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Sequentially linking data during polyline graphing of mass data (millions of points or more) 
generally results in poor graphing efficiency. Numerous curves are buried behind each pixel and 
cannot be displayed due to resolution limits of the width of the X-axis. Herein, a new efficient 
stratified sampling graphing method is proposed. The test results demonstrated that: (1) The 
full dataset is divided into 2X subsets, where X is the width of the X-axis in pixels, and the 
maximum and minimum values of the data in each subset are respectively calculated and linked 
in order of appearance. This method yields 4X sampled data graphs that are highly consistent 
with the full dataset graphs. (2) When the dataset is divided into 2X, 4X, 6X, 8X, or more sub-
sets (progressively increasing by even multiples), the similarity gradually increases. The average 
similarities can reach approximately 99.24% and 99.93% in the 2X and 50X subsets, respec-
tively. We think that 2X is the optimal subset allocation, which can achieve a high similarity, but 
also achieve the fastest sampling speed. (3) Compared with the speed of full dataset graphing, 
the overall speed of the “single-thread sampling + graphing” is increased by approximately 70 
times, and that of the “threadPool sampling + graphing” was enhanced by approximately 200 
times. The method employs the minimum amount of sampled data to obtain the full dataset 
graph that users expect to see, thereby significantly improving graphing speeds of mass data.
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Introduction
High sampling instruments are increasingly applied in scientific observation, producing ever-increasing 
amounts of data. For example, numerous types of time-domain instruments are used in seismographic 
observation, including continuous seismic waveform recorders at a sampling rate of 100 Hz and ACF-4M 
electromagnetic detectors at sampling rates of 1600 Hz and 3200 Hz. Users of such instruments often require 
a visual time-domain polyline graph of the collected data. The need to link these data sequentially slows 
graphing speeds down, hindering both software developers and users (Li Y et al, 2014; Zhou Y et al, 2010).

For example, there are three channels in a 100 Hz continuous seismic waveform instrument, and each 
channel generates 8,640,000 data points daily. The data acquired in one day (99 MB) requires approximately 
46 s to graph in NET, which has been regarded as the fastest graphing after that obtained via optimization 
using common drawing technologies, such as double buffer graphing (Han Li-na et al, 2006), GraphicsPath 
graphing in NET (Zhou Y et al 2010), and threadPool’s multicurve parallel graphing (Rodrigues C, 2014; 
Aulbach M, 2014). In China, there are thousands instruments that record data continuously and daily. A 
provincial agency must often compare, analyze, and process data generated from dozens of instruments on 
a single graphical interface. Currently, data processing must be performed at least 24 times daily as the data 
processing range is reduced to one hour due to slow graphing speeds.
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Regarding the optimization of graphing speed, Hu L-D et al, (2014) proposed optimizing graphic compo-
nent storage allocation strategies to increase the execution speed of the CPU instructions when performing 
hardware acceleration. Chou Z-D (2013) proposed the optimization of the local erase and redraw process by 
using double buffering, multithread, caching bitmap, hierarchical, timing, and delay refresh drawing mech-
anisms. Jiang J-P et al, (2006) proposed a period line-drawing algorithm in which more than one point is 
drawn by one calculation during the drawing of period lines, which greatly improves the line-drawing speed.

The slow graphing speed observed for mass data (millions of points or more) is mainly the result of the 
volumes of data, as a significant amount of time spent connecting lines. Current graphing optimization 
technologies are incapable of thoroughly solving this problem; thus, sampling-based graphing methods 
are required. Generally, a computer transverse resolution comprises approximately 2000 pixels. When the 
number of points to graph exceeds 2000 pixels, numerous curves are hidden behind each pixel and cannot 
be displayed. A key component of this technique is how to sampling from mass data and ensure that the 
sampled graphs are highly consistent with the full dataset graphs.

Various types of sampling methods have been proposed based on various requirements, such as greedy 
sampling (Chamon L et al, 2017), Monte Carlo sampling (Guo H et al, 2004), stratified sampling (Lu Y-G 
et al, 2017; Parsons V, 2017; Wessing S, 2017; Charles T, 2006), and density biased sampling (Palmer C et al, 
2000). However, few studies have proposed an efficient sampling method for polyline graphing, although it 
has extensive applications in the fields of scientific research and data analysis. It can directly reflect changes 
in data patterns. To greatly improve the polyline graphing speed of mass data, a new efficient stratified 
sampling graphing algorithm is proposed in this paper. Based on the width of the X-axis in pixels, the full 
dataset is divided into 2X subsets. The maximum and minimum values of all data points in each subset are 
calculated and linked in order of appearance. Therefore, 4X sampled data graphs can be obtained.

To evaluate the consistency between the sampled and full dataset graphs, an image similarity algorithm 
was employed. Image similarity is of great significance in fields such as image recognition, face recogni-
tion, image tracking, and image search engines. The most common similarity calculation methods include 
pixel contrast, color histogram, and block segmentation (Zhu S, 2018; Li Q et al, 2017; Zhou C-M et al, 
2016). Typically, two N-dimensional eigenvector is extracted from two images, such as M = (m1, m2 …, mn) 
and T = (t1, t2 …, tn). The distance between the two eigenvectors is calculated. The smaller the distance, the 
greater the similarity, and the larger the distance, the smaller the similarity. The Euclidean distance (Zhu S, 
2018; Zhou C-M et al, 2016) is the most common distance calculation formula, which is used to measure the 
absolute distance between the points of two eigenvectors in a multidimensional space. This is an accurate 
method for dense and continuous data.

Herein, the implementation of an efficient stratified sampling graphing method is detailed. The graph-
ing speeds of single-thread and threadPool sampling methods are compared and analyzed. Additionally, 
the similarity between sampled graphs of nX subsets and the full dataset graph is analyzed. The concept of 
gradual scaling control, which is suitable for sampled graphs, is also proposed.

1 Test data and research methods
1.1 Test data
The test data used in this study are obtained from 100 Hz continuous seismic waveforms. Each instrument 
has three channels: north–south, east–west, and vertical. Each channel generates 8,640,000 data points 
per day.

1.2 Efficient stratified sampling graphing method
To implement efficient stratified sampling, the width of the X-axis in pixels is used to divide the full 
dataset into 2X subsets (every two subsets correspond to a pixel). The maximum and minimum values of 
each subset are respectively calculated and linked in order of appearance (Figure 1). As an example, for a 
graph of 8,640,000 seismic waveform data points, if the width of the X-axis is 1000 pixels, the full dataset 
is divided into 2000 (2 × 1000) subsets, and the number of data points in each subset is 8,640,000/2000 = 
4320. In the full dataset graphing process, although 8640 (4320 × 2) points in every two subsets are linked 
to each other, their connecting lines are fully projected onto the same pixel of the X-axis. Therefore, the 
connecting lines of four maximum and minimum values from these two subsets can be used to replace 
8640 connecting lines.

Regardless of the total amount of data, the total amount of final sampled data is fixed to 4X, which 
depends on the number of pixels X in the width of the X-axis. If the total number of data points is below 4X, 
sampling will not be performed. In this case, the full dataset can be used directly to graph.

Efficient stratified sampling graphing includes the following steps (Figure 2):
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S101: Total number of points in the full dataset = N, width of the X-axis = X pixels, total number of 
sampled data points = 4X.
S102: N > 4X ?
S103: If no, sampling is not performed and all data are graphed.
S104: If yes, sampling is performed and 4X sampled data points are extracted.
S105: The 4X sampled data points are graphed.

The efficient stratified sampling method described in Step S104 includes the following steps  
(Figure 2):

Step S1041: The average number assigned to every subset is calculated as douNum = (double) N/(2 × X), 
where douNum is usually a decimal (N and 2X are not always divisible), and should be set to the double 
type to ensure sufficient accuracy, otherwise the last value of intIndex in Step S1042 may not equal N. 
Morreover, P = (int)douNum, where P is the minimum number of points assigned to each subset, and 
the number of remaining data points after even allocation is N–P × 2X.
Step S1042: Use a loop to determine the starting index of each subset intIndex[i] = (rounding)
(douNum × i), where i = 0…2X, intIndex[i] = 0…N (the last value must be N), and the forward and back-
ward interval of each index in intIndex (or the number of data points in each subset) is set to P P…P 
P + 1 P…P P + 1 P P, namely, P + 1 every several subsets and P otherwise. Therefore, the number of 
remaining data points can be evenly distributed to the X-axis.

Figure 1: Example of efficient stratified sampling graphing. The black line represents a full dataset that 
is divided into eight subsets. The red line represents the sampled graph that links the maximum and 
minimum values (red dots) of each subset in their order of appearance.

Figure 2: Flow chart of the efficient stratified sampling graphing method.
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Step 1043: Extract all data of each subset (between indices intIndex[i] and intIndex[i + 1] – 1) respec-
tively, calculate the maximum and minimum values, and store them in their order of appearance to 
obtain 4X sampled data.

1.3 Similarity testing method
The sampled and full dataset graphs are drawn in an area with the same pixel width W and height H. 
Figure 3 shows the magnified polyline graph, which is composed of W straight lines perpendicular to the 
X-axis. Using 0 and 1 to represent white and black, respectively, a zero-one matrix of H rows and W columns 
can be obtained. Two eigenvectors are extracted from the two matrices, and the Euclidean distance between 
them can represent the similarity between the sampled and full dataset graphs. In this study, the following 
three methods are employed to test the similarity.

(1)	� Pixel contrast method, all pixels of the two matrices are compared and the sum of the pixels 
with the same color value N is calculated to determine the similarity, i.e., N/(W × H).

(2)	� Curve area method, two W-dimensional eigenvectors can be obtained by calculating the sum 
of each column of two matrices. It represents the total number of black pixels per column, and 
it can also be understood as the area of the curve projected onto the X-axis.

(3)	� Envelope line method, the upper envelope line and the lower envelope line of the curve can 
be obtained by looking for the Y coordinates of the first 1 (black) from top to bottom and from 
bottom to top, respectively, in each column of the matrix. One 2W-dimensional eigenvector 
can be obtained by connecting the two envelopes together, and it contains the accurate posi-
tion of the curve on the Y-axis. Thus, two 2W-dimensional eigenvectors can be obtained from 
the two matrices.

The Euclidean distance and similarities of the curve area method and the envelope line method are cal-

culated using equations (1), (2), and (3), respectively. H W and 2H W  denote the maximum distance 
between the two eigenvectors, in this case, the Euclidean distance of each column of the two eigenvectors 
is all H.
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Figure 3: Magnified polyline graph.
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Generally, the pixel contrast method is approximate, and only the total number of pixels of the same color is 
compared. The curve area method compares the curve area of each pixel on the X-axis but does not contain 
the position information of the curve on the Y-axis. The envelope line method compares the accurate posi-
tion of the curve on the Y-axis, and its results are more accurate.

2. Test result
2.1 Comparison of the sampled and full dataset graphs
The full datasets comprise 8,640,000 points, and comparisons of the full dataset and sampled graphs are 
shown in Figure 4. There are partial minor differences between the full dataset (Figure 4a) and sampled 
(Figure 4b, 2X subsets) graphs, though they are difficult to distinguish. Figure 4c shows a distortion when 
the full data are divided into 1X subsets.

2.2 Similarity between the sampled and full dataset graphs
Figure 5 (a), (b), and (c) present the similarity of nX subsets for sampling in the pixel contrast, curve 
area, and envelope line methods, respectively. The similarity of the three methods are consistent for 6,000, 
60,000, 120,000, 600,000, 2,000,000, and 8,640,000 points. Figure 5d and Table 1 show the average simi-

Figure 4: Comparison of full dataset graphs (a) and sampled graphs (b, c) when the full data are divided 
into 2X (b) and 1X (c) subsets in 8,640,000 points.

Figure 5: Similarity of nX subsets for sampling with (a) the pixel contrast method, (b) curve area method, 
and (c) envelope line method. (d) shows the average similarity of 6,000, 60,000, 120,000, 600,000, 
2,000,000, and 8,640,000 points.
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larity. Figure 5d indicates that the pixel contrast method presents the highest similarity, followed by the 
envelope line method and curve area method. The similarity of the envelope line method should be more 
reliable as it compares the accurate position of the curve on the Y-axis. The average similarity of the three 
methods is used to evaluate the consistency between the sampled and full dataset graphs.

When the data are divided into 1X subsets, the similarity is generally <96.58%. When the data are divided 
into 3X or 5X subsets, the similarity is slightly lower than when divided into 2X or 4X subsets. If the full 
dataset is divided into 2X, 4X, 6X, 8X, or more subsets (increasing by even multiples), the similarity gradually 
increases. When the full dataset is divided into 50X subsets, the similarity reaches approximately 99.93%, at 
which point the sampled and full dataset graphs are nearly identical.

2.3 Sampling plus graphing speed test
The sampling process in Figures 1 and 2 is fully operated in memory. It is essentially equivalent to a full 
dataset round-robin. Although the sampling speed is much faster than the full dataset graphing speed, it 
still decreases for larger datasets (millions of points or more). The sampling speed can be further optimized 
by threadPool, which allows to use multiple threads in parallel and sharply increases sampling speeds.

Continuous 100 Hz seismic waveform data are divided into 3, 36, and 72 channels. Table 2 shows the test 
results of full dataset graphing, single-thread sampling + graphing, threadPool sampling + graphing (unit 
of time is seconds). The single-thread sampling time represents the vast majority of the total time. As the 
full dataset increases in size, sampling becomes slower. After threadPool sampling is applied, the sampling 
speed increases significantly. Compared with the full dataset graphing speed, the overall speed of “single-
thread sampling + graphing” is approximately 70 times faster and “threadPool sampling + graphing” is 
approximately 200 times faster.

2.4 Concept of gradual scaling control
Users often gradually magnify curves to inspect more buried data, but the sampled data do not include the 
full dataset. When magnifying, the selected data range must be confirmed acorrding to the mouse position-
ing. The difficulty with it is to determine an accurate mapping between the mouse-positioned pixels and 
real data points. The concept of a gradual scaling control that is appropriate for sampled graphs is shown 
in Figure 6.

Table 1: Average similarity of the sampled and full dataset graphs.

Method Average similarity (%) of nX subsets for sampling

1X 2X 3X 4X 5X 6X 8X 10X 20X 30X 40X 50X

Pixel contrast 
method

96.58 99.54 98.94 99.75 99.39 99.84 99.89 99.91 99.94 99.95 99.95 99.96

Curve area 
method

96.02 98.93 98.16 99.17 98.78 99.47 99.58 99.64 99.77 99.81 99.83 99.89

Envelope line 
method

97.14 99.25 98.70 99.42 99.14 99.63 99.70 99.74 99.79 99.86 99.88 99.92

Average 96.58 99.24 98.60 99.44 99.11 99.65 99.72 99.76 99.83 99.87 99.89 99.93

Note: The width and height of the graphing window for the similarity test are 908 and 200 pixels, respectively. When the 
full dataset is divided into 1X, 3X, and 5X subsets, the similarity is lower; such items are marked in light gray.

Table 2: Sampling graphing speed test result.

Number  
of  
channels

Full 
dataset 
capacity 

(MB)

Full 
dataset 

graphing 
time (s)

Single-thread sampling + graphing threadPool sampling + graphing

Sampling 
time (s)

Graphing 
time (s)

Total 
time (s)

Raising 
rate

Sampling 
time (s)

Graphing 
time (s)

Total 
time (s)

Raising 
rate

3 99 46 0.55 0.18 0.73 63.0 0.14 0.20 0.34 135.3

36 1186 546 6.43 1.34 7.77 70.3 1.06 1.25 2.31 236.4

72 2372 1072 13.04 2.69 15.73 68.2 1.98 2.51 4.49 238.8

Note: Graphing employs threadPool technology, with one thread per channel; Total time = sampling time + graphing 
time; Raising rate = Full dataset graphing time/total time.
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A new global array arrIndex of List type is created and stores the historical starting and ending index num-
bers before each magnification. The current starting and ending index numbers are intS and intE, respec-
tively. The total number of real data points is N = intE–intS + 1. The width of the X-axis is X pixels.

Three steps are as followings. (1) Sampling: When N > 4X, sampling is performed for all data between 
intS and intE; otherwise, no sampling occurs. (2) ArrIndex value update: If the current graph is magni-
fied, intS and intE are appended to the end of arrIndex. If the current graph is restored, the last index of 
arrIndex is removed. If the current graph is a full dataset graph without any magnification, arrIndex is 
emptied. (3) Magnified relationship: The average pixel width of each data point on the X-axis is calculated 
as floX = X/N.

The new starting and ending index numbers are back-calculated using floX according to the pixel range 
selected by the user in the graphing window when the graph is magnifying, or is the last index numbers 
of arrIndex when the graph is restoring. All data between the new starting and ending indices are redrawn.

3 Discussion and conclusion
3.1 Discussion
Figure 4 shows the partial and minor differences between the sampled (Figure 4b, 2X subsets) and full 
dataset graphs (Figure 4a), which are often difficult to distinguish visually. These minor differences occur 
because the current allocation of each subset does not strictly correspond to each pixel on the display. For 
example, the maximum or minimum value of a subset appears exactly at the junction of subsets or pixels. 
The value that would be assigned to the previous subset is actually assigned to the next subset, resulting in 
minor and partial differences in the graphs. Graphs are only a reference tool and these slight differences are 
negligible for users. Further, these differences disappear after partial magnification (if N is not greater than 
4X, no sampling is performed and all data are graphed).

Distortion, as shown in Figure 4c, occurs when the full dataset is divided into 1X subsets. As well as lower 
similarity in Figure 5 when the dataset are divided into 3X or 5X subsets. Odd subsets will cause more 
partial differences between the sampled and full dataset graphs than even subsets.

The average number assigned to every subset (douNum) in Step S1041, as shown in Figure 2, is set to the 
double type as the total number of data points N and 2X is not always divisible, allowing the even distribu-
tion of the remaining data to the X-axis. The minimum number (P) of each subset is increased by 1 every 
several subsets. The test results demonstrate that when the remaining data are allotted to these subsets in 
the head or tail (the number of the data points in these subsets is P + 1, and the rest is P), there is a deviation 
in the starting and ending index numbers back-calculated from the selected pixel range during graph mag-
nification, and the magnified graph does not show the starting and ending area selected by users. However, 
this deviation does not occur again after an even distribution.

Figure 6: Concept of gradual scaling control appropriate for sampled graphs.

Start

1. Sampling.
2. ArrIndex value update.
3. Magnified relationship: floX=X/N

All data between the new starting and ending indices are redrawn.

All drawing data is stored in a global array. A new global array 
arrIndex of List type is created and stores the historical starting 
and ending index numbers before each magnification.

The current starting and ending index numbers are intS and intE, 
respectively. The total number of real data points is N=intE-intS+1. 
The width of the X-axis is X pixels.

When  the graph is magnifying When the graph is restoring

The new starting and ending indices are 
back-calculated using floX according to 
the pixel range selected by the user in the 
graphing window.

The new starting and ending 
indices is the last index numbers 
of arrIndex.
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In the flow chart illustrating the efficient stratified sampling algorithm in Figure 2, the full dataset 
should be divided into 2X subsets, which correspond to the smallest available number of subsets under this 
algorithm. At this time, the total number of sampled data points is 4X, and on average, approximately four 
sampled data points are used to determine one pixel on the display. Thus, the average similarity between the 
sampled and full dataset graphs can reach at least 99.24%. When the dataset is divided into 2X, 4X, 6X, 8X, 
or more subsets (progressively increasing by even multiples), the similarity gradually increases, and when 
the full dataset is divided into 50X subsets, the average similarities can reach approximately 99.93%. At this 
time, the sampled graph is almost identical to the full dataset graph. However, as the number of subsets 
increases, the sampling speed decreases. Therefore, we think that 2X is the optimal subset allocation, which 
can achieve high similarity, but also achieve the fastest sampling speed. If the sampling graph requires 
higher similarity, the number of subsets can be increased to 50X (or more).

The efficient stratified sampling graphing method proposed in this study has been applied to the Ground 
Pulsation Short-term Prediction and Real-time Tracking System, which had previously been developed. This 
system is currently applied in the Gansu, Qinghai, Sichuan, Yunnan, Tibet, and Xinjiang Agencies of China 
and will be further promoted and used in the national seismic system. The high graphing efficiency will have 
wide applicability to mass seismic waveform data.

3.2 Conclusions
To improve the poor polyline graphing speed of mass data in the time domain, the implementation of an 
efficient stratified sampling graphing method was detailed. The graphing speeds of single-thread and thread-
Pool sampling methods were compared and the similarity between the sampled and full dataset graphs was 
analyzed when the full data are divided into nX subsets. The concept of gradual scaling control, which can 
be applied to the sampled graphs, was also proposed. The test results demonstrated the following points: 
(1) When the full dataset is divided into 2X subsets based on the width of the X-axis in pixels, and the 
maximum and minimum values of all data in each subset are calculated and linked in order of appearance, 
4X sampled data graph can be obtained, which is highly consistent with the full dataset graph. (2) When the 
dataset is divided into 2X, 4X, 6X, 8X, or more subsets (progressively increasing by even multiples), the simi-
larity gradually increases. The average similarities can reach approximately 99.24% and 99.93% in the 2X and 
50X subsets, respectively. We think that 2X is the optimal subset allocation, which can achieve high similarity, 
but also achieve the fastest sampling speed. (3) Compared with the speed of full dataset graphing, “single-
thread sampling + graphing” is 70 times faster and “threadPool sampling + graphing” is 200 times faster.

The efficient stratified sampling graphing method employs the minimum amount of sampled data to 
obtain the full dataset graph that users expect to see, thereby greatly improving graphing speeds for mass 
data. This method offers high reference value for software development, graphing design concepts, data 
mining and analysis, etc. It is very simple and easy to extend to other languages. The sampling algorithm is 
also applicable to sequential polyline graphing outside the time domain.

However, the efficient stratified sampling graphing method proposed in this study is only suitable for 
polyline graphing with equal sampling intervals. Additionally, the sampled graphs are only highly consistent 
with the full dataset graphs and not identical. Therefore, our future research on computer graphics focus on 
improving sampling abilities and making sampled graphs identical.
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