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ABSTRACT
Stratified random sampling (SRS) is a widely used sampling tech-

nique for approximate query processing. We consider SRS on

continuously arriving data streams, and make the following con-

tributions. We present a lower bound that shows that any stream-

ing algorithm for SRS must have (in the worst case) a variance

that is Ω(r ) factor away from the optimal, where r is the number

of strata. We present S-VOILA, a streaming algorithm for SRS

that is locally variance-optimal. Results from experiments on real

and synthetic data show that S-VOILA results in a variance that is
typically close to an optimal offline algorithm, which was given

the entire input beforehand. We also present a variance-optimal

offline algorithm VOILA for stratified random sampling. VOILA
is a strict generalization of the well-known Neyman allocation,
which is optimal only under the assumption that each stratum is

abundant, i.e. has a large number of data points to choose from.

Experiments show that VOILA can have significantly smaller vari-

ance (1.4x to 50x) than Neyman allocation on real-world data.

1 INTRODUCTION
Random sampling is a widely-used method for data analysis, and

features prominently in the toolbox of virtually every approxi-

mate query processing system. The power of random sampling

lies in its generality. For many important classes of queries, an

approximate answer whose error is small in a statistical sense

can be efficiently obtained through executing the query over

an appropriately derived random sample. Sampling operators

are part of all major database products, e.g., Oracle, Microsoft

SQL Server, and IBM Db2. The simplest method for random sam-

pling is uniform random sampling, where each element from

the entire data (the “population”) is chosen with the same prob-

ability. Uniform random sampling may however lead to a high

variance in estimation. For instance, consider a population D =
{1, 2, 4, 2, 1, 1050, 1000, 1200, 1300}, and suppose we wanted to

estimate the population mean. A uniform random sample of

size two leads to an estimate with a variance of approximately

1.6 × 10
5
.

An alternative sampling method is stratified random sampling
(SRS), where the population is partitioned into subgroups called

“strata”. From within each stratum, uniform random sampling

is used to select a per-stratum sample. All per-stratum samples

are combined to derive the “stratified random sample”. Suppose

that the population is divided into two strata, one with elements

{1, 2, 4, 2, 1} and the other with elements {1000, 1050, 1200, 1300}.

A stratified random sample of size two that chooses one element

from each stratum yields an estimate with variance 2.47 × 10
3
,

much smaller than a uniform random sample of the same size.
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SRS provides the flexibility to emphasize some strata over

others through controlling the allocation of sample sizes; for

instance, a stratum with a high standard deviation can be given

a larger allocation than another stratum with a smaller standard

deviation. In the above example, if we desire a stratified sample

of size three, it is best to allocate a smaller sample of size one to

the first stratum and a larger sample size of two to the second

stratum, since the standard deviation of the second stratum is

higher. Doing so, the variance of estimate of the population mean

further reduces to approximately 1.23 × 10
3
. The strength of

SRS is that a stratified random sample can be used to answer

queries not only for aggregates such as the mean, and sum of the

entire population, but also of subsets of the population defined

by selection predicates that are provided at query time. SRS has

been used widely in database systems for approximate query

processing [1–3, 8, 14, 30, 31].

A problem with handling large streaming data is that current

methods for SRS are predominantly offline methods that assume

all data is available before sampling starts. As a result, systems

that rely on SRS (e.g., [3, 14, 31]) cannot easily adapt to new data

and have to recompute stratified random samples from scratch,

as more data arrives. With the advent of streaming data ware-

houses such as Tidalrace [29], it is imperative to have methods for

SRS that work on dynamic data streams, and maintain stratified

random samples in an incremental manner.

We address the shortcoming of current methods through a

study of SRS on streaming data. The difficulty of SRS on stream-

ing data is that there are two logical processes simultaneously

at work. One is sample size allocation, which allocates samples

among the different strata in a manner that minimizes the vari-

ance of an estimate. The second is the actual sampling of elements

from within each stratum. While each of these two steps, sam-

ple size allocation and sampling, can be done individually in a

streaming fashion, it is far more challenging to do them simulta-

neously. We present lower bounds as well as algorithms for the

task of maintaining a stratified random sample on a data stream.

The quality of a stratified random sample is measured using the

variance of an estimate of a population statistic, computed using

the sample.

1.1 Our Contributions
– Streaming Lower Bound:We present a lower bound showing

that in the worst case, any streaming algorithm for SRS that uses

a memory ofM records must have a variance that is Ω(r ) away
from the variance of the optimal offline algorithm that uses the

same memory ofM records, where r is the number of strata. We

show that this lower bound is tight, by construction.

–Practical StreamingAlgorithm for SRS:Wepresent S-VOILA
(Streaming Variance OptImaL Allocation) a streaming algorithm

for SRS that is locally variance-optimal. Upon receiving new ele-

ments, it (re-)allocates sample sizes among strata so as to obtain

the smallest variance among all possible re-allocations. S-VOILA
can also deal with the case when a minibatch of multiple data



items is seen at a time, as in systems such as Spark streaming [42].

Re-allocations made by S-VOILA are locally optimal with respect

to the entire minibatch, and the quality of re-allocations improve

as the minibatch size increases. Since S-VOILA can deal with mini-

batches of varying sizes, it is well-suited to real-world streams

that may have bursty arrivals.

– Variance-Optimal Sample Size Reduction: The streaming

algorithm (S-VOILA) re-allocates sample sizes based on a novel

method for reducing the size of an existing stratified random

sample down to a desired target size in a variance-optimal man-

ner. This novel technique for sample size reduction may be of

independent interest in other tasks, e.g., sub-sampling from a

given stratified random sample.

– Sampling from a SlidingWindow of a Stream:We present

an algorithm for sampling from a sliding window of the most

recent elements in a stream. This algorithm uses memory much

smaller than the size of the window, and results in a sample

whose variance is close to that obtained by an optimal offline

algorithm that is allowed multiple passes through data in the

window.

– Variance Optimal Offline SRS: We present the first offline

algorithm for variance-optimal SRS. Our algorithm VOILA com-

putes an allocation with provably optimal variance among all

possible allocations of sample sizes to strata. The well known

Neyman Allocation [36] (NeyAlloc), which originated from

the statistics literature, assumes that each stratum has an abun-

dance of data to choose from. However, this assumption may not

hold in databases, since each stratum is a subset of a database ta-

ble, and the size of a stratum may be small. VOILA does not make

such assumptions, and computes a variance optimal allocation

no matter how large/small the sizes of the strata. Hence, VOILA
is a strict generalization of NeyAlloc. In addition, VOILA does

not make any assumption on how data is stratified.

– Experimental Evaluation: We present a detailed experimen-

tal evaluation using real and synthetic data, considering both

the quality of sample and accuracy of query answers using the

sample. In our experimental study, we found that (a) the variance

of S-VOILA is typically close to that of the optimal offline algo-

rithm VOILA, and the allocation of S-VOILA also closely tracks

that of VOILA. S-VOILA also improves significantly upon prior

work [5]. The variance of S-VOILA improves as the size of the

minibatch increases, and a minibatch of size 100 provides most

of the benefits of S-VOILA. (b) Samples produced using S-VOILA
yield accurate answers to a range of queries that involve a selec-

tion followed by aggregation, where the selection predicate is

provided at query time, and the aggregation function can be one

of sum, average, and standard deviation
1
. (c) In the offline setting,

VOILA can have significantly smaller variance than NeyAlloc.

1.2 Related Work
Sampling has been widely used in approximate query process-

ing on both static and streaming data [17, 28, 33, 38, 39]. The

reservoir sampling [34, 41] algorithm for uniform sampling from

a stream has been known for decades, and many variants and

generalizations have been considered, such as weight-based sam-

pling [11, 22], insertion and deletion of elements [25], distinct

1
Note that a query for the variance or standard deviation of data is distinct from

the variance or standard deviation of an estimate.

sampling [26], sampling from a sliding window [9, 12, 23], time-

decayed sampling [19, 20], and distributed streaming sampling [15,

16, 18, 40].

SRS in the online setting can be viewed as weight-based reser-

voir sampling where the weight of each stream element depends

on the stratum it belongs to. Since the weight of a stream el-

ement changes dynamically (even after it has been observed)

prior work on weighted reservoir sampling [22] does not ap-

ply, since it assumes that the weight of an element is known at

the time of observation and does not change henceforth. Meng

[35] considered streaming SRS using population-based alloca-

tion. Al-Kateb et al. [4, 5] considered streaming SRS using power

allocation, based on their prior work on adaptive reservoir sam-

pling [6]. Lang et al. [32] consider machine learning methods for

determining the per-item probability of inclusion in a sample.

This work is meant for static data, and can be viewed as a version

of weighted random sampling where the weights are learnt using

a query workload. Prior work on streaming SRS neither considers

provable guarantees on the quality of the resulting samples, nor

lower bounds for streaming SRS, like we do here.

A majority of prior work on using SRS in approximate query

processing [1–3, 8, 14, 30, 31] has assumed static data. With the

emergence of data stream processing systems [7] and data stream

warehousing systems [29], it is important to devise methods for

streaming SRS with quality guarantees.

2 PRELIMINARIES
Stratified sampling can be viewed as being composed of three

parts – stratification, sample allocation, and sampling. Stratifi-

cation is a partitioning of the universe into a number of disjoint

strata. Equivalently, it is the assignment of each data element

to a unique stratum. In database applications, stratification is

usually a pre-defined function of one or more attributes of the

data [17]. For example, the works of Chaudhuri et al. [14] and

Agarwal et al. [3] on approximate query answering stratify tuples

in a database table based on the set of selection predicates in the

query workload that the tuple satisfies, and the work of Kandula

et al. [31] on approximate query answering stratify rows of a

table using the group ids derived from a group-by query. Note

that our methods do not assume that stratification is performed

in any specific manner, and work regardless of the method used

to stratify data.

Our work considers sample allocation, the partitioning of the

available memory budget ofM samples among the different strata.

In streaming SRS, the allocation needs to be continuously re-

adjusted as more data arrives, and the characteristics of different

strata change. In offline sampling, allocation needs to be done

only once, after knowing the data in its entirety.

The final sampling step considers each stratum and chooses

the assigned number of samples uniformly at random. In offline

stratified sampling, the sampling step can be performed in a

second pass through the data using reservoir sampling on the

subset of elements belonging to each stratum, after a first pass has

determined the sample size allocation. In the case of streaming

sampling, the sampling step needs to occur simultaneously with

sample (re-)allocation, which may change allocations to different

strata over time.

Variance-Optimal Allocation. The quality of a stratified

random sample is measured through the variance of an esti-

mate that is derived using the sample. Consider a data stream



R = {v1,v2, . . . ,vn } of current size n, whose elements are strat-

ified into r strata, numbered 1, 2, . . . , r . Let ni denote the num-

ber of elements in stratum i . For each i = 1 . . . r , let Si be a

uniform random sample of size si drawn without replacement

from stratum i . Let S = {S1, S2, . . . , Sn } denote the stratified ran-

dom sample. The sample mean of each per-stratum sample Si is:

ȳi =
∑
v∈Si v
si . The population mean of R, µR can be estimated as:

ȳ =
∑r
i=1

ni ȳi
n . It can be shown that the expectation of ȳ equals

µR . Given a memory budget of M ≤ n elements to store all the

samples, so that

∑
i si = M , the following question of variance-

optimal allocation of sample sizes has been considered in prior

work [36]: How to split the memory budget M among the si s to
minimize the variance of ȳ? The variance of ȳ can be computed

as follows (e.g. see Theorem 5.3 in [17]):

V = V (ȳ) =
1

n2

r∑
i=1

ni (ni − si )
σ 2

i
si
=

1

n2

r∑
i=1

n2

i σ
2

i
si
−

1

n2

r∑
i=1

niσ
2

i

(1)

While the theory around SRS in both statistics and database com-

munities has used the variance of the population mean as a mini-

mization metric, variance-optimal SRS is useful for other types of

queries as well, including predicate-based selection queries, sum

queries across a subset of the strata, queries for the variance, and

combinations of such queries [3, 14] – also see our experiments

section.

NeyAlloc for Abundant Strata. Prior studies on variance-

optimal allocation have primarily considered static data. Addi-

tionally, they assume that every stratum has a very large volume

of data, so that there is no restriction on the size of a sample

that can be chosen from this stratum. This may not be true

for the scenario of databases. Especially in a streaming con-

text, each stratum starts out with very little data. Given a col-

lection of data elements R, we say that a stratum i is abundant
if ni ≥ M · (niσi )/

(∑r
j=1

njσj
)
. Otherwise, the stratum i is said

to be bounded. Under the assumption that each stratum is abun-

dant, the popularly used “Neyman Allocation” NeyAlloc [17, 36]
minimizes the variance V , and allocates a sample size for stra-

tum i as M · (niσi )/
(∑r

j=1
njσj

)
. We note that NeyAlloc is no

longer optimal if one or more strata are bounded. Our meth-

ods of sample size reduction and online (S-VOILA) and offline

(VOILA) algorithms do not have this restriction and work under

the general case whether or not strata are bounded.

Our solution to streaming SRS consists of two parts – sample

size re-allocation, and per-stratum random sampling. Both parts

execute continuously and in an interleaved manner. Sample size

re-allocation is achieved using a reduction to a “sample size re-

duction” in a variance-optimal manner. Given a stratified random

sample S1 of size larger than a targetM , sample size reduction

seeks to find a stratified sample S2 of size M that is a subset of

S1 such that the variance of S2 is as small as possible.

Roadmap: In Section 3, we consider streaming SRS, and

present a tight lower bound for any streaming algorithm, fol-

lowed by S-VOILA an algorithm for streaming SRS. This uses as

a subroutine a variance-optimal sample size reduction method

that we describe in Section 4. We start with SingleElementSSR
for reducing the size of the sample by one element, followed by

a general algorithm SSR for reducing the size by β ≥ 1 elements.

We then present an algorithm MultiElementSSR with a faster

runtime. We then consider the case of sliding windows in Sec-

tion 5, followed by the optimal offline algorithm in Section 6. We

present an experimental study of our algorithms in Section 7.

3 STREAMING SRS
We now consider SRS from a data stream, whose elements are

arriving continuously. As more elements are seen, the allocations

as well as samples need to be dynamically adjusted. We first

note there is a simple two-pass streaming algorithm with optimal

variance that uses O(k + r ) space, where k is the desired sample

size and r the number of strata. In the first pass, the size, mean,

and standard deviations of each stratum are computed usingO(r )
space, constant space for each stratum. At the end of the first

pass, the allocations to different strata are computed using an

optimal offline algorithm, say VOILA. In the second pass, since

the desired sample sizes are known for each stratum, samples are

computed using reservoir sampling within the substream of ele-

ments belonging to each stratum. The above two-pass algorithm

cannot be converted into a one-pass algorithm. The difficulty is

that as more elements are seen, allocations to different strata

may change, and the sampling rate within a stratum cannot in

general be (immediately) dynamically adjusted in order to satisfy

variance optimality. We first show a lower bound that it is in

general not possible for any streaming algorithm to have optimal

variance compared with an offline algorithm that is given the

same memory.

3.1 A Lower Bound for Streaming SRS
Given a data stream R with elements belonging to r strata, and a
memory budget ofM elements, letV ∗ denote the optimal sample

variance that can be achieved by an offline algorithm for SRS

that may make multiple passes through data. Clearly, the sample

produced by any streaming algorithm must have variance that

is either V ∗ or greater. Suppose a stratified random sample R is

computed by a streaming algorithm usingmemory ofM elements.

Let V (R) denote the variance of this sample. For α ≥ 1, we say R
is an SRS with multiplicative error of α , if: (1) the sample within
each stratum in R is chosen uniformly from all elements in the
stratum, and (2) V (R) ≤ α ·V ∗.

Theorem 3.1. Any streaming algorithm for maintaining an
SRS over a stream with r strata using a memory of M elements
must, in the worst case, result in a stratified random sample with a
multiplicative error Ω(r ).

The idea in the proof is to construct an input stream with r
strata where the variance of different strata are the same un-

til a certain point in time, at which the variance of a single

stratum starts increasing to a high value – a variance-optimal

SRS will respond by increasing the allocation to this stratum.

However, we show that a streaming algorithm is unable to do

so quickly. Though a streaming algorithm may compute the

variance-optimal allocation to different strata in an online man-

ner, it cannot actually maintain these dynamically sized samples

using limited memory.

Proof. Consider an input stream where for each i = 1 . . . r ,
the ith stratum consists of elements in the range [i, i + 1). The

stream so far has the following elements. For each i, 1 ≤ i ≤ r ,
there are (α − 1) copies of element i and one copy of (i + ε) where
ε = 1/(r − 1) and α ≥ 3. After observing these elements, for

stratum i we have ni = α , µi =
(
i + ε

α
)
, and it can be verified

that σi =
√
α−1

α ε .



Since the total memory budget isM , at least one stratum (say,

Stratum 1) has a sample size no more than M/r . Suppose an

element of value (2 − ε) arrives next. This element belongs to

stratum 1. Let n′
1
, µ ′

1
, and σ ′

1
denote the new size, mean, and

standard deviation of stratum 1 after this element arrives. We

have n′
1
= α + 1 and µ ′

1
= 1 + 1

α+1
. It can be verified that

σ ′
1
=

√
ε2+(1−ε )2− 1

α+1

α+1
. It follows that:

(α + 1)

√
1

2
− 1

α+1

α + 1

≤ n′
1
σ ′

1
≤ (α + 1)

√
1 − 1

α+1

α + 1

(2)

=⇒

√
α

2

≤ n′
1
σ ′

1
≤
√
α (Note: α > 2) (3)

In 2, the left inequality stands when ε = 1/2 and the right in-

equality stands when ε = 0 or 1. We also have:

∑r
i=2

niσi =

(r − 1)α
√
α−1

α ε =
√
α − 1, where we have used ε = 1

r−1
. Thus,

√
α

2

≤

r∑
i=2

niσi ≤
√
α (Note: α > 2) (4)

Let V denote the sample variance of A after observing the

stream of (rα + 1) elements. Let V ∗ denote the smallest sample

possible with a stratified random sample of sizeM on this data.

Let ∆ =
(
n′

1
σ ′2

1
+

∑r
i=2

niσ
2

i

) /
n2
.

We observe that after processing these (rα + 1) elements, the

sample size s1 ≤ M/r + 1. Using this fact and the definition of

sample variance in Eq 1:

V =
1

n2

(
n′2

1
σ ′2

1

s1

+

r∑
i=2

n2

i σ
2

i
si

)
−∆ ≥

1

n2

(
n′2

1
σ ′2

1

M
r + 1

+

r∑
i=2

n2

i σ
2

i
M
r−1

)
−∆

≥
1

n2

(
α/4
M
r + 1

+

r∑
i=2

(α − 1)ε2

M/(r − 1)

)
−∆ =

1

n2

(
α/4
M
r + 1

+
α − 1

M

)
−∆

On the other hand, the smallest sample varianceV ∗ is achieved
by using Neyman allocation. By Inequalities 3 and 4, we know

that if Neyman allocation is for the current stream of rα + 1

elements, stratum 1 uses at leastM/3 memory space, whereas all

other strata equally share at leastM/3 elements since all niσi are
equal for i = 2, 3, . . . , r . Using these observations into Equation 1:

V ∗ ≤
1

n2

(
n′2

1
σ ′2

1

M/3
+

r∑
i=2

n2

i σ
2

i
M/(3(r − 1))

)
− ∆

≤
1

n2

(
α

M/3
+

r∑
i=2

(α − 1)ε2

M/(3(r − 1))

)
− ∆ =

(
1

n2

6α − 3

M

)
− ∆

Since ∆ ≥ 0 andM > r , we have: V
V ∗ ≥

V+∆
V ∗+∆ = Ω(r ). □

We note that the above lower bound is tight (up to constant

factors). Consider the algorithm which always allocates M/r
memory to each of r strata that have been observed so far. It

can be verified that this algorithm has a variance within an O(r )
multiplicative factor of the optimal. While theoretically such

an algorithm (which we call the “senate” algorithm due to allo-

cating every stratum the same resources) meets the worst case

lower bound, it performs poorly in practice, since it treats all

strata equally, irrespective of their volume or variance (see the

experiments section).

3.2 S-VOILA: Streaming Algorithm for SRS
We now present a streaming algorithm S-VOILA that can main-

tain a stratified random sample on a stream with a good (though

not optimal) variance. Given amemory budget ofM items, S-VOILA
maintains a SRS of sizeM with the following properties: (1) the

samples within each stratum are chosen uniformly from all the

stream elements seen in the stratum so far, (2) the sizes of sam-

ples allocated to different strata adapt to new stream elements

by making “locally optimal” decisions that lead to the best alloca-

tions given the new stream elements. S-VOILA conceptually has

to solve two problems. One is sample size re-allocation among

strata, and the second is uniform sampling within each stratum.

Let R denote the stream observed so far, and Ri the elements in

R that belong to stratum i .
We first consider sample size re-allocation. Suppose due to

the addition of new elements, the stream went from R1
to R2

,

and suppose that the stratified random sample at R1
allocated

sample sizes to strata in a specific manner, S1
. Due to the new

elements, the sizes and variances of different strata change, and as

a result, the optimal allocation of samples in R2
may be different

from the previous allocation S1
. Our approach is to first add

new elements to the sample, and then re-allocate sample sizes

using a “variance-optimal sample size reduction” optimization

framework. Given a current allocation of sample sizes to different
strata, suppose new elements are added to the sample, causing it to
exceed a memory thresholdM . What is a way to reduce the current
sample to a sample of size M such that the variance of the new
sample is as small as possible? In the following section (Section 4),

we present algorithms for sample size reduction.

The second issue is to maintain a uniform random sample Si
of Ri when si , the size of the sample is changing. A decrease

in an allocation to si can be handled easily, through discarding

elements from the current sample Si until the desired sample size

is reached.What if we need to increase the allocation to stratum i?
If we simply start sampling new elements according to the higher

allocation to Si , then recent elements in the streamwill be favored

over the older ones, and the sample within stratum i is no longer
uniformly chosen. In order to ensure that Si is always chosen
uniformly at random from Ri , newly arriving elements in Ri
need to be held to the same sampling threshold as older elements,

even if the allotted sample size si increases. S-VOILA resolves

this issue in the following manner. An arriving element from Ri
is assigned a random “key” drawn uniformly from the interval

(0, 1). The sample is maintained using the following invariant: Si
is the set of si elements with the smallest keys among all elements so
far in Ri . It is easy to verify that this is indeed a uniform sample

drawn without replacement from Ri . The consequence of this

strategy is that if we desire to increase the allocation to stratum i ,
it may not be accomplished immediately, since a newly arriving

element in Ri may not be assigned a key that meets this sampling

threshold. Instead, the algorithm has to wait until it receives an

element in Ri whose assigned key is small enough. To ensure

the above invariant, the algorithm maintains for each stratum i a
variable di that tracks the smallest key of an element in Ri that

is not currently included in Si . If an arriving element in Ri has a

key that is smaller than or equal to di , it is included within Si ;
otherwise, it is not.

Algorithms 1 and 2 respectively describe the initialization

and insertion of a minibatch of elements. S-VOILA supports the
insertion of a minibatch of any size b > 0, where b can change

from one minibatch to another. As b increases, we can expect



Algorithm 1: S-VOILA: Initialization
Input:M – total sample size, r – number of strata.

// Si is the sample for stratum i, and Ri is the

substream of elements from Stratum i

1 Load the firstM stream elements in memory, and partition

them into per-stratum samples, S1, S2, . . . , Sr , such that Si
consists of (e,d) tuples from stratum i , where e is the
element, d is the key of the element, chosen independently

and uniformly at random from (0, 1).

2 For each stratum i , compute ni , σi . Initialize di ← 1 ; // di
tracks the smallest key among all elements in
Ri not selected in Si

Algorithm 2: S-VOILA: Process a new minibatch B of b ele-

ments. Note that b need not be known in advance, and can

vary from one minibatch to the other.

1 β ← 0; // #selected elements from B

2 for each e ∈ B do
3 Let α = α(e) denote the stratum of e

4 Update nα and σα ; // per-stratum mean and std.

dev. maintained in a streaming manner

5 Assign a random key d ∈ (0, 1) to element e;

6 if d ≤ dα then // element e is sampled
7 Sα ← {e}

⋃
Sα ; β ← β + 1;

/* Variance-optimal reduction by β elements */

8 if β = 1 then // faster for evicting 1 element
9 ℓ ← SingleElementSSR(M);

10 Delete one element of largest key from Sℓ ;

11 dℓ ← smallest key discarded from Sℓ ;

12 else if β > 1 then
13 L ← MultiElementSSR(M);

14 for i = 1 . . . r do // Actual element evictions
15 if L[i] < si then
16 Delete si − L[i] elements from Si with the

largest keys;

17 di ← smallest key discarded from Si ;

S-VOILA to have a lower variance, since its decisions are based

on greater amount of data. Lines 2–7 make one pass through the

minibatch to update the mean and standard deviations of the

strata, and store selected elements into the per-stratum samples.

If β > 0 elements from the minibatch get selected into the sample,

in order to balance the memory budget atM , β elements need to

be evicted from the stratified random sample using the variance-

optimal sample size reduction technique from Section 4.

A sample size reduction algorithm takes a current allocation

to a stratified random sample, the statistics (volume, mean, and

variance) of different strata, and a target sample size M , and

returns the final allocation whose total size isM . For the special

case of evicting one element, we can use the faster algorithm

SingleElementSSR; otherwise, we can use MultiElementSSR.
Lemma 3.2 shows that the sample maintained by S-VOILAwithin
each stratum is a uniform random sample, showing this is a valid

stratified sample, and Lemma 3.3 presents the time complexity

analysis of S-VOILA. Proofs are omitted due to space constraints.

Lemma 3.2. For each i = 1, 2, . . . , r sample Si maintained by
S-VOILA (Algorithm 2) is selected uniformly at random without
replacement from stratum Ri .

Lemma 3.3. If the minibatch size b = 1, then the worst-case time
cost of S-VOILA for processing an element is O(r ). The expected
time for processing an element belonging to stratum α is O(1 +
r · sα /nα ), which is O(1) when r · sα = O(nα ). If b > 1, then
the worst-case time cost of S-VOILA for processing a minibatch is
O(r log r + b).

We can expect S-VOILA to have an amortized per-item pro-

cessing time of O(1) in many circumstances. When b = 1: After

observing enough stream elements from stratum α , such that

r · sα = O(nα ), the expected processing time of an element be-

comes O(1). Even if certain strata have a very low frequency,

the expected time cost for processing a single element is still

expected to be O(1), because elements from an infrequent stra-

tum α are unlikely to appear in the minibatch. When b > 1: The

per-element amortized time cost of S-VOILA is O(1), when the

minibatch size b = Ω(r log r ).

4 VARIANCE-OPTIMAL SAMPLE SIZE
REDUCTION

Suppose it is necessary to reduce a stratified random sample (SRS)

of total sizeM to an SRS of total sizeM ′ < M . This will need to

reduce the size of the samples of one or more strata in the SRS.

Since the sample sizes are reduced, the variance of the resulting

estimate will increase. We consider the task of variance-optimal
sample size reduction (VOR), i.e., how to partition the reduction

in sample size among the different strata in such a way that the

increase in the variance is minimized. Note that once the new

sample size for a given stratum is known, it is easy to subsample

the stratum to the target sample size.

Consider Equation 1 for the variance of an estimate derived

from the stratified random sample. Note that, for a given data

set, a change in the sample sizes of different strata si does not
affect the parameters n, ni , and σi . VOR can be formulated as the

solution to the following non-linear program.

Minimize

r∑
i=1

n2

i σ
2

i
s ′i

(5)

subject to constraints:

r∑
i=1

s ′i = M ′ and 0 ≤ s ′i ≤ si for each i = 1, 2, . . . , r , (6)

In the rest of this section, we present efficient approaches for

computing the VOR.

4.1 Sample Size Reduction by One Element
We first present an efficient algorithm for the case where the

size of a stratified random sample is reduced by one element.

An example application of this case is in designing a streaming

algorithm for SRS, when stream items arrive one at a time. The

task is to choose a stratum i (and discard a random element from

the stratum) such that after reducing the sample size si by one,

the increase in variance V (Equation 1) is the smallest.

Our solution is to choose stratum i such that the partial deriva-

tive ofV with respect to si is the largest over all possible choices
of i .

∂V

∂si
= −

n2

i σ
2

i
n2

1

s2

i
.



Given a memory budget M and stratum i , let Mi = M ·
niσi/

∑r
j=1

njσj denote the amount of memory that NeyAlloc

would allocate to stratum i . We choose stratum ℓ where:

ℓ = arg max

i

{
∂V

∂si

���� 1 ≤ i ≤ r

}
= arg min

i

{
niσi
si

���� 1 ≤ i ≤ r

}
Lemma 4.1. When required to reduce the size of a stratified

random sample by one, the increase in variance of the estimated
population mean is minimized if we reduce the size of Sℓ by one,

where ℓ = arg mini

{
niσi
si

��� 1 ≤ i ≤ r
}
.

In the casewherewe havemultiple choices for ℓ using Lemma 4.1,

we choose the one where the current sample size sℓ is the largest.
Algorithm SingleElementSSR for reducing the sample by a sin-

gle element is a direct implementation of the condition stated in

Lemma 4.1. We omit the pseudocode due to space constraints. It

is straightforward to observe this can be done in time O(r ).

4.2 Reduction by β ≥ 1 Elements
We now consider the general case, where the sample needs to

be reduced by β ≥ 1 elements. A possible solution idea is to re-

peatedly apply the one-element reduction algorithm (Algorithm

SingleElementSSRfrom Section 4.1) β times. Each iteration, a

single element is chosen from a stratum such that the overall

variance increases by the smallest amount. However, this greedy

approach may not yield a sample with the smallest variance. On

the other hand, an exhaustive search of all possible evictions is

not feasible either, since the number of possible ways to partition

a reduction of size β among r strata is
(β+r−1

r−1

)
, which can be very

large. For instance, if r = 10, this is Θ(β10). We now present effi-

cient approaches to VOR. We first present a recursive algorithm,

followed by a faster iterative algorithm. Before presenting the

algorithm, we present the following useful characterization of a

variance-optimal reduction.

Definition 4.2. We say that stratum i is oversized under mem-

ory budgetM , if its allocated sample size si > Mi . Otherwise, we

say that stratum i is not oversized.

Lemma 4.3. Suppose that E is the set of β elements that are to be
evicted from a stratified random sample such that the variance V
after eviction is the smallest possible. Then, each element in E must
be from a stratum whose current sample size is oversized under the
new memory budgetM ′ = M − β .

Proof. We use proof by contradiction. Suppose one of the

evicted elements is deleted from a sample Sα such that the sample

size sα is not oversized under the new memory budget. Because

the order of the eviction of the β elements does not impact the

final variance, suppose that element e is evicted after the other

β − 1 evictions have happened. Let sα denote the size of sample

Sα at the moment t right after the first β − 1 evictions and before

evicting e . The increase in variance caused by evicting an element

from Sα is

∆ =
1

n2

(
n2

ασ
2

α
sα (sα − 1)

)
=

(∑r
i=1

niσi

nM ′

)2

M ′2α
sα (sα − 1)

>

(∑r
i=1

niσi

nM ′

)2

whereM ′α = M ′ nα σα∑r
i=1

niσi
. The last inequality is due to the fact

that Sα is not oversized under budgetM ′ at time t , i.e., sα ≤ M ′α .
Note that an oversized sample exists at time t , since there are a

total ofM ′+ 1 elements in the stratified random sample at time t ,

Algorithm 3: SSR(A,M,L): Variance-Optimal Sample Size

Reduction

Input: A – set of strata under consideration.

M – target sample size for all strata in A.

Output: For i ∈ A, L[i] is the final size of sample for

stratum i .
1 O ← ∅ // oversized samples

2 for j ∈ A do
3 Mj ← M · njσj/

∑
t ∈A ntσt // Neyman allocation

if memory M divided among A

4 if (sj > Mj ) then O ← O ∪ {j}
5 else L[j] ← sj // Keep current allocation

6

7 if O = A then
// All samples oversized. Recursion stops.

8 for j ∈ A do L[j] ← Mj

9 else
// Recurse on O, under remaining mem budget.

10 SSR(O,M −
∑
j ∈A−O sj ,L)

and the memory target isM ′. Instead of evicting e , if we choose
to evict another element e ′ from an oversized sample Sα ′ , the
resulting increase in variance will be:

∆′ =
1

n2

(
n2

α ′σ
2

α ′

sα ′(sα ′ − 1)

)
=

(∑r
i=1

niσi

nM ′

)2 M ′2α ′

sα ′(sα ′ − 1)

<

(∑r
i=1

niσi

nM ′

)2

where M ′α ′ = M ′
nα ′σα ′∑r
i=1

niσi
The last inequality is due to the fact

that Sα ′ is oversized under budget M ′ at time t , i.e., sα ′ > M ′α ′ .
Because ∆′ < ∆, at time t , evicting e ′ from Sα ′ leads to a lower
variance than evicting e from Sα . This is a contradiction to the

assumption that evicting e leads to the smallest variance, and

completes the proof. □

Lemma 4.3 implies that it is only necessary to reduce samples

that are oversized under the target memory budgetM ′. Samples

that are not oversized can be given their current allocation, even

under the new memory targetM ′. Our algorithm based on this

observation first allocates sizes to the samples that are not over-

sized. The remaining memory now needs to be allocated among

the oversized samples. We note that this can again be viewed as

a sample size reduction problem, while focusing on a smaller set

of (oversized) samples, and accomplish it using a recursive call

under a reduced memory budget; See Lemma 4.4 for a formal

statement of this idea. The base case for this recursion is when

all samples under consideration are oversized, in which case we

can simply use NeyAlloc under the reduced memory budgetM ′

(Observation 1). Our algorithm SSR is shown in Algorithm 3.

Let S = {S1, S2, . . . , Sr } be the current stratified random sam-

ple. LetA denote the set of all strata under consideration, initial-

ized to {1, 2, . . . , r }. Let O denote the set of oversized samples,

under target memory budget for S, andU = S − O denote the

collection of samples that are not oversized. When the context is

clear, we use O, U, andA to refer to the set of stratum identifiers

as well as the set of samples corresponding to these identifiers.



Table 1: An example of variance-optimal sample size re-
duction from 400 × 10

6 down to 200 × 10
6.

i 1 2 3 4 5 6

niσi (×10
9) 10 8 30 20 8 24

si (×10
6) 15 50 50 45 60 180

round 1Mi (×10
6) 20 < 50 60 < 45 < 60 < 180

round 2Mi (×10
6) - < 50 - 45 < 60 < 180

round 3Mi (×10
6) - 18 - - 18 54

s ′i (×10
6) 15 18 50 45 18 54

Lemma 4.4. A variance-optimal eviction of β elements from S
under memory budgetM ′ requires a variance-optimal eviction of
β elements from O under memory budgetM ′ −

∑
j ∈U sj .

Proof. Recall that s ′i denotes the final size of sample Si after β
elements are evicted. Referring to the varianceV from Equation 1,

we know a variance-optimal sample size reduction of β elements

from S under memory budgetM ′ requires minimization of∑
i ∈A

n2

i σ
2

i
s ′i
−

∑
∈A

n2

i σ
2

i
si

(7)

By Lemma 4.3, we know si = s
′
i for all i ∈ U. Hence, minimiz-

ing Formula 7 is equivalent to minimizing∑
i=O

n2

i σ
2

i
s ′i
−

∑
i ∈O

n2

i σ
2

i
si

(8)

The minimization of Formula 8 is exactly the result obtained

from a variance-optimal sample size reduction of β elements

from oversized samples under the new memory budget M ′ −∑
i ∈U si . □

Observation 1. In the case every sample in the stratified ran-
dom sample is oversized under target memoryM ′, i.e., S = O, the
variance-optimal reduction is to reduce the size of each sample
Si ∈ S toM ′i under the new memory budgetM ′.

The following theorem summarizes the correctness and time

complexity of Algorithm SSR.

Theorem 4.5. Algorithm 3 (SSR) finds a variance-optimal re-
duction of the stratified random sample A under new memory
budgetM . The worst-case time of SSR isO(r2), where r is the num-
ber of strata.

Proof. Correctness follows from Lemmas 4.3–4.4 and Obser-

vation 1. The worst-case time happens when each recursive call

sees only one stratum that is not oversized. In such a case, the

time of all recursions of SSR on a stratified random sample across

r strata is: O(r + (r − 1) + . . . + 1) = O(r2). □

An Example (Table 1). Suppose we have 6 strata with their

statistics (niσi ) and current sample sizes (si ) showin in Table 1

using a total size of

∑
6

i=1
si = 400. Suppose that we wish to

reduce the sample size down to 200 by reducing each si to the

target sample size s ′i . The computation involves a sequence of

recursive rounds. In the initial round, we allocate 200 samples

among all 6 strata using Neyman allocation. Strata 1 and 3 turn

out to be not oversized (M1 ≥ s1, M3 ≥ s3), and therefore we

set s ′
1
= s1 and s ′

3
= s3. In Round 2, we exclude strata 1 and

3 from consideration, and the available memory budget which

now becomes 200 − 15 − 50 = 135. This is allocated among

strata 2, 4, 5, and 6 using Neyman allocation. Stratum 4 is not

Algorithm 4: MultiElementSSR(A,M): A fast implementa-

tion of Sample Size Reduction without using recursion.

Input: The strata under consideration is A = {1, 2, . . . , r },
and the volumes and standard deviations.M is the

target total sample size.

Output: For 1 ≤ i ≤ r , L[i] is set to the final size of sample

for stratum i , such that the increase of the variance

V is minimized.

1 Allocate L[1..r ], an array of numbers

2 Allocate Q[1..r ], an array of (x ,y, z) tuples

3 for i = 1 . . . r do Q[i] ← (i,niσi , si/(niσi ));

4 Sort array Q in ascending order on the z dimension

5 for i = (r − 1) down to 1 do
6 Q[i].y ← Q[i].y +Q[i + 1].y

7 Mnew ← M ; D ← Q[1].y

8 for i = 1 . . . r do
9 MQ [i].x ← M · nQ [i].xσQ [i].x /D

10 if sQ [i].x > MQ [i].x then break

11 L[Q[i].x] ← sQ [i].x ]
12 Mnew ← Mnew − sQ [i].x

// Check the next sample, which must exist.

13 MQ [i+1].x ← M · nQ [i+1].xσQ [i+1].x /D

14 if sQ [i+1].x > MQ [i+1].x then // oversized
15 M ← Mnew ; D ← Q[i + 1].y

// Reduce sample size to target.

16 for j = i ..r do
// Desired size for SQ [j].x

17 L[Q[j].x] ← M · nQ [j].xσQ [j].x /D

18 return L

oversized (M4 ≥ s4) and therefore we set s ′
4
= s4. At the next

round 3, we further exclude stratum 4 from consideration, and

the available memory budget now becomes 135 − 45 = 90. When

this is allocated among the remaining strata, it turns out that all

of them are oversized (Mi < si , i = 2, 5, 6). We simply set s ′i = Mi
for each i ∈ {2, 5, 6}, and the recursion exits. Each stratum i
now has a new sample size s ′i such that s ′i ≤ si for every i , and∑

6

i=1
s ′i = 200.

Faster Sample Size Reduction. We present a faster algorithm for

variance-optimal sample size reduction, MultiElementSSR, with
time complexity O(r log r ). MultiElementSSR shares the same

algorithmic foundation as SSR, but uses a faster iterative method

based on sorting. We omit proofs due to space constraints.

Theorem 4.6. (1) The MultiElementSSR procedure in Algo-
rithm 4 finds the correct size of each sample of a stratified random
sample, whose memory budget is reduced to M , such that the in-
crease of the variance V is minimized. (2) The worst-case time cost
of MultiElementSSR on a stratified random sample across r strata
is O(r log r ).

5 STREAMING SRS OVER A SLIDING
WINDOW

We consider the maintenance of an SRS drawn from a sequence-
based slidingwindow of themost recent elements from the stream.

Given a window sizeW , the sliding window consists of theW



most recent elements observed in the data stream. We consider

the case when the window sizeW is very large, so that it is not

feasible to store the entire window in memory. Similar to the

algorithm for infinite window, there are two parts to the algo-

rithm, sample re-allocation and sampling, which are interleaved

with each other. We provide the algorithm idea and omit detailed

descriptions.

For re-allocating sample sizes, we need the current statistics of

each stratum within the sliding window. The mean and variance

of a given stratum in an infinite window can be maintained in

O(1) space easily in a single pass. However, maintaining the mean

and variance over a sliding window is much harder. In fact, it is

known that exact computation of the mean and variance over a

sliding window requires memory linear in the stream size [21] –

thus, if we require these statistics exactly, we have to store the

entire window, just to maintain the statistics of different strata!

Fortunately, it is possible to approximate these statistics using

space poly-logarithmic in the size of the stream; for the mean,

see [21, 27], and for the variance [43].

Random sampling over a sliding window is also quite different

from the case of infinite windows, and there is significant prior

work on this e.g. [9, 13, 24]. We adapt algorithms from prior

work to assign to each arriving element a random key, chosen

uniformly in [0, 1]. The random sample of a certain size within a

stratum is defined to be those elements in the stratum that have

the smallest keys. Borrowing from prior work [9], we maintain

additional recent elements within the window even if they don’t

belong to the set of keys that are currently the smallest – the

reason is that these elements may become the elements with the

smallest keys once the window slides and other elements with

smaller keys “expire” from the window. The additional space

required by these keys is a logarithmic factor in the size of the

window (Section 2 in [9]). For each stratum, the algorithm con-

tinuously monitors the smallest key that has been discarded from

the window.

When new elements arrive in the stream, these are sampled

into the SRS, which may cause the size of the sample to increase

beyond the memory allocated to the stratum. When this happens,

we rely on variance-optimal sample size reduction (Algorithm

MultiElementSSR) to give us new sample size allocations to

different strata, and different strata are sub-sampled according

to the new allocations (sub-sampling within a given stratum is

handled through selecting only the elements with the smallest

keys that are active in the window).

6 VOILA: VARIANCE-OPTIMAL
OFFLINE SRS

Wenow present an algorithm for computing the variance-optimal

allocation of sample sizes in the general case when there may be

strata that are bounded. Note that once the allocation of sample

sizes is determined, the actual sampling step is straightforward

for the offline algorithm – samples can be chosen in a second pass

through the data, using reservoir sampling within each stratum.

Hence, in the rest of this section, we focus on determining the

variance-optimal allocation. Consider a static data set R of n
elements across r strata, where stratum i hasni elements, and has

standard deviation σi . How can a memory budget ofM elements
be partitioned among the strata in a variance-optimal manner?
We present VOILA (Variance-OptImaL Allocation), an efficient

offline algorithm for variance-optimal allocation that can handle

strata that are bounded.

Algorithm 5: VOILA (M): Variance-optimal stratified ran-

dom sampling for bounded data

Input:M is the memory target

1 for i = 1 . . . r do
2 si ← ni // assume total memory of n

3 L ← MultiElementSSR(M)

4 return L /* L[i] ≤ ni is the sample size for
stratum i in a variance-optimal stratified
random sample. */

NeymanAllocation assumes there are no bounded strata (strata

with small volumes). Note that it is not possible to simply elim-

inate strata with a low volume, by giving them full allocation,

and then apply Neyman allocation on the remaining strata. The

reason is as follows: suppose bounded strata are removed from

further consideration. Then, remainingmemory is divided among

the remaining strata. This may lead to further bounded strata

(which may not have been bounded earlier), and Neyman alloca-

tion again does not apply.

The following two-step process reduces variance-optimal of-

fline SRS to variance-optimal sample size reduction.

Step 1: Suppose we start with a memory budget of n, sufficient

to store all data. Then, we will just save the whole data set in the

stratified random sample, and thus each sample size si = ni . By
doing so, the variance V is minimized, since V = 0 (Equation 1).

Step 2:Given the stratified random sample from Step 1, we reduce

the memory budget from n toM such that the resulting variance

is the smallest. This can be done using variance-optimal sample

size reduction, by calling SSR or MultiElementSSR with target

sample sizeM .

VOILA (Algorithm 5) simulates this process. The algorithm only

records the sample sizes of the strata in arrayL, without creating

the actual samples. The actual sample from stratum i is created
by choosing L[i] elements from stratum i , using a method for

uniform random sampling without replacement.

Theorem 6.1. Given a data set R with r strata, and a memory
budget M , VOILA (Algorithm 5) returns in L the sample size of
each stratum in a variance-optimal stratified random sample. The
worst-case time cost of VOILA is O(r log r ).

Proof. The correctness follows from the correctness of The-

orem 4.6, since the final sample is the sample of the smallest

variance that one could obtain by reducing the initial sample

(with zero variance) down to a target memory of sizeM . The run

time is dominated by the call to MultiElementSSR, whose time

complexity is O(r log r ). □

7 EXPERIMENTAL EVALUATION
We present the results of an experimental evaluation. The input

for our experiment is a (finite) stream of records from a data

source, which is either processed by a streaming algorithm or

by an offline algorithm at the end of computation. A streaming

sampler must process data in a single pass using limited memory.

An offline sampler has access to all data received, and can com-

pute a stratified random sample using multiple passes through

data. We evaluate the samplers in two ways. The first is a direct

evaluation of the sample quality through the resulting allocation

and the variance of estimates obtained using the samples. The

second is through the accuracy of approximate query processing

using the maintained samples for different queries.
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ferent strata. The x-axis is the fraction of
points observed so far.

0% 20% 40% 60% 80% 100%

2016-01

2016-03

2016-05

2016-07

2016-09

2016-11

(b) Relative (cumulative) standard devia-
tions of different strata.

0

10

20

30

40

0

50

100

150

200

D
at

a 
co

u
n

t 
(m

il
) 

#
 o

f 
st

ra
ta

Data count # of strata

(c) The number of strata received so far, and
the number of records in data.

Figure 1: Characteristics of the OpenAQ dataset.

7.1 Sampling Methods
We compared our stream samplingmethod S-VOILA to Reservoir,
ASRS and Senate sampling. Reservoir is a well-known stream

sampling method that maintains a uniform random sample cho-

sen without replacement from the stream - we expect the number

of samples allocated to stratum i by Reservoir to be proportional
to ni . Senate [1] is a stratified sampling method that allocates

each stratum an equal amount of sample space. For each stratum,

Reservoir sampling is used to maintain a uniform sample.

ASRS is an adaptive stratified sampling algorithm due to Al-

kateb et al. (Algorithm 3 in [5]). Their algorithm considers re-

allocations of memory among strata using a different method,

based on power allocation [10], followed by reservoir sampling

within each stratum. We chose the power allocation parameter

to be 1 in order to obtain a sample of the entire population.

We also implemented three offline samplers VOILA, NeyAlloc,
and an offline version of Senate. Each uses two passes to com-

pute a stratified random sample of a total size ofM records. The

first pass is to determine strata characteristics used to allocate the

space between strata. The second pass is to collect the samples

accordingly to the computed allocation.

7.2 Data
We used a real-world dataset called OpenAQ [37], which con-

tains more than 31 million records of air quality measurements

(concentrations of different gases and particulate matter) from

7, 923 locations in 62 countries around the world in 2016. Data

is replayed in time order to generate the stream and is stratified

based on the country of origin and the type of measurement,

e.g., all measurements of carbon monoxide in the USA belong

to one stratum, all records of sulphur dioxide in India belong to

another stratum, and so on. The total number of strata at differ-

ent points in time are shown in Figure 1c. We also experimented

with another method of stratifying data, based only on the city

of origin, whose results are shown at the end of this section. We

also experimented with a synthetic dataset. The results obtained

were qualitatively similar to the real-world data, and we omit

these results due to space constraints.

Each stratum begins with zero records, and in the initial stages,

every stratum is bounded. Asmore data are observed, many of the

strata are not bounded anymore. As Figure 1c shows, new strata

are added as more sensors are incorporated into the data stream.

Figures 1a and 1b respectively show the cumulative frequency

and standard deviation of the data over time; clearly these change

significantly with time. As a result, the variance-optimal sample-

size allocations to strata also change over time, and a streaming

algorithm needs to adapt to these changes.

7.3 Allocations of Samples to Strata
We measured the allocation of samples to different strata. Unless

otherwise specified, the sample sizeM is set to 1 million records.

For all experiments on allocations or variance, each data point is

the mean of five independent runs. The allocation can be seen as a

vector of numbers that sum up toM (or equivalently, normalized

to sum up to 1), and we observe how this vector changes as more

elements arrive.

Figures 2a, 2b and 2c show the change in allocations over time

resulting from VOILA, S-VOILA with single element processing,

and S-VOILA with minibatch processing. Unless otherwise spec-

ified, in the following discussion, the size of a minibatch is set

to equal one day’s worth of data. Visually, the allocations pro-

duced by the three methods track each other over time, showing

that the streaming methods follow the allocation of VOILA. To
understand the difference between the allocations due to VOILA
and S-VOILA quantitatively, we measured the cosine distance

between the allocation vectors from VOILA and S-VOILA. While

detailed results are omitted due to space constraints, our results

show that allocation vectors due to S-VOILA and VOILA are very

similar, and the cosine distance is close to 0 most of the time and

less than 0.04 at all times.

7.4 Comparison of Variance
We compared the variance of the estimates (Equation 1) produced

by different methods. The results are shown in Figures 3 and

4. Generally, the variance of the sample due to each method

increases over time, since the volume of data and the number of

strata increase, while the sample size is fixed.

The comparison of different streaming algorithms is shown

in Figure 4. Among the streaming algorithms, we first note that

both variants of S-VOILA have a variance that is lower than

ASRS, and typically close to the optimal (VOILA). The variance
of S-VOILA with minibatch processing is typically better than

with single element processing. We note that the variances of

both variants of S-VOILA are nearly equal to that of VOILA until

March, when they start increasing relative to VOILA, and then

converge back. From analyzing the underlying data, we see that

March is the time when a number of new strata appear in the data

(Figure 1c), causing a substantial change in the optimal allocation

of samples to strata. An offline algorithm such as VOILA can

resample more elements at will, since it has access to all earlier

data from the stratum. However, a streaming algorithm such as

S-VOILA cannot do so and must wait for enough new elements

to arrive in these strata before it can “catch up” to the allocation

of VOILA. Hence, S-VOILA with single element as well as with

minibatch processing show an increasing trend in the variance

at such a point. When data becomes stable again the relative
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Figure 2: Change in allocation over time. OpenAQ data.
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Figure 3: Variance of VOILA compared to NeyAlloc and
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Figure 5: Impact of Minibatch Size on Variance, OpenAQ.

performance of S-VOILA improves. In November and December,

new strata appear again, and the relative performance is again

affected.

Among offline algorithms, we observe from Figure 3 that

Senate performs poorly, since it blindly allocates equal space

to all strata. NeyAlloc results in a variance that is larger than

VOILA, by a factor of 1.4x to 50x. While NeyAlloc is known to be

variance-optimal under the assumption of having all strata being

abundant, these results show that it is far from variance-optimal

for bounded strata.

Impact of Sample Size: To observe the sensitivity to the

sample size, we conducted an experiment where the sample size

is varied from 5000 to 1 million.We fixed the minibatch size to 100

thousand records. As expected, in both S-VOILA and VOILA, with

single element and minibatch processing, the variance decreases

when the sample size increases. The general trend was that the

variance decreased by approximately a factor of 10 when the

sample size increased by a factor of 10. We omit detailed results

due to space constraints.

Impact of Minibatch Size: We further conducted an experi-

mentwhere theminibatch size is chosen from {1, 10, 10
2, 10

3, 10
4}.

The results are shown in Figure 5. Aminibatch size of 10 elements

yields significantly better results than single element S-VOILA. A
minibatch size of 100 or greater makes the variance of S-VOILA
nearly equal to the optimal variance.

7.5 Query Performance, Infinite Window
We now evaluate the quality of these samples indirectly, through

their use in approximate query processing. Samples constructed

using S-VOILA and VOILA are used to approximately answer a

variety of queries on the data so far. For evaluating the approxi-

mation error, we also implement an exact (but expensive) method

for query processing Exact that stores all records in a MySQL

database. Identical queries are made at the same time points in

the stream to the different streaming and offline samplers, as well

as to the exact query processor.

A range of queries are used. Each query selects a subset of data
through a selection predicate supplied at query time, and applies
an aggregate. This shows the flexibility of the sample, since it

does not have any a priori knowledge of the selection predicate.

We have chosen predicates with selectivity equal to one of 0.25,

0.50, and 1.00. We consider four aggregation functions: SUM, the

sum of elements; SSQ, the sum of squares of elements; AVG, the

mean of elements; and STD, the standard deviation. Each data

point is the mean of five repetitions of the experiment with the

same configuration. Each query was executed over all received

data after one month of data arrived, up to entire year of 2016 in

the OpenAQ dataset with thirty-one million records.

Figures 6 and 7 show the relative errors of different aggrega-

tions as the size of streaming data increases, while the sample

size is held fixed. Both figures show that S-VOILA outperforms

other streaming samplers across queries with different aggrega-

tion and selectivity. This result shows that S-VOILA maintains

a better quality of stratified sample to answer an aggregation

over a subset of data accurately. In addition, S-VOILA performs

very closely to its offline version, VOILA, which samples from the

entire received data. We note that when ASRS evicts elements

from per-stratum samples, there may not always be new elements

to take their place, hence it often does not use its full quota of

allocated memory.

AlternateMethods of Stratification.We also experimented

with the OpenAQ data set stratified in a different manner, us-

ing the city where the observation was made. Sample results

are shown in Figure 8. We still see that S-VOILA outperforms
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Figure 6: Streaming samplers. SUM with different selectivities, sample size = 1 million. OpenAQ data.
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Figure 7: Streaming samplers. SSQ, AVG, and STD with selectivity 0.50, sample size = 1 million. OpenAQ data.
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Figure 8: Streaming samplers, data stratified by the city
(SUM with selectivity 0.5)

Reservoir, Senate, and ASRS. This supports our observation
that the sample maintained by S-VOILA is of a higher quality

than other streaming samplers, no matter how data is stratified.

Impact of Sample Size. We also explored different sample

sizes varied from 500, 000 to 1 million. All methods benefit from

increased sample size and the relative performance between dif-

ferent methods remains the same across different sizes.

Impact of Minibatch Size. Figure 9 shows the impact of the

minibatch size on the accuracy of streaming samplers for the

SUM query with selectivity 0.5. The sample size is set to one

hundred thousand for each sampler. S-VOILAwith different mini-

batch sizes has an error less that 1%, often much smaller, while

Reservoir has an error that is often 3% or larger. In addition, we

observe that S-VOILA with different minibatch sizes is very close

to VOILA.

7.6 Sliding Window Streaming
We experimented with streaming algorithms Reservoir and

S-VOILA with a sliding window of sizeW = 10
6
. The version of

Reservoir that was used here maintains a uniform sample over

the window by sampling each record with the same selection

probability of
M
W , so it may be more accurately termed “Bernoulli

sampling”. S-VOILA uses stratified sampling with single element

processing, as described in Section 5. As the window slides, we

periodically ask for sum of the value attribute in the current win-

dow. We report the error by compare the estimates from samples
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Figure 9: Streaming samplers, impact of minibatch size,
sample size = 100,000. (SUM with selectivity 0.5)
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records, OpenAQ data.

with the ground-truth answer. Figure 10 shows the average errors

of 5 runs. With a 10% sample rate, as expected, S-VOILA provide

an answer with less than 1% error, while Reservoir has an error

of about 2-3%.

7.7 Offline Sampling
We also compared VOILAwith other offline samplers for the SUM

query with different selectivities. Figure 11 shows that VOILA
always has better performance than Senate and NeyAlloc. Our
experiments with other aggregations also showed similar results.
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Figure 11: Offline samplers. SUM with different selectivities, sample size = 1 million. OpenAQ data.

8 CONCLUSIONS
We presented S-VOILA, an algorithm for streaming SRS with

minibatch processing, which interleaves a continuous, locally

variance-optimal re-allocation of sample sizes with streaming

sampling. Our experiments show that S-VOILA results in variance
that is typically close to VOILA, which was given the entire input

beforehand, and which is much smaller than that of algorithms

due to prior work. We also show an inherent lower bound on

the worst-case variance of any streaming algorithm for SRS –

this limitation is not due to the inability to compute the optimal

sample allocation in a streaming manner, but is instead due to the

inability to increase sample sizes in a streaming manner, while

maintaining uniformly weighted sampling within a stratum. Our

work also led to a variance-optimal method VOILA for offline SRS

from data that may have bounded strata. Our experiments show

that on real and synthetic data, an SRS obtained using VOILA
can have a significantly smaller variance than one obtained by

Neyman allocation.

There are several directions for future research, including

(1) restratification in a streaming manner, (2) handling group-by

queries and join queries, (3) incorporating general versions of

time-decay, and (4) SRS on distributed data.
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