
MAS/MASOR/MASSM - Statistical Analysis - Autumn Term

11 Sample Surveys II: Stratification

11.1 Introduction

Stratified Random Sampling is characterized by the following:
• the population is divided into a number of parts called strata, say into K strata;
• a simple random sample is drawn independently from each part;
• unbiased estimates of the population mean are obtained using an appropriately weighted sum
of the sample means from each stratum.

Stratification is employed for a number of reasons:
i) differences between the population strata means do not make a contribution to the sampling
error of the estimate yst. Sampling error arises solely from variations among the sampling
units that are in the same stratum. Thus, if we form strata in an appropriate way, then we
can expect a gain in precision over simple random sampling.

ii) we can choose the size of the sample taken from each stratum - sampling fractions need not
be the same in each stratum. This gives scope to do an efficient job allocating resources to the
sampling within strata.

11.2 Notation

Let Yij be the value of the variable Y for the j-th member of the i-th stratum in the population.

Let yij be the value of the variable y for the j-th member taken from the i-th stratum from
within the sample.

Also, let Ni be the total number of sampling units in the i-th stratum, in which case, the
total population size is given by N =

∑K
i=1 Ni.

The following table summarizes some of the other quantities of interest:
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Population Sample

Size N n

Strata sizes Ni ni

Strata weights Wi = Ni/N wi = ni/n

Total T =
∑K

i=1

∑Ni

j=1 Yij t =
∑K

i=1

∑ni

j=1 yij

Mean Y = T/N y = t/n

Strata Totals Ti =
∑Ni

j=1 Yij ti =
∑ni

j=1 yij

Strata Means Y i = Ti/Ni yi = ti/ni

Variances S2 =
∑K

i=1

∑Ni
j=1(Yij−Y )2

N−1
s2 =

∑K
i=1

∑ni
j=1(yij−y)2

n−1

Strata Variances S2
i =

∑Ni
j=1(Yij−Y i)

2

Ni−1
s2

i =
∑ni

j=1(yij−yi)
2

ni−1

Also,
define fi = ni/Ni to be the sampling fraction for the i-th stratum, and,
f = n/N to be the overall sampling fraction.

11.3 Design Efficiency of Stratified Sampling

Define

yst =
K∑

i=1

Wiyi

to be the stratified (simple) sample mean.
By exploiting results derived under simple random sampling, and noting the independence of
the samples drawn from different strata, we deduce that

E[yst] =
K∑

i=1

WiE[yi] =
K∑

i=1

WiY i =
1

N

K∑
i=1

NiY i =
1

N

K∑
i=1

Ni∑
j=1

Yij = Y . (1)

and

var(yst) =
K∑

i=1

W 2
i var(yi) =

K∑
i=1

W 2
i

S2
i

ni

(1− fi) (2)

by recalling that, under simple random sampling (SRS),

var(y) =
S2

n
(1− f).
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Compare this with the overall sample average:

y′ =
K∑

i=1

wiyi =
1

n

K∑
i=1

niyi

In general, this will differ from yst unless ni/Ni = n/N , i.e. ni ∝ Ni for i = 1, . . . , K: the
sample sizes are proportional to the stratum sizes, which is proportional allocation (see later);
such an allocation also ensures that y′ is unbiased for Y .

The design efficiency is determined by comparing var(yst) with var(y). Indeed, define

Deff = var(yst)/var(y).

If the within-stratum sampling fractions are equal to each other, then the gain in efficiency
depends on how small the {S2

i } are in comparison to S2.
Indeed, since, in this case (see later),

var(yst) =
1− f

n

K∑
i=1

Ni

N
S2

i

then

var(y)− var(yst) =
(1− f)

n

{
S2 − 1

N

K∑
i=1

NiS
2
i

}
.

However,

S2 =
1

N − 1

{
K∑

i=1

Ni∑
j=1

(Yij − Y )2

}
=

1

N − 1

{
K∑

i=1

Ni∑
j=1

(Yij − Y i + Y i − Y )2

}

=
K∑

i=1

(
Ni − 1

N − 1

)
S2

i +
K∑

i=1

Ni

N − 1
(Y i − Y )2.

If the {Ni} are sufficiently large, then Ni−1
N−1

≈ Ni

N−1
, and so

S2 ≈ 1

N

{
K∑

i=1

NiS
2
i +

K∑
i=1

Ni(Y i − Y )2

}
.

Thus

var(y)− var(yst) ≈
(1− f)

nN

K∑
i=1

Ni(Y i − Y )2 =
(1− f)

n

K∑
i=1

Wi(Y i − Y )2

which is strictly positive unless the {Y i} are all equal to each other. Thus (under the proviso
that the {Ni} are sufficiently large), the stratified sample mean is usually more efficient than
the simple random mean. A more precise analysis can be found in the next section.
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11.4 Choice of Strata fractions

There are a number of possible strategies available for selecting the strata sampling fractions.
We outline a few of these below, along with their relative efficiencies.

11.4.1 Equal Allocation

Set ni = n/K, for i = 1, . . . , K, i.e. equal ’case loads’: this particular mechanism may be
considered to be administratively convenient.

11.4.2 Proportional Allocation

Set ni proportional to Ni, i.e. ni ∝ Ni, which implies that fi = ni

Ni
= n

N
= f , and so ni = n×Wi,

i=1, . . . , K.

Denote the corresponding estimate of Y by yst;p. Then

var(yst,p) =
K∑

i=1

W 2
i

S2
i

ni

(1− fi)

=
(1− f)

n

K∑
i=1

WiS
2
i =

1− f

n
S2

w

where S2
w is the average within-strata variance.

Then

Deff (yst;p) = var(yst;p)/var(y)

=
S2

w

n
(1− f)/

S2

n
(1− f) = S2

w/S2.

This shows that efficiency is achieved upon the basis of homogeneity within strata.

11.4.3 Optimum Allocation based on Cost

Problem: Minimize the variance of the estimate subject to a cost constraint.

Let c0 be some fixed cost, and define ci to be the cost per sampled unit in stratum i.
Then the total cost satisfies

c0 +
K∑

i=1

nici ≤ C (3)

where C is the available budget.
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Thus we seek to minimize

var(yst) =
K∑

i=1

W 2
i S2

i (1− fi)

ni

subject to the constraint (3).

To solve this problem, form the Lagrangian:

L(n1, . . . , nK) = var(yst) + λ(c0 +
K∑

i=1

nici − C).

Now

∂L

∂nj

= −W 2
j S2

j

n2
j

+ λcj

which, upon equating to zero, yields

λ =
W 2

j S2
j /cj

n2
j

.

This implies that

nj ∝ WjSj√
cj

.

Actually, if the costs across all the strata were equal, then the optimal allocation would be
such that nj ∝ WjSj: we denote the resulting estimate by yst;o. It can be shown that

var(yst;o) =
1

n

(
K∑

i=1

WiSi

)2

− 1

N

K∑
i=1

WiS
2
i .

11.4.4 Disproportionate sampling

Disproportionate sampling is particularly worthwhile when the variable being measured has a
highly skewed or asymmetrical distribution. It is often the case that such populations contain
a few sampling units that have large values for this variable and many units with small values.
Examples include: family income, house prices, cases tried by courts, sales turnover. We
explore this allocation rule via the following example.

Example 11.1 (An application of ’Disproportionate Sampling’)
Consider a population of 1019 tertiary colleges and universities in the U.S.A. Data on student
enrollment for a certain academic year were as follows, stratified by size of institution.
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Stratum No. of students No. of Stratum Stratum Std.
per institution institutions Total Mean Dev.

i Ni Ti Y i Si

1 <1000 661 292671 443 236
2 1000-3000 205 345302 1684 625
3 3000-10000 122 672728 5514 2008
4 ≥10000 31 573693 18506 10023

N = 1019 T = 1884394

These data might be used to plan a sample designed to give a quick estimate of total registra-
tion in some future year.

Assume that the sampling costs per unit are the same in all strata and that we are aim-
ing at a total sample size of n =

∑4
i=1 ni = 250. Then, we could attempt to invoke the optimal

allocation rule, i.e. that nj ∝ NjSj. Under this rule, n4 would be

250× 31× 10023

(661× 236) + (205× 625) + (122× 2008) + (31× 10023)
≈ 92.

However, N4 = 31: thus our ’disproportionate’ allocation procedure says that we take a 100%
sample from stratum 4 and then use the rule ni ∝ NiSi to distribute the remaining sample
over the other strata.

Stratum i ni Sampling rate fi

1 65 10%
2 53 26%
3 101 83%
4 31 100%

Total 250

6



11.5 Estimation of Totals

A number of unbiased estimators for T can be formulated: these differ in their variability
according to the sampling scheme from which they are generated.

Under simple random sampling, we use T̂ = Ny, and so

E[T̂ ] = N × E[y] = NY = T

var(T̂ ) = N2(1− f)S2/n.

Under stratified random sampling with proportional allocation, we use

T̂st;p = Nyst;p.

Now

E[T̂st;p] = E[Nyst;p] = N × E[yst;p] = NY = T

using (1), which is still applicable under proportional allocation.
Also

var(T̂st;p) = var(Nyst;p) = N2 × var(yst;p) = N2 × (1− f)

n

K∑
i=1

WiS
2
i = N2 1− f

n
S2

w.

Finally, consider stratified random sampling with optimal allocation using equal costs for all
sampling units. Then defining

T̂st;o = Nyst;o

it follows that

E[T̂st;o] = E[Nyst;o] = N × E[yst;o] = NY = T

and

var(T̂st;o) = N2 × var(yst;o) = N2





1

n

(
K∑

i=1

WiSi

)2

− 1

N

K∑
i=1

WiS
2
i



 .
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11.6 Stratified Sampling for Attributes

Here it is assumed that Xij = 1 if the j-th member of the i-th stratum belongs to a certain
category, and Xij = 0 otherwise. Thus the proportion of the population that belong to this

category is X =
∑K

i=1

∑Ni

j=1 Xij/N ; let us denote this by π. Similarly, the proportion of the

i-th stratum population that belong to this category is given by X i =
∑Ni

j=1 Xij/Ni, which we
denote by πi.

Let xij be equal to 1 if the j-th member of the i-th stratum within the sample possesses
the attribute, and is equal to 0 otherwise.

Let xi be the proportion of the ni members of the sample from the i-th stratum that be-
long to the category, i.e.

∑ni

j=1 xij/ni. The quantity π can be estimated by

π̂st =
K∑

i=1

Wixi

This is unbiased since

E[π̂st] =
K∑

i=1

WiE[xi] =
K∑

i=1

WiX i

=
1

N

K∑
i=1

NiX i =
1

N

K∑
i=1

Ni∑
j=1

Xij = X = π.

Also, using the fact1 that S2
i = Niπi(1−πi)

Ni−1
, then

var(π̂st) =
K∑

i=1

W 2
i var(xi) =

K∑
i=1

W 2
i

πi(1− πi)

ni

1− fi

1− 1
Ni

≈
K∑

i=1

W 2
i

πi(1− πi)

ni

(1− fi)

where the final expression holds if the {Ni} are sufficiently large.

11.7 Choosing a Sample Size

We assume that sample size is determined in the context of a reasonable sampling scheme
(optimality criteria for experiments or optimal sampling schemes for surveys). Criteria are
usually of two types - statistical and/or financial.

11.7.1 Statistical Criteria

Classical textbook approach is to set up criteria independent of any financial constraint and de-
termine the sample size necessary. Typical criteria are confidence intervals and standard errors.

1Under this regime, S2 = Nπ(1−π)
N−1 : see top of p.12 of lecture 10.
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(a) C.I. criterion
Suppose that we have a finite population of size N with standard deviation S =

√
S2. We

could estimate Y using y based on a sample of size n. Along with the assumption of normality,
we have that

y ∼ N

(
Y ,

S2

n

{
1− n

N

})

approximately, in which case the width of the ’approximate’ 100(1− α)% C.I. is

2× zα/2
S√
n

(
1− n

N

)1/2

.

For a 95% C.I., this is approximately equal to

4× S√
n

(
1− n

N

)1/2

since zα/2 = 1.96.

To ensure that the width of the interval is equal to d, say, we solve

d ≈ 4× S√
n

(
1− n

N

)1/2

which implies that

n ≈ 16S2

d2 + 16S2

N

≈ 16S2

d2

for large N .

(b) S.E.Criterion
Suppose that we require that the standard error of the estimate of the mean is no greater than
e. Then

S√
n

(
1− n

N

)1/2

= S

(
1

n
− 1

N

)1/2

= e

i.e.

S2

n
= e2 +

S2

N

which implies that

n =
S2

e2 + S2

N

≈ S2

e2

for large (stratum) sample sizes N .
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11.7.2 Cost Criteria

(a) Costing the Survey or Study
The costs may be detailed under headings such as set-up and initial design, pilot survey/experiment,
analysis of pilot and refinement of design, interview training, data collection, data entry, data
screening, analysis, report presentation.

Some costs are fixed, others monotonic in the sample size (not necessarily linear). Overall
cost generally of the form:

Cost = Constant +
K∑

i=1

gi(stratum sample size)

where the function gi(·) is often of a form involving either steps or slopes. For example, the
steps may correspond to the need for another interviewer.

sample.size

c
o
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t
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0
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4
0
0

5
0
0

Figure 1: cost vs. sample size

(b) Evaluating a Return
This is more difficult as we require the ’value’ of determining a particular population parameter
to a desired degree of accuracy or the ’value’ of detecting a particular change in magnitude of
a particular process.

Might start with a statistical criterion curve, standard error say, plotted against sample size.
This needs to be converted to a monetary value curve.
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Figure 2: monetary return vs. sample size

(c) ’Cost-Benefit’ Analysis
We can overlay cost and benefit curves. Some samples will be too small to give any benefit.
Others are clearly too large. An appropriate trade-off of cost and benefit is required.
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Figure 3: ’Cost-Benefit’ analysis
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