-
pling units were not known. For example, Walsh et al. (2002) compared catches
from prepositioned area electrofishing and electric seining at 12 randomly se-
lected stream sites. Similarly, Kocik and Taylor (1994) placed brown trout and
steelhead in randomly selected sites within an experimental stream to quantify
their survival and growth. In both studies, sampling sites were assumed to be rela-
tively homogenous, thereby minimizing variability not accounted for in the ex-
periment. Although completely randomized designs are uncommon in fisheries,
they can be useful in small pilot studies that will provide some information about
the experimental unit for better design of a full-scale study. Before continuing on
with more sophisticated designs, we consider the analysis of this relatively simple
design, and discuss some of the critical considerations for data analysis.

3.3.1.1 Analysis of Completely Randomized Design

After the experiment has been conducted and data collected, how do we deter-
mine if the treatment(s) led to a response? One tool available is the general lin-
ear model (GLM), which contains the familiar analysis of variance (ANOVA) model.
General linear model is a term used to refer to an entire class of models that are
linear in their parameters (Yandell 1997; Montgomery 2001), which means that
no parameter in the model is an exponent or is multiplied or divided by another
parameter (Neter et al. 1996). The term general is used because both continuous
and categorical variables can be used as predictor variables (Quinn and Keough
2002). In most of these models, we measure a response variable and then deter-
mine how this response variable is influenced by one or more predictor variables.

In our creel limit example, the treatments (or predictor variables) are fixed
because the bag limits were determined prior to the start of the experiment and
then applied according to the completely randomized design. Moreover, we treat
the creel limits as categorical variables. This is in contrast to continuous variables
(such as lake area), which we will discuss later. When analyzing data from this
situation, we use what is called a fixed-effects GLM (Quinn and Keough 2002).
The objective of our analysis is to determine whether variation in the means for
different treatment levels differs more than would be expected by chance or if
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“real” differences in catch rate are related to the bag limit imposed. The GLM for
this case can be specified for i = 1 to p treatment levels and j = 1 to n replicates:

yij = � + �i + �i j , (3.15)

where yij are the observations, � is the overall population mean of the response
variable, �i is the treatment effect for each level, and �i j  is the unexplained varia-
tion among lakes (i.e., statistical error; Quinn and Keough 2002). In our example
(Box 3.8), i = 3 treatments (bag limits of 1, 2, and 5) and j = 6, 7, and 9 replicates.
The fixed-effects model can then be used to test the H0 that all treatment level
means (specified as �i) are the same:

H0 : �1 = �2 = . . . = �i = �.

This can also be specified in terms of the test of treatment effects:

H0 : �1 = �2 = . . . = �i = 0.

An F -test is used to compare the variability among groups to the residual vari-
ability (F -ratio = mean squared error for main effects divided by the mean squared
residual error), to determine if the observed differences in group means are greater
than would be expected by chance. The observed F -ratio is compared to an F -
distribution with the degrees of freedom in the numerator and denominator be-
ing those used for the two mean square errors. If H0 is true, both group and
residual mean square error should estimate the pooled population error term
and the F -ratio should be 1 (Quinn and Keough 2002). In our bag limit example
(Box 3.8), we would compare the F-ratio to an F -distribution with 2 df (3 treat-
ments; p – 1) for the numerator and 19 df (22 observations – 3 treatments) for the
denominator.

3.3.1.2 Assumptions

The most important assumption when sampling or performing any experiment is
that the treatments are randomly applied to the experimental units (Sokal and
Rohlf 1995). Failure to select samples at random or to apply treatments at ran-
dom may result in biased results that are not representative of the true response
(Sokal and Rohlf 1995). Applying treatments to lakes or rivers where the investi-
gator suspects they will be most successful is tempting, but the results of the study
will not be applicable to any other lakes or rivers. If the fully randomized experi-
mental design is implemented, this insures that the random-selection assumption
is satisfied.

Many statistical analyses assume that sample units or the selection of samples
are independent (Sokal and Rohlf 1995; Brown and Austen 1996). That is, changes
in one sample unit or one sample subject should not affect other sampling units
or subjects. Treatments or subjects must therefore be spatially and temporally
independent (Sokal and Rohlf 1995; Brown and Austen 1996). In our example
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(Box 3.8), this assumption implies that the bag limit imposed on one lake has no
effect on the catch rate of walleyes in nearby lakes. This assumption would be
violated, for example, if anglers shifted their effort away from lakes where the
creel limit was imposed to lakes where the bag limit was not imposed.

Repeated measurements of water bodies over time, which are often used to
detect changes in fish populations caused by management actions (stocking, habitat
manipulations, or regulations) in particular water bodies (often in relation to
water bodies where the management action was not implemented) are not tem-
porally independent. Lack of temporal independence is called time series bias
and can lead to problems in estimating parameters (Walters 1985; Caputi 1988;
Hilborn and Walters 1992; Myers and Barrowman 1996). To account for a lack of
temporal independence among sample units, a repeated-measures design is of-
ten used (section 3.3.8). Lack of spatial independence also occurs in fisheries
studies (as noted in the previous paragraph; also see examples in telemetry stud-
ies, Chapter 14, and watershed analyses, Chapter 18), and a variety of methods
have been developed to account for spatial dependency.

Another important assumption of a GLM analysis is that the residual variance
must be constant or homoscedastic among observations and treatments (Sokal
and Rohlf 1995; Montgomery 2001). Variability among experimental units com-
monly increases with an increasing mean, thereby leading to heteroscedastic re-
sidual variance (Sokal and Rohlf 1995). Inequality of variance is generally diag-
nosed by using plots of the residuals against the predictor variable and predicted
values and either Bartlett’s or the modified Levene test (Montgomery 2001). When
unequal variance occurs, the data are often transformed to equalize the variance,
or the unequal variance is accounted for using a mixed model (section 3.3.4). For
example, prior to transformation, catch data are often highly skewed in their
distribution, so variance often differs among treatment levels (heteroscedastic
residual variance; Figure 3.4). In contrast, after log transformation, catch data
may be normally distributed and have equal variance among treatment levels
(homoscedastic residual variance; Figure 3.4).

The final assumption necessary when performing many common statistical
analyses is that the residual errors are normally distributed (Sokal and Rohlf 1995;
Montgomery 2001). Although large departures from normality can significantly
affect inferences from a GLM analysis (Montgomery 2001), this is perhaps the
least important assumption because the central limit theorem states that with
large sample sizes (e.g., greater than 30), estimates of model parameters often
approximate a normal distribution regardless of the distribution of the data
(Yandell 1997). Departures from normality are tested using normal probability
plots and statistical tests such as the Shapiro–Wilk test or Kolmogorov–Smirnov
test (Box 3.9; Sokal and Rohlf 1995). Each of these tests examines different as-
pects of departures from normality, so they sometimes provide conflicting insights.
Our preference is for the Shapiro–Wilk test, which is more sensitive to departures
in the tails of the distribution, though the Kolmogorov–Smirnov test is also useful
because the test statistic, D, is a readily interpretable measure of the maximum
difference between the observed and expected cumulative distributions. When
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examining distributions of residuals for potential violations of the assumption of
normal distribution, more concern should be given to distributions with thinner
or thicker tails than expected than to distributions that are skewed (Montgomery
2001). Analyses that proceed with nonnormal data will generally lead to fewer
significant test results because of reduced power of the test (Montgomery 2001).

One important departure from normality is the presence of outliers, extreme
values that lie well outside the distribution of the rest of the data (e.g., more than
3 SDs from the mean) and that are often caused by sampling problems or because
the outliers belong to a population that differs from the target population (Mont-
gomery 2001). Outliers can significantly affect the outcome of a statistical analysis
and should be examined to determine if they are caused by sampling problems or
because they come from another population. If follow-up investigation of an out-
lier reveals that the outlying datum was caused by a failure of the sampling proto-
col, the datum can be rejected from the analysis. However, outliers can also be
extreme values of the target population so should not be rejected simply because
they are outliers.

Figure 3.4 Changes to the distribution of catch data following log transformation. The upper
panel in each pair of graphs illustrates the distribution of individual data points and the lower
panel depicts the hypothetical statistical distribution from which data points were drawn.
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Box 3.9 Example of How to Test Errors (Residuals) for Normality

In an extension to the example in Box 3.8, the results of the analysis were augmented to examine
the normality of residuals.

Program

proc glm;

class bag_limit;

model catch=bag_limit;

lsmeans bag_limit/stderr;

*The following output request saves a new data set named model_resid,

saving residuals into a variable named resid;

output out=model_resid r=resid;

run;

*These statements call the univariate procedure in SAS, requesting a

normality plot, normality test, and a q-q plot of the variable named resid;

proc univariate plot normal;

var resid;

qqplot resid;

run;

Results

Some output is not shown because it is not critical to this discussion; the pertinent results of this
analysis follow.

Table The univariate procedure of SAS was used to evaluate the normality of residuals generated
from the analysis in Box 3.8.

Moments

N 22 Sum weights 22
Mean 0 Sum observations 0
SD 0.55015726 Variance 0.30267302
Skewness 0.43350809 Kurtosis 0.01734467

Tests for Normality

Test Test statistic Statistic value P-test P-value

Shapiro–Wilk W 0.933623 P < W 0.1460
Kolmogorov–Smirnov D 0.155156 P > D >0.1500
Cramer–von Mises W 2 0.120727 P > W2 0.0557
Anderson–Darling A2 0.700157 P > A2 0.0602

(Box continues)
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When the assumptions of normality or equality of variability are not met, the
data can often be transformed into a new scale for which the assumptions are
satisfied. However, transformations should be logical and scientifically sound
(Yandell 1997). For example, body weight of virtually all organisms will increase
as an approximately cubic function of length, so variance in fish weight would
likely also increase as an approximately cubic function of length (Brown and Austen
1996). Consequently, the use of a linear model to describe the relationship be-
tween weight and length would be incorrect. Transformation of weight and length
into their logarithms (log10 or loge) permits the use of a linear model to estimate
parameters of the weight–length relationship and eliminates heteroscedasticity
of residual errors. Although transformations may help meet the assumptions of

Figure Normal probability plot of residuals versus normal quantiles.

In this example, we used the univariate procedure in SAS to produce a normal probability plot and
to provide statistical tests of normality. In a normal probability plot, we are looking for a relatively
straight 1–1 line in our plot. In this case, the data show some deviation from a straight line, but
none of the normality tests were significant, which indicates that the residuals did not differ
significantly from a normal distribution.
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the GLM, they may also bias parameter estimates (Hayes et al. 1995), so care must
be taken in interpreting point estimates.

The selection of an appropriate transformation should rely on an examination
of the distribution, mean, and variance of the data. When the mean of a sample is
positively correlated with its variance (i.e., variance increases as the mean gets
larger), a logarithmic transformation, either base 10 or base e, is often appropri-
ate (Sokal and Rohlf 1995). When the mean and variance are similar and do not
vary independently, which is often true of count data such as the number of fish
caught in a net, the data should be transformed into their square roots to make
the variance independent of the mean (Sokal and Rohlf 1995). When the distri-
bution of the data has fewer observations at the mean and at the tails and more
observations at intermediate regions than would a normal distribution (platykurtic),
which is true of proportion or percentage data such as the percent of lake trout
with sea lamprey wounds, the data should be transformed into their arcsines or
arcsine square roots (Sokal and Rohlf 1995).

Another approach to transforming the data is to use a nonparametric statisti-
cal test. Many nonparametric tests use a rank transformation (i.e., ranking each
observation) as a means of reducing the effects of outliers or nonnormality. Cov-
erage of nonparametric methods is beyond the scope of this chapter (see Chapter
1), but they provide a useful suite of methods. As with other transformations,
inferences drawn from analyses using a rank transformation do not strictly apply
to the arithmetic mean. In the case of rank transformations, inference is gener-
ally based on the median, 50th percentile, as a measure of central tendency.

Following transformation, the results of any analysis should be evaluated to
determine if the transformation was successful in correcting the observed prob-
lem. Also, transforming data to meet statistical assumptions may lead to a model
that is not interpretable in the original scale of measurement (Draper and Smith
1981), which may render the model useless for its original purpose. For example,
if data for a two-variable model are transformed to meet the assumption of nor-
mality, but data for the two variables are each transformed with a different trans-
formation, the resulting statistical model cannot be back-transformed into the
original measurement scales for interpretation. Thus, data should be transformed
only in the context of an understandable model and its transformation. Some-
times, transformations will still not meet the assumptions necessary for the de-
sired analysis. In such instances, a transformation that achieves approximately
equal variances among samples is usually sufficient for analysis, even if the data
are slightly nonnormal (Yandell 1997).

3.3.2 Randomized Block Design

One of the disadvantages of a completely randomized design is that natural varia-
tion among experimental units obscures the effect of the treatments, thereby
reducing the statistical power to detect real differences when they occur. Although
more replicates can be taken to overcome low power, a commonly used strategy is
to subdivide the population of interest into more homogeneous groups or blocks.



92 Chapter 3

For example, we may already know or suspect that the catch rate of walleye tends
to be higher in northern Wisconsin than in southern Wisconsin (Box 3.10). Thus,
if we take into account the location of the lake within the state, we can reduce the
variability among units within a block. This is directly analogous to the increased
precision of stratified random sampling over simple random sampling.

For many fisheries experiments, blocks are often created across time or space
(Quinn and Keough 2002). The purpose of blocking is to reduce variability within
each group (Cochran and Cox 1957) to estimate means more precisely and to
increase power of tests of treatment effects (Quinn and Keough 2002). In a ran-
domized block design, any number of treatments and replicates may be included
in the design, and the statistical analysis is straightforward (Cochran and Cox
1957). For a randomized block design to be favored over a completely random
design, the precision gained by blocking the treatments must offset the degrees
of freedom lost when blocks are used (Yandell 1997). Randomized block designs
can be used when blocks are missing, but completely randomized designs are
usually better for testing treatment effects if the number of missing blocks is large
(Cochran and Cox 1957).

The analysis of randomized block designs is similar to the fully randomized
design, except that the effects of the blocking factor are included as an additional
effect (Box 3.10). The statistical model for the randomized block design is

yi jk = � + �i + �k + �i jk , (3.16)

here yi jk are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level, �k is the effect for each level of the block-
ing variable, and �i jk  is the unexplained variation among experimental units. This
model can then be used to test the null hypothesis that all treatment level means
(specified as �i) are the same, after taking account for the effect of the blocking
variable(s):

H0 : �1 = �2 = . . . = �i = �.

Randomized block designs are often used in fisheries. For example, Wilderbuer
et al. (1998) compared catch per unit effort of various fish species collected by
two different types of trawls (Wilderbuer et al. 1998). In this experiment, the two
trawl types were simultaneously hauled, and each paired haul was considered as a
block because of variability in catches between trawl runs (Wilderbuer et al. 1998).
Similarly, Sammons and Bettoli (1999) examined variation in catch and mean
length of largemouth bass caught by electrofishing, blocked by transects sampled.
Whalen and LaBar (1994) used stream sections as blocks to compare survival and
growth of Atlantic salmon stocked at different densities.

3.3.3 Analysis of Covariance

In the randomized block design, variability due to the effects of the categorical
blocking variable(s), such as the designation of north and south in the example
shown in Box 3.10, is used to remove the confounding effect of this variability.
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Box 3.10 Example of a Randomized Block Design

In an extension to the example in Box 3.8, lakes were first blocked into northern and southern
Wisconsin lakes, and then treatments were randomly assigned to lakes in each block. A randomized
block design should include the blocking factor during the randomization process. The SAS
program for this analysis is similar to a completely randomized design, except that block and an
interaction term are included in the model.  For brevity, the data are not repeated here.

Program

*The following call to the GLM procedure indicates that bag_limit and

region are categorical predictor variables and catch is a continuous response

variable;

proc glm;

class bag_limit region;

model catch=bag_limit region region*bag_limit;

lsmeans bag_limit region/stderr;

run;

Results and Interpretation

Results of the above analysis are as follows.

Table The GLM procedure for a randomized block design (blocks being northern versus southern
lakes) with the dependent variable catch. This analysis is based on the data presented in Box 3.8.

Source df SS Mean square F-value P > F

Model 5 4.83082242 0.96616448  4.91 0.0065
Error 16 3.14848667 0.19678042
Corrected total 21 7.97930909

R2 0.605419 Root MSE 0.443599
CV 18.37888 Catch mean 2.413636

Source df Type III SS Mean square F-value P > F

Bag_limit 2 1.93517601 0.96758800 4.92 0.0216
Block 1 2.86174438 2.86174438 14.54 0.0015
Bag_limit*block 2 0.43851616 0.21925808 1.11 0.3523

Least-Squares Means

Bag_limit Catch LSMEAN SE P > |t|

1 2.73666667 0.18109869 <0.0001
2 2.62000000 0.16940231 <0.0001
5 2.07450000 0.14878776 <0.0001

Block Catch LSMEAN SE P > |t|

North 2.10944444 0.13498300 <0.0001
South 2.84466667 0.13765619 <0.0001

(Box continues)
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In this analysis, the bag limit (F = 4.92; P = 0.0216) and block (F = 14.54; P = 0.0015) both appear to
have an effect on angler catch rates. The interaction between these two factors does not appear to
be significant (F = 1.11; P = 0.3523), which suggests that the effect of bag limits was similar in
northern and southern Wisconsin lakes (blocks). Therefore, we can re-run the analysis without the
interaction term in the model.

proc glm;

class bag_limit region;

model catch=bag_limit region ;

lsmeans bag_limit region/stderr;

run;

Results of the analysis without the interaction term for region*bag limit are similar to those for the
model with the interaction term.

Table The GLM procedure for a randomized block design (blocks being northern versus southern
lakes) with the dependent variable catch. This analysis does not include the interaction term of bag
limits*region.

Source df SS Mean square F-value P > F

Model 3 4.39230627 1.46410209 7.35 0.0020
Error 18 3.58700282 0.19927793
Corrected total 21 7.97930909

R2 0.550462 Root MSE 0.446406
CV 18.49515 Catch mean 2.413636

Source df Type III SS Mean square F-value P > F

Bag_limit 2 1.95674263 0.97837132 4.91 0.0199
Block 1 2.76913051 2.76913051 13.90 0.0015

Least-Squares Means

Bag_limit Catch LSMEAN SE P > |t|

1 2.73666667 0.18224431 <0.0001
2 2.59097810 0.16927875 <0.0001
5 2.06035036 0.14918152 <0.0001

Block Catch LSMEAN SE P > |t|

North 2.10581833 0.13522076 <0.0001
South 2.81951176 0.13664751 <0.0001

Results of this analysis suggest that walleye catch rates differed significantly among daily bag limits
(F = 4.91; P = 0.0199) and between northern and southern Wisconsin lakes (F = 13.90; P = 0.015).
Importantly, differences in walleye catch rates between northern and southern Wisconsin lakes
obscured the effect of daily bag limits when the data were analyzed using a fully randomized
design (Box 3.8).

Box 3.10 (continued)
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Often, however, potential blocking variables are not categorical but are measured
on a continuous scale. For example, lakes can be arbitrarily categorized as “small”
and “large” based on their surface area but could also be measured in surface
area on a continuous scale. The GLM treats these variables as the independent
variable in a regression, and inferences based on these models evaluate the ef-
fects of a treatment on the response variable, after accounting for the effect of
continuous variable(s) on the response variable (Quinn and Keough 2002). This
particular application of a GLM is often termed analysis of covariance (ANCOVA).

As in a randomized block design, one of the main advantages of using an
ANCOVA design is that unexplained variability in the response variable is reduced,
thereby providing greater statistical power to detect and estimate the effects of
treatments. A further advantage is that the results provide insight into the effects
of covariates and potential interactions with the treatment variable. Thus, a greater
understanding of the experimental system can be obtained with ANCOVA. An-
other advantage of an ANCOVA design is that the value of the independent
covariate is not known a priori but is determined at the time of the experiment,
thereby reducing the need to have the entire sampling frame sorted into blocks
prior to the experiment.

When using ANCOVA, several assumptions must be met. First, a linear relation-
ship must exist between the response variable (e.g., weight) and the independent
variable used as a covariate (e.g., length; Montgomery 2001; Quinn and Keough
2002). We must also assume that the covariate values are similar among treatments
(Quinn and Keough 2002). The important implication of this assumption is that
ANCOVA should not be used to correct for different values of the covariate in each
group (Quinn and Keough 2002). For example, if initial lengths of fish in an ex-
periment were different, we should not include initial lengths to correct for this
difference (Quinn and Keough 2002). In regression, we must assume that the
covariate, x, is fixed and measured without error (Quinn and Keough 2002).

Because continuous factors are included in ANCOVA, the statistical model looks
somewhat different than the model for fully randomized or randomized block
designs. Multiple expressions of the ANCOVA model are available, but we prefer

yi j = �0 + �i + �x ij + �i j , (3.17)

where yi j are the observations, �0 is the intercept for the regression between x and
y for the population as a whole, �i is the treatment effect for each level, � is the
common slope for the regression between xij and yij , and �i j  is the unexplained
variation among experimental units. This model can then be use to test the H0

that all treatment effects (�i) are the same:

H0 : �1 = �2 = . . . = 0.

An equivalent way of thinking about the H0 is that all of the regressions between
the response variable (y) and the covariate (x) have the same intercept. However,
before testing the H0, we must first test whether the slopes of the regression lines
for all treatments are the same (i.e., all regression lines are parallel; Neter et al.
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1996; Quinn and Keough 2002). To test the hypothesis that slopes are equal for
all treatment levels, the interaction between the fixed effect and the continuous
variable (covariate) is evaluated using the slope heterogeneity test (Box 3.11; Neter
et al. 1996; Quinn and Keough 2002). If the interaction is significant, then the
ANCOVA model (equation [3.17]) does not apply and separate regression mod-
els should be fit to each treatment level and then compared (Neter et al. 1996). If
the interaction is not significant, then slopes are assumed to be equal, and the
ANCOVA model (equation [3.17]) is estimated.

The use of ANCOVA is common in the fisheries literature. Many analyses in-
clude the effect of a covariate that is important for understanding the effects of one
or more fixed treatments. This is especially common when the treatment effect may
be influenced by growth in either length or weight. The other common use of
ANCOVA in fisheries is to determine how data can be grouped. In many instances,
an analyst will be uncertain whether the covariate in question affects the results of
an outcome. For instance, Beard et al. (1997) used ANCOVA when building a pre-
dictive model of angler catch rate from walleye density to determine if walleye den-
sity differed among length-limit regulation categories and years sampled. When
length category and years sampled were not significant, walleye densities were
grouped together regardless of length regulation and year (Beard et al. 1997).

3.3.4 Random Effects and Mixed Models

In a randomized block design, the entire population of interest is broken into
subgroups (blocks) from which units are selected for treatment. In Box 3.10, for
example, all lakes in Wisconsin were designated as coming from the northern or
southern part of the state. Thus, a randomized block design is analogous to a
stratified random sampling design. In many fisheries investigations, blocking is
used to reduce variability, but samples are not collected from all blocks within the
population. For example, in an experiment to evaluate the effects of a herbicide
application on density of age-0 bluegill, we might randomly select five lakes to
receive a herbicide treatment and five lakes to receive no treatment. This could
be repeated for 4 years, resulting in 20 treatment lakes and 20 control lakes (Box
3.12). We suspect that recruitment of age-0 bluegill may vary annually because of
factors such as weather. Thus, we could use year as a blocking factor. However, our
interest lies not just in the years selected for study but also in future years. Thus,
the blocks (i.e., year) constitute only a sample of all possible years of interest.
Such factors are analogous to clusters in cluster sampling (Figure 3.2). When this
is the case, the blocking factor is appropriately treated as a random effect in the
statistical model. A model that includes both random effects (years, in this ex-
ample) and fixed treatments (also known as fixed effects; herbicide treatments,
in this example) is referred to as a mixed model.

The statistical model for simple mixed models (i.e., with only a single fixed and
a single random effect) is similar to that for the randomized block:

yijk = � + �i + �k + �i jk , (3.18)
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Box 3.11 Example of an Analysis of Covariance Design

The goal of this study was to determine how substrate size affected early growth of brook trout eggs.
In a lab experiment, a fisheries scientist placed individual brook trout eggs into containers with
different substrates. The investigator also believed that egg diameter would affect early growth, so
egg size was measured as a continuous covariate. An analysis of covariance model with egg diameter
as the continuous variable and substrate as the categorical treatment variable follows.

Program

*The following data step creates a data set named growth containing the
data that follow;

data growth;
input id substrate $ egg_diameter growth;
cards;
 1 Cobble 8.3 20.0
 2 Cobble 8.5 23.5
 3 Cobble 11.2 24.7
 4 Cobble 10.7 29.5
 5 Cobble 9.6 24.3
 6 Cobble 11.8 31.7
 7 Cobble 9.6 22.1
 8 Cobble 8.9 19.0
 9 Cobble 11.2 17.3
10 Cobble 8.9 23.3
 1 Gravel 10.3 36.4
 2 Gravel 9.5 25.7
 3 Gravel 8.5 13.6
 4 Gravel 9.9 33.9
 5 Gravel 8.6 17.1
 6 Gravel 8.9 22.6
 7 Gravel 10.4 32.0
 8 Gravel 10.8 40.2
 9 Gravel 9.9 26.6
10 Gravel 10.1 32.9
 1 Sand 9.3 20.4
 2 Sand 8.8 15.3
 3 Sand 9.2 21.6
 4 Sand 10.0 22.9
 5 Sand 10.5 21.2
 6 Sand 10.2 17.4
 7 Sand 9.4 12.4
 9 Sand 10.7 21.8
10 Sand 11.8 25.0
;
run;
*These statements call the GLM procedure in SAS, declaring the variable

substrate to be a categorical predictor variable and growth to be the
continuous response variable. By default, the variable egg_diameter is
treated as a continuous predictor variable;

proc glm;
class substrate;
model growth=substrate egg_diameter egg_diameter*substrate;
run;

(Box continues)
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Results and Interpretation

The results of the analysis follow.

Table The GLM procedure for the dependent variable growth of brook trout. The variable
substrate is a categorical predictor variable and the variable egg diameter is treated as a
continuous predictor variable.

Source df SS Mean square F-value P > F

Model 5 1025.104031 205.020806 17.64 <0.0001
Error 23 267.387693 11.625552
Corrected total 28 1292.491724

R2 0.793122 Root MSE 3.409626
CV 14.23951 Growth mean 23.94483

Source df Type III SS Mean square F-value P > F

Substrate 2 266.1171709 133.0585855 11.45 0.0004
Egg_diameter 1 557.0652164 557.0652164 47.92 <0.0001
Egg_diameter*substrate 2 311.4589773 155.7294887 13.40 0.0001

Results of the analysis indicate a significant interaction between egg diameter and substrate (F =
13.40; P = 0.0001), which indicates that egg diameter did not influence final length the same for all
substrate classes. Therefore, significance of the two main effects, substrate (F = 11.45; P = 0.0004)
and egg diameter (F = 47.92; P < 0.0001), cannot be interpreted because the ANCOVA model
(equation [3.17]) does not apply. If the interaction is significant, separate regression models should
be fit to each treatment level and then compared.

Box 3.11 (continued)

where yijk  are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level, �k is the effect for each level of the ran-
dom effect variable, and �i jk  is the unexplained variation among experimental
units. This model can then be use to test the H0 that all treatment level means
(specified as �i) are the same, taking into account the effect of the random
variable(s):

H0 : �1 = �2 = . . . = �i = �.

Mixed models have been used occasionally in fisheries investigations but have
also not been used when they would be appropriate. The most common mistake
is to treat a random factor as a fixed effect, with the consequence that type I
errors are underestimated. Buynak and Mitchell (2002) provide an example
where a mixed model was applied in a fishery experiment. The study was designed
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With a significant interaction between a continuous and categorical variable, the best way to
interpret the results is graphically. For these data, growth generally increased with egg diameter,
but the increase was higher in gravel substrate (steeper slope) than it was in cobble or sand
substrate (shallower slope). In cobble and sand substrates, the relationship between egg diameter
and growth was consistent (similar slopes). In addition, growth was higher in gravel than in sand or
cobble for egg diameters greater than about 9.5 mm but lower in gravel than in sand or cobble for
smaller egg diameters.

to determine the effects of a slot size limit on smallmouth bass populations. In
this study, Buynak and Mitchell (2002) set up a mixed-effects model that tested
for differences in density between length limit treatment sites (slot size limit
versus no slot size limit) and across years. Year was considered a random variable
in this model, because Buynak and Mitchell were interested in determining if
the effect of years was the same for all years or differed among years (Buynak
and Mitchell 2002).

3.3.5 Factorial Design

The factorial design is used when an investigator wants to investigate the effects
of more than one factor on the response variable. In a factorial design, each com-
plete trial of the experiment explores all possible combinations of the levels of



100 Chapter 3

Box 3.12 Example of a Mixed-Model Design

The goal of this study was to determine the effect of herbicide treatment on the abundance of age-
0 bluegill in lakes. In theory, treatment with herbicide will create greater access to food resources,
so abundance of age-0 bluegill should increase. Funds were available for treating and sampling
only four lakes each year, along with sampling an equivalent number of untreated control lakes. To
increase the sample size available for the experiment, the fisheries scientists treated lakes over 4
years but were concerned that year-to-year variation in weather could obscure the real effect of
treatment.

Program

*This data step creates a data set named herb that contains the following

data;

data herb;

input year herbicide $ 13-22  lake_id bluegill_yoy;

cards;

 2001        Treatment        988          86

 2001        Treatment        116         100

 2001        Treatment        375         163

 2001        Treatment         17         135

 2001        Control          592          62

 2001        Control          677          69

 2001        Control          850          56

 2001        Control          566          50

 2002        Treatment        814         172

 2002        Treatment        397         200

 2002        Treatment        175         204

 2002        Treatment        867         153

 2002        Control          557          51

 2002        Control          106         122

 2002        Control          770          42

 2002        Control          111         127

 2003        Treatment        291         117

 2003        Treatment         76         125

 2003        Treatment         35         153

 2003        Treatment        997         123

 2003        Control          385          89

 2003        Control          712         106

 2003        Control          551          34

 2003        Control          567         197

 2004        Treatment        532          83

 2004        Treatment        424          65

 2004        Treatment        908          59

 2004        Treatment        369          69

 2004        Control          192         137

 2004        Control          371          66

 2004        Control          623          28

 2004        Control          515          23

;

run;
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(Box continues)

*These statements call the MIXED procedure in SAS, declaring herbicide and

year to be categorical predictor variables, and bluegill_yoy (age-0) to be a

continuous response variable. The model statement indicates that the Kenward-

Roger method should be used for computing the degrees of freedom. The random

statement identifies year as a random effect, and the lsmeans statement

requests least-squares means for bluegill density for the different levels of

herbicide treatment;

proc mixed  covtest;

class herbicide year;

model bluegill_yoy = herbicide / ddfm=kenwardroger;

random year/solution;

lsmeans herbicide;

run;

Results and Interpretation

Results of this analysis are as follow.

Table The mixed procedure of SAS. Herbicide treatment (fixed effect) and year (random effect)
are predictor variables, and age-0 bluegill density is the continuous response variable. The conver-
gence criteria were met. Abbreviations are given for –2 · residual log likelihood (–2Res log like);
Akaike’s Information Criteria (AIC); small sample corrected AIC (AICc); and Bayesian Information
Criteria (BIC). Note a smaller value is better for the information criteria indices.

Iteration History

Iteration Evaluations –2Res log like Criterion

0 1 321.73349015
1 1 317.52062502 0.00000000

Covariance Parameter Estimates

Covariance
parameter Estimate SE Z-value P > Z

Year 689.45 734.59 0.94 0.1740
Residual 1660.62 451.96 3.67 0.0001

Fit Statistics

–2Res log like 317.5
AIC 321.5
AICc 322.0
BIC 320.3
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factors investigated (Montgomery 2001). For example, an experiment with a lev-
els of factor A and b levels of factor B (where A and B are main effects) includes a
× b treatment combinations. In factorial designs, main effects are generally of
primary interest, and if no interactions are present between or among main ef-
fects, main effects are simple averages of the effects found for each treatment
level (Cochran and Cox 1957; Montgomery 2001). In factorial designs, the factors
are considered to be fixed effects (Quinn and Keough 2002).

As an example of a factorial design, the fisheries scientist of an aquaculture
facility may be interested in exploring how stocking density and different feeding
levels affect the yield of channel catfish in rearing ponds. The fisheries scientist
could use only the lowest and highest stocking densities and three feeding levels
for the fish, for six possible treatment combinations (Figure 3.5). The fisheries
scientist randomly assigns ponds to each treatment combination and runs the ex-
periment. If stocking levels and feeding levels do not interact, the interpretation of

Box 3.12 (continued)

Solution for Random Effects

Effect Year SE estimate Prediction df t-value P > |t|

Year 2001  –9.1751 18.5847 3.77 –0.49 0.6489
Year 2002 24.4509 18.5847 3.77 1.32 0.2626
Year 2003 12.2495 18.5847 3.77 0.66 0.5479
Year 2004 –27.5253 18.5847 3.77 –1.48 0.2169

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Herbicide 1 27 10.53 0.0031

Least-Squares Means

Effect Herbicide Estimate SE df t-value P > |t|

Herbicide Control 78.6875 16.6178 4.52 4.74 0.0067
Herbicide Treatment 125.44 16.6178 4.52 7.55 0.0010

Results of the analysis suggest that application of herbicide significantly increased the relative
abundance of age-0 bluegill (F = 10.53; P = 0.0031). In control lakes, the mean catch of age-0 bluegill
was 78.7 with a SE of 16.6, whereas in treated lakes the mean catch of age-0 bluegill was 125.4 with
a SE of 16.6. The effect of the random year effect was not so clear because the covariance estimate
for the year effect was 689.45, but the covariance had a SE of 734.59 and a P-value of 0.1740.
Although this P-value is greater than the often-used 0.05, accounting for the potential effects of
years is likely an important structural component of the design, and therefore, year should still be
included in the model.
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the main effects is straightforward. For instance, the main effect of feeding level,
given stocking densities, would be simply the difference between the averages of
the results from high and low feeding levels, regardless of the stocking density.
That is, we calculate the average for high feeding levels (across all units) and the
average for low feeding levels (across all units) and subtract the mean of the low
feeding levels from the high feeding levels. The effect is then interpreted as in-
creasing factor A from a low to high feeding level causes an average effect equal to
the difference between the means (Montgomery 2001). In the absence of interac-
tion, main effects are additive so they are simple to calculate and interpret (Quinn
and Keough 2002).

The factorial design helps to understand if and how the effects of each factor
interact (Montgomery 2001). Failure to use a factorial design may lead to misin-
terpretation of results or failure to ascribe results to proper effects. With the pres-
ence of an interaction, the effect of factor A depends on the level of factor B
(Montgomery 2001). For example, in our hatchery experiment, at a low stocking
density fish may grow at a similar rate regardless of feeding level, but at a high
stocking rate feeding rate may affect growth. Interactions are very common in
fisheries science because main effects may have synergistic or antagonistic effects
(Quinn and Keough 2002). Interactions can make interpretation of main effects
difficult and often are easier to interpret when main effects are plotted.

High stocking
High feeding

High stocking
Low feeding

Low stocking
Medium feeding

Low stocking
Low feeding

High stocking
Medium feeding

Low stocking
High feeding

Low stocking
Low feeding

Low stocking
Medium feeding

High stocking
High feeding

High stocking
Low feeding

Low stocking
High feeding

High stocking
Medium feeding

Figure 3.5 Example of a fully randomized factorial design for testing the effect of two
stocking densities and three feeding rates. The entire experiment has two replicates for each
combination of the factors.



104 Chapter 3

Factorial designs have many advantages over other designs. Factorial experi-
ments are especially useful when the goal of the experiment is to obtain a broad
picture of the effects of the factors (Cochran and Cox 1957). If the factors are
independent of one another, the factorial experiment can save considerable time
and expense (Cochran and Cox 1957; Montgomery 2001). The factorial experi-
ment is most often used in manipulative experiments and in exploratory work,
where the factor effects are explored over a range of values (Cochran and Cox
1957; Quinn and Keough 2002).

The statistical model for a simple factorial design with two factors is

yijk = � + �i + �j + ��i j + �i jk , (3.19)

where yijk are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level of the first factor, �j is the effect for each
level of the second factor, ��i j is the interaction between main effects, and �i jk  is
the unexplained variation among experimental units. This model can then be
use to test the H0 that the means for each level of each factor are the same and
that the interaction between the factors is 0.

H0 : �1 = �2 = . . . = �i ;
�1 = �2 = . . . = �j ; and

�1�1 = �1�2 = �2�1 = �2�2 = . . . = �i�j .

Factorial designs are commonly used in studies of fisheries management and
ecology (Box 3.13). For example, Nowlin and Drenner (2000) used mesocosms to
examine the effects of the presence or absence of a planktivore in conjunction
with the presence or absence of a fish assemblage on zooplankton densities. Simi-
larly, Dahl (1998) used a factorial design to evaluate the effects of benthivory on
benthic assemblages by enclosing standard lengths of stream and then examining
the invertebrate assemblage in streams sections with no fish, bullheads, brown
trout, and brown trout plus bullheads. In a more complex design, Drenner et al.
(1998) examined the effects of nutrient loading, levels of omnivory, and levels of
clay on phytoplankton biomass present in mesocosms. In all of these experiments,
interactions between factors were suspected, so factorial designs were necessary
to understand the effects.

Factorial designs are also beneficial in other types of experiments. For ex-
ample, Aas et al. (2000) used a factorial design on results of a mail survey to
produce hypothetical profiles of fishing opportunities that were based on fish-
ing regulations and expectations of anglers who fished certain waters. Factorial
experiments can also be used in computer modeling. For example, Sampson
and Yin (1998) used computer simulations of a fractioned factorial design to
examine the effects of natural mortality, fishing mortality, and recruitment on
the demographic history of a fishery. Factorial designs are common in fisheries,
although investigators may not refer to their designs as factorial. If multiple
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Box 3.13 Example of a Factorial Design

The goal of this study was to determine how size and stocking location of fingerling Chinook
salmon affected survival and subsequent return to the Snake River. Bugert and Mendel (1997) used
a 2 × 2 factorial design in which size (subyearling versus yearling) and location of release (on-
station versus off-station) were compared to see how these factors affected survival. For this
example, we have included only years when all treatment combinations were implemented.

Program

data chinook;

input year size$ release$ survival;

cards;

1987 Sub On .058

1987 Sub Off .155

1987 Yearling On .406

1987 Yearling Off .319

1988 Sub On .058

1988 Sub Off .004

1988 Yearling On .350

1988 Yearling Off 1.376

1989 Sub On .014

1989 Sub Off .008

1989 Yearling On .092

1989 Yearling Off .320

1990 Sub On .047

1990 Sub Off .044

1990 Yearling On .599

1990 Yearling Off 3.048

;

run;

Because survival was expressed as a percentage, the data were first transformed using the arcsine
transformation. The program used to analyze these data follows.

data chinook1;

set chinook;

arcsurv=arsin(survival/100);

run;

proc glm;

class size release;

model arcsurv=size release size*release;

lsmeans size release size*release/stderr;

run;

Results and Interpretation

Results of this analysis are as follow.

(Box continues)
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Table The GLM procedure for a 2 × 2 factorial design to assess fingerling Chinook salmon survival
with size (subyearling versus yearling) and location of release (on-station versus off-station) as
factors (based on Bugert and Mendel 1997). The dependent variable is the arcsin transformation of
the percent survival (arcsurv); the number of observations is 16.

Class Level Information

Class Levels Values

Size 2 Sub Yearling
Release 2 Off On

General Linear Model

Source df SS Mean square F-value P > F

Model 3 0.00039779 0.00013260 3.10 0.0672
Error 12 0.00051284 0.00004274
Corrected total 15 0.00091063

R2 0.436827 Root MSE 0.006537
CV 151.6227 Arcsurv mean 0.004312

Source df Type III SS Mean square F-value P > F

Size 1 0.00023428 0.00023428 5.48 0.0373
Release 1 0.00008329 0.00008329 1.95 0.1880
Size*release 1 0.00008021 0.00008021 1.88 0.1958

Least-Squares Means

Size Arcsurv LSMEAN SE P > |t|

Sub 0.00048500 0.00231130 0.8373
Yearling 0.00813815 0.00231130 0.0042

Release Arcsurv LSMEAN SE P > |t|

Off 0.00659315 0.00231130 0.0146
On 0.00203001 0.00231130 0.3970

Size Release Arcsurv LSMEAN SE P > |t|

Sub Off 0.00052750 0.00326866 0.8745
Sub On 0.00044250 0.00326866 0.8946
Yearling Off 0.01265879 0.00326866 0.0022
Yearling On 0.00361751 0.00326866 0.2901

Results of the analysis suggest that size at stocking significantly affected survival of juvenile
Chinook salmon (F = 5.48; P = 0.0373), but that release location did not significantly affect survival (F
= 1.95; P = 0.1880). Further, the interaction between release location and size at stocking was not
significant (F = 1.88; P = 0.1958).

Box 3.13 (continued)
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factors and interactions are included in the study design, a factorial design is
very likely the basis for the experiment.

3.3.6 Nested Design

Nested designs often occur when subsamples are taken from the experimental
units included in a study. A common type of nesting in fisheries research is to
have individual sample sites nested within lakes or streams. In such studies, indi-
vidual lakes or streams are experimental units, but we need to account for varia-
tion among sites within each lake or stream. Similarly, individual fish sampled
from a lake are generally not true replicates but should be treated as a nested
subsample. For example, in Figure 3.6, fish are nested subsamples within lakes,

Nested design

Herbicide lakes

Control lakes

Figure 3.6 Example of a nested design in which lakes are the main experimental unit and
individual fish are nested subsamples within each lake. Open circles indicate lakes that were not
included in the study as either herbicide lakes or control lakes.
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which were randomly selected for application of herbicide or held as control lakes.
To account for the experimental design properly, a nested effect needs to be
included in the statistical model. The nested effect variable is generally a categori-
cal identifier for each experimental unit. In nested designs, the effects can be
either random or fixed, but in the biological sciences the main effect (e.g., the
treatment applied) is often fixed and the nested effect (e.g., individual lake iden-
tifier) is often random (Quinn and Keough 2002).

The experimental units can sometimes be difficult to identify properly in nested
designs (Yandell 1997). For example, in a design in which sampling transects are
nested within habitat types in a lake, the primary experimental units are habitat
patches, not sampling transects or the lake. Difficulties in identifying primary
experimental units in nested designs can also lead to pseudoreplication (Hurlbert
1984), where subsamples (e.g., fish in nets) are confused with truly replicated
experimental units (e.g., nets in lakes).

The statistical model for nested designs is similar to that for mixed models
(section 3.3.4); an example of a nested design is given in Box 3.14. Nested designs
are common in fisheries. The design discussed above, with sampling transects or
locations nested in streams or lakes, is appropriate when comparing effects across
water bodies. For example, to determine how various benthic taxa varied at differ-
ent spatial scales, Boyero and Bailey (2001) used a nested design with sampling
points nested within riffles nested within streams. Boyero and Bailey (2001) were
able to attribute the variation in taxa to these different spatial scales. Using a
similar approach, Cole (2001) nested sample cells of different sizes to assess spa-
tial variability in the abundance of clams. Pierce et al. (2001) used a nested design
to examine differences in species richness in relation to diel sampling period,
sampling gears, and sites, all nested within each lake sampled. Using a random-
effects model, Radomski and Goeman (2001) nested developed and undeveloped
lakeshore plots within lake development classes to quantify differences in vegeta-
tive abundance among lakes and between shoreline types. Toepfer et al. (1999)
nested individual leopard darter results within separate trials to separate indi-
vidual variation in burst speed and numbers when assessing overall swimming
performance. Conover et al. (1997) used a nested design to attribute variance in
growth rate of young striped bass to individual mothers, nested within the lati-
tude from which they came, to separate genetic and physiological effects of each
mother from the effect of latitude.

3.3.7 Split-Plot Design

In a split-plot design, the main experimental units are divided into two or more
parts (Cochran and Cox 1957). Different levels of treatments are then applied to a
subunit within the main experimental unit. This type of design is similar to a ran-
domized block design, except in the randomized block, the treatment combina-
tions are assigned randomly, not randomly within each main plot (Cochran and
Cox 1957). For example, consider a hatchery experiment with two levels of stock-
ing density (high and low) and two feeding levels (high and low). In a split-plot
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Box 3.14 Example of a Nested Design

For the example in Box 3.12, where the effect of herbicide treatment on age-0 bluegill density was
investigated, we may also be interested in how herbicide treatment affects mean length of age-0
bluegill at the end of the growing season (for this example, assume that length of individual bluegill
from each lake in the study was measured). In a nested design, the primary experimental unit is a
lake, so each bluegill is not an independent replicate but rather is a subsample from the lake. For
brevity, only the lakes sampled in 2001 from Box 3.12 are used in this example.

Table Hypothetical data on lengths of age-0 bluegills from lakes treated with herbicide and
control lakes that were not treated with herbicide (an extension of Box 3.12 data).

Length of age-0 bluegills

Summary
Treatment lakes Control lakes

statistic 988 116 375 17 592 677 850 566

103 88 97 116 70 83 102 79
90 95 94 94 79 85 89 72
98 82 103 112 78 92 82 67
90 100 94 111 85 85 86 78
96 84 83 96 65 84 99 83
88 92 93 111 68 83 88 68
97 94 90 91 93 79 99 87

100 79 107 116 80 90 80 75
89 103 94 109 89 77 81 79

108 81 86 110 65 85 93 90

Mean 95.9 89.8 94.1 106.6 77.2 84.3 89.9 77.8

Program

The SAS program used to analyze these data follows.

data bluegill;

input herbicide $ 1-9 lake length;

cards;

Treatment 988 103

Treatment 988 90

(input data)

;

run;

* This call to the MIXED procedure is much like in Box 3.12, except that

the random statement is used to indicate that individual bluegills within a

lake are a subsample from a herbicide treatment class;

proc mixed covtest;

class lake herbicide;

model length=herbicide;

random lake(herbicide);

lsmeans herbicide;

run;
(Box continues)
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Results and Interpretation

Results of the analysis follow.

Table The effect of herbicide treatment on age-0 bluegill length. The mixed procedure with the
random statement is used to indicate that individual bluegills within a lake are a subsample from
an herbicide treatment class. Convergence criteria were met. The estimation method was restricted
maximum likelihood (REML).

Model Information

Data set WORK.BLUEGILL
Dependent variable Length
Covariance structure Variance components
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees of freedom method Containment

Class Level Information

Class Levels Values

Lake 8 17 116 375 566 592 677 850 988
Herbicide 2 Control treatment

Dimensions

Covariance parameters 2
Columns in X 3
Columns in Z 8
Subjects 1
Maximum observations per subject 80
Observations used 80
Observations not used 0
Total observations 80

Box 3.14 (continued)

experiment, the investigator would randomly select a stocking density for each of
four ponds, divide the ponds in half with barriers, and randomly select a feeding
rate to apply to each half of each pond (Figure 3.7). The sample size for feeding
rate increased from two, using a factorial design with four ponds, to four, using
the split-plot design.

When performing a split-plot experiment, the B effect and A × B interaction
(the feeding rate and feeding rate × stocking density effects in the hatchery ex-
periment) are estimated more precisely than are the A effects (stocking density;
Cochran and Cox 1957). As described with the hatchery experiment, the degrees
of freedom are smaller for the whole unit than for the subunit comparisons. The
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Iteration History

Iteration Evaluations –2Res log like Criterion

0 1 579.91706840
1 1 561.75492286 0.00000000

Covariance Parameter Estimates

Covariance
parameter Estimate SE Z-value P > Z

Lake (herbicide) 37.3500 25.1356 1.49 0.0686
Residual 61.5000 10.2500 6.00 <0.0001

Fit Statistics

–2Res log like 561.8
AIC 565.8
AICc 565.9
BIC 565.9

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Herbicide 1 6 9.40 0.0220

Least-Squares Means

Effect Herbicide Estimate SE df t-value P > |t|

Herbicide Control 82.3000 3.2977 6 24.96 <0.0001
Herbicide Treatment 96.6000 3.2977 6 29.29 <0.0001

Results of the analysis indicate that age-0 bluegill in control lakes were significantly shorter (82.3
mm) than in herbicide-treated lakes (96.6 mm; F = 9.40; P = 0.0220).

primary advantage of the split-plot design is realized when the B and A × B effects
are of greater interest than is the A effect, or when the A effect cannot be tested
on small experimental units because the cost or size of the A experimental unit is
prohibitive (Cochran and Cox 1957; Montgomery 2001). For example, in the hatch-
ery example the primary interest was in the feeding rate and feeding rate × stock-
ing density effects, whereas the secondary interest was in the stocking density
effect. However, the increase in precision of estimating B effects can often lead to
results where the effect of factor B is significant and the effect of factor A is not
significant (Cochran and Cox 1957). Analysis of data collected using a split-plot
design are often complicated and require detailed coding of data to assure analysis
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Figure 3.7 Example of a split-plot design to test the effects of feeding and stocking density on
growth rates of muskellunge in hatchery ponds. In this experiment, four ponds are each divided
in half and two ponds each are randomly selected for high and low stocking density. Within
each pond, each side is randomly selected for high or low feeding rates. The overall design
includes two replicates for stocking density and four replicates for feeding rate.

programs work correctly. Split-plot designs often contain a mixture of random
(e.g., ponds) and fixed effects (e.g., feeding or stocking rates), which may further
complicate analysis (Quinn and Keough 2002).

Split-plot designs are uncommon in fisheries, though the repeated-measures
split-plot design has been widely applied (Box 3.15; Maceina et al. 1994). More
details of that design will be covered in the next section because it combines the
aspects of the split-plot and repeated-measures design. An example of a split-plot
design by Secor et al. (2000) tested differences in growth performance between
anadromous and nonanadromous strains of striped bass; a split-plot design was
used to separate growth and salinity effects at three levels of growth and salinity.
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3.3.8 Repeated-Measures Design

The repeated-measures design generally refers to experiments in which individual
experimental units are observed more than once (Quinn and Keough 2002). In
some cases, a single treatment is applied and the experimental unit is observed
over time, but in other cases multiple treatments are applied and the experimen-
tal unit is observed multiple times. When the same experimental units are ob-
served multiple times, the observations on the response to a treatment are poten-
tially correlated because the same experimental unit is used (Quinn and Keough
2002). Thus, observations are not necessarily independent, and the design and
analysis should take this into account. In such experiments, the treatment is typi-
cally considered to be a fixed effect and the subject is often a random effect (Mont-
gomery 2001). As with split-plot designs, repeated-measures designs are often com-
plex, and the analysis depends on the details of the situation (e.g., how many
times the units are observed and how observations are correlated in time).

Repeated-measures designs are not commonly used in fisheries. A repeated-
measures design was used to estimate the retention rate of coded wire tags in
paddlefish, which were marked in four locations with coded wire tags. Each indi-
vidual fish then was examined monthly to determine if tags had been retained or
lost in each location, and total tag retention rate was estimated (Fries 2001). In an
experiment to train grass carp to respond to different types of sound, Willis et al.
(2002) used sound at different frequencies to determine if response varied with
frequency. Because individual response types were measured on individual grass
carp, the type of sound needed to be corrected for the measurement from indi-
vidual grass carp to assure that individual grass carp behavior was taken into ac-
count in analysis of response to the type of sound (Willis et al. 2002).

In fisheries, repeated-measures designs often refer to a specialized version of
the split-plot design in which the repeated measures are taken from the same set
of sites (Box 3.15; Maceina et al. 1994). The sites selected are usually thought of
as random effects in such designs, so repeated-measure designs are essentially
split-plot designs that allow for correlation within each nested random effect
(Yandell 1997). The repeated-measures design or the repeated-measures split-
plot design often assigns treatments to experimental units, which are then mea-
sured over different time intervals (which become the plots). The main differ-
ence between a split-plot design and a repeated-measures split-plot design is that
the split-plot design allocates within-plot treatments to subunits within each plot,
whereas the repeated-measures split-plot design allocates within-subjects treatments
sequentially to each subject (Quinn and Keough 2002). In a fisheries experiment
that uses a repeated-measures split-plot design, sampling stations are often fixed,
so treatments are measured repeatedly at the same site (correlation is present)
with interactions between site, treatment, and time (Maceina et al. 1994).

The use of repeated-measures split-plot designs has become common in fisher-
ies because of interest in time period effects of sampling at fixed sites (Maceina et
al. 1994). Maceina et al. (1994) were the first to advocate use of repeated-measures
split-plot designs in fisheries. In one experiment, Maceina et al. (1994) quantified
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Box 3.15 Example of Repeated-Measures Split-Plot Design

The goal of this study was to determine the effects of vegetation removal by grass carp on fish
biomass. Maceina et al. (1994) sampled the same six coves twice before and twice after treatment.
Main plot A included cove, treatment, and cove*treatment interaction effects, and subplot B
included time and time*treatment interaction effects. Maceina et al. (1994) popularized the use of
repeated-measures split-plot designs in fisheries, which is appropriate for analyzing data collected
through time at fixed stations. The analysis relies on standard analysis of variance techniques.

Program

data cove;
input year treat$ time cove area biomass;
cards;
1980 PRE  1 1 1.51 13854
1980 PRE  1 2  .67  4091
1980 PRE  1 3 2.19 17195
1980 PRE  1 4  .63  5138
1980 PRE  1 5  .64  5148
1980 PRE  1 6  .45  2971
1981 PRE  2 1 1.60  6374
1981 PRE  2 3 1.97 21441
1981 PRE  2 4  .74 17830
1981 PRE  2 5  .66  3577
1981 PRE  2 6  .32  2678
1985 POST 1 1 1.83 3209
1985 POST 1 3 2.39 11556
1985 POST 1 4  .88  8132
1985 POST 1 5  .70  5094
1985 POST 1 6  .49  1973
1986 POST 2 1 1.83 10643
1986 POST 2 2  .43   479
1986 POST 2 3 2.39 11103
1986 POST 2 4  .88  2852
1986 POST 2 5  .70  2489
1986 POST 2 6  .49  8898
 ;
data cove;
set cove;
logbio=log10(biomass);
run;

proc glm;
class cove treat time;
model logbio=cove treat treat*cove time treat*time;
      test h=treat e=treat*cove;
      test h=cove e=treat*cove;
run;

Results and Interpretation

The main fixed effects are cove and treatment, and main plot is split into time effects. The inter-
actions were estimated to see if any spatial (treat*cove) or temporal (treat*time) correlations
affected the results.
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Table The GLM procedure to determine the effects of vegetation removal by grass carp on fish
biomass. Six coves were sampled twice before (PRE) and twice after (POST) treatment. Main plot A
included cove, treatment, and cove*treatment interaction effects, and subplot B included time and
time*treatment interaction effects (based on Maceina et al. 1994). The dependent variable is
log10biomass of fishes (logbio), and the number of observations was 22.

Class Level Information

Class Levels Values

Cove 6 1 2 3 4 5 6
Treatment 2 POST PRE
Time 2 1 2

The GLM Procedure

Source df SS Mean square F-value P > F

Model 13 2.46565668 0.18966590 2.15 0.1406
Error 8 0.70628807 0.08828601
Corrected total 21 3.17194474

 R2 0.777333 Root MSE 0.297130
CV 7.943952 Logbio mean 3.740325

Source df Type III SS Mean square F-value P > F

Cove 5 1.76323921 0.35264784 3.99 0.0409
Treat 1 0.36593102 0.36593102 4.14 0.0762
Cove*treat 5 0.43968044 0.08793609 1.00 0.4767
Time 1 0.01186994 0.01186994 0.13 0.7234
Treat*time 1 0.00436853 0.00436853 0.05 0.8295

Tests of Hypotheses with Type III MS for Cove*Treat as Error Term

Source df Type III SS Mean square F-value P > F

Treat 1 0.36593102 0.36593102 4.16 0.0969
Cove 5 1.76323921 0.35264784 4.01 0.0768

The type III SS, which are properly calculated using the cove*treat interaction MSE, indicate that the
main fixed effects of coves (F = 4.01; P = 0.0768) and vegetation removal by grass carp treatments
(F = 4.16; P = 0.0969) were significant at an alpha of 0.10, which suggests that the treatment
affected fish biomass. Time (F = 0.13; P = 0.7234) and time*treatment (F = 0.05; P = 0.8295) effects
were not important in explaining differences in fish biomass.
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the abundance between years of age-0 black crappie and white crappie that were
collected in trap nets at fixed stations over 2 d. The repeated-measures split-plot
analysis treated stations as replicates, year as the main treatment effect, and day as
the plot effect, along with interactions between years and stations and between
days and years (Maceina et al. 1994). Using a similar approach, Pierce et al. (2001)
determined the effect of the number of marked fish, station, year, and month on
capture efficiency of beach seines for various species of fish. In this experiment,
the replicate was the station, the fixed effect was the year, and the plot was the
month (Pierce et al. 2001). Year and month were significant in explaining cap-
ture efficiency (Pierce et al. 2001). Jackson and Hightower (2001) used individual
movement data from striped bass (the plot) to separate variance of individual fish
from sex and season. They determined how sex and season affected site fidelity of
striped bass (Jackson and Hightower 2001). Finally, to quantify spawning substrate
preferences of yellow perch in Lake Michigan, Robillard and Marsden (2001)
used a repeated-measures split-plot design that treated stations as replicates, year
as the main effect, and substrate types as plots.

3.4 CONCLUSION

One point of potential confusion in experimental design is how to distinguish
between fixed factors, fixed blocking effects, and random effects. In the hatchery
example above, stocking density and feeding rate were factors assigned randomly
to individual ponds because we were interested in understanding the response of
the system to these factors. Thus, both of these factors are fixed effects. In con-
trast, the designation of lakes as being northern or southern in Box 3.10 is not
something under the control of the investigator; all lakes are assigned to one of
these two groupings before the start of the experiment. As such, this is an ex-
ample of a fixed blocking factor. However, we may be interested in making predic-
tions for lakes in the northern or southern part of the state, even if they were not
present in our sample. We can appropriately make predictions for such a case
because unsampled lakes must belong to either the northern or southern block.
The trickiest situation is for random effects. Imagine, for example, that the state
of Wisconsin had been subdivided into 20 different blocks, but we only selected
lakes in three of the 20 blocks. We could still use region as a blocking factor, but
the three selected blocks do not constitute the entire population (lakes) of 20
blocks, so we could not make predictions for a lake in one of the 17 blocks that
were not included in the experiment. Treating the regional designation as a ran-
dom effect appropriately allows us to take into account block-to-block variation,
thereby enabling predictions about lakes in all 20 blocks.

Throughout this discussion, we have focused on true experiments where lev-
els of treatment can be assigned at random by the investigator. However, in
many fisheries studies, we are interested in how naturally varying factors affect
fish populations, habitat, or anglers. Strictly speaking, such observational stud-
ies do not really fall into the category of an experimental design because we
cannot infer cause and effect relationships from such studies. Observational
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studies are common in fisheries science and yield insight into the dynamics of
fishery systems. Many of the methods we have presented in this section are use-
ful for the analysis of observational studies, but we caution the reader to recog-
nize that the conclusions reached from such analyses are akin to correlation
and do not imply causality.

As a final comment, the experimental designs presented here represent only a
simple subset of the experimental designs used in practice. Elements of several
designs are often used to achieve the goals of an experiment. For example, nested
designs are frequently used with a factorial design. This occurs because our unit
of measurement (e.g., individual fish) is often part of a larger experimental unit
(e.g., lake or pond). Elements of repeated-measure designs are also frequently
combined with other experimental design components to allow us to determine
how experimental units vary over time in response to treatment. Because of the
complexity of many experimental designs and analyses in fisheries, we recom-
mend that you consult with a professional statistician before an experiment is
started. This will assure that the proper experimental design is used and that the
correct analyses techniques are considered and used. The analysis of data from
more complex designs needs to be carefully considered but provides much deeper
insights into the biology of fisheries systems.
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