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Abstract

This paper considers optimum allocation in multivariate stratified sampling as a
problem of the multi-objective optimisation of integers, under three different sce-
narios, those of complete, partial or zero information. The paper concludes with an
example showing the implementation of each of the techniques proposed.
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1 Introducción

One of the areas of statistics that is most commonly used in all fields of
scientific investigation is that of probabilistic sampling. Obtaining good results
in medical, social or other research depends on a successful, well-implemented
sampling process. The use of effective sampling techniques within a population
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is thus seen as the obtention of data that is useful for gaining knowledge of
important aspects of such a population. Stratified sampling is one of the most
frequently utilised of these techniques. In order to determine the sample size
within each stratum of a stratified sampling scheme, one possibility is that of
optimum allocation. This is achieved by means of a non-linear optimisation
problem, in which the objective function is the variance, which is subject to a
cost restriction, or vice versa. Traditionally, this problem has been resolved by
using the Cauchy-Schwarz (Stuart 1954) inequality cited in Cochran (1977)
or the Multiplier method of Lagrange, see Sukhatme et al. (1984).

The usual way these sampling techniques are used, and in particular that of
stratified sampling, is the univariate form, that is, when the size of the sample
and its allocation into strata is proposed taking into account a single decision
variable or characteristic, see Cochran (1977), Sukhatme et al. (1984) and
Thompson (1997). In the context of stratified sampling, attempts have been
made to establish the sample size and its allocation within strata, taking into
account various characteristics, see Sukhatme et al. (1984) and Arthanari and
Dodge (1981), among others.

When optimum allocation is performed, and a cost function that is subject
to the restrictions of the variances in the different characteristics is proposed
as the objective function, the problem is then reduced to one of classical
mathematical programming, and has been treated as such by Arthanari and
Dodge (1981), from a deterministic standpoint, and by Prékopa (1978) from
a stochastic position. In this latter case, the problem can be approached using
any of the techniques presented in Dı́az-Garćıa and Garay (2006).

Alternatively, when the goal is to minimise the variances that are subject to
a cost function, or to a given sample size, then the problem has been resolved
in various ways, see Sukhatme et al. (1984). But as we shall see, all these ap-
proaches previously described in the literature are only particular cases of one
of the techniques of multi-objective optimisation, which in the sampling con-
text has a prime criterion that the population being studied must be totally
identified, to the degree that it is possible to propose a scalar function estab-
lishing a relation between the variances of each characteristic. Such conditions,
in practice, are rarely encountered. Furthermore, the above approaches do not
safeguard against the problem of over-sampling, i.e. when the sample size in
one or more strata is larger than the stratum size; furthermore, the sample
sizes obtained are not integers, and must be rounded.

On the basis of the above considerations, in this paper we examine the problem
of optimum allocation in multivariate stratified sampling, while simultaneously
minimising the variances subject to a cost function or to a given sample size,
as a problem of the multi-objective optimisation of integers. We study different
techniques to resolve this problem, taking into account the prior knowledge
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of the population, which is classified as complete, partial or zero information.
Finally, all the techniques studied are applied to a standard problem, the
solutions being obtained by means of the LINGO computer program.

2 Multivariate stratified sampling

When a sample is obtained, a typical problem that arises is that of estimat-
ing various characteristics of the population. This is usually complicated by
the fact that the different characteristics may have different variances, which
means that the sample sizes for each characteristic may vary. To formally set
out the problem of the optimum allocation in stratified sampling, consider the
following notation, see Cochran (1977), Sukhatme et al. (1984) and Thompson
(1997).

Notation

The subindex h = 1, 2, ..., H denotes the stratum, and i = 1, 2, ..., Nh the unit
within stratum h. Moreover:

Nh Total number of units within stratum h

nh Number of units from the sample in stratum h

yhi Value obtained for the i-th unit in stratum h

n = (n1, n2, . . . , nH)′ Vector of the number of units in the sample

Wh =
Nh

N
Relative size of stratum h

Y h =

Nh∑

i=1

yhi

Nh

Population mean in stratum h

yh =

nh∑

i=1

yhi

nh

Sample mean in stratum h

Sh
2 =

Nh∑

i=1

(yhi − Y h)
2

Nh − 1
Populational variance in stratum h
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ch Cost per sampling unit in stratum h

yst =
H∑

h=1

Whyh Estimator of the populational mean

in the stratified sampling.

V (yst) Variance of yst.

where

V (yst) =
H∑

h=1

Wh
2Sh

2

nh

−
H∑

h=1

WhSh
2

N

Formally, the problem of optimum allocation in stratified sampling can be
presented as the following programme of multi-objective, non-linear optimisa-
tion:

min
n

V̂ (yst) =min
n




V̂ (y1
st)

...

V̂ (yG
st)




subject to

c′n + c0 = C

(1)

where C is the total cost, c0 is a fixed cost and c′ = (c1, . . . cH).+

Although this problem has not been presented exactly so in the statistical lit-
erature, different approaches have been put forward to resolve the problem of
optimum allocation in multivariate stratified sampling, including compromise
allocation, compromise allocation minimising the total relative loss, and com-
promise allocation taking the mean of the values. Another approach is based
on minimising the generalised variance, while yet another seeks to minimise
the trace of the variance and covariance matrix, always subject to a predeter-
mined cost function or sample size. These methods, and some additional ones,
have been examined in detail by Sukhatme et al. (1984).

Note that the solutions proposed for programme (1) take real values, and
thus the sample sizes nh must be integers. We must also address the problem
of over-sampling, that is, when nh ≥ Nh for at least some h; finally, there
is the problem of estimating the variance on the basis of the sample size in
each stratum. In order to overcome these three complications, we propose the
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following, as an alternative to (1).

min
n

V̂ (yst) =min
n




V̂ (y1
st)

...

V̂ (yG
st)




subject to

c′n + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N,

(2)

where N denotes the set of natural numbers.

The methods for resolving a multi-objective optimisation programme can
be classified by considering the amount of information available to the pro-
gramme, in the context of the sampling exercise; in practice, this concept is
taken as the amount of information possessed concerning the study popula-
tion, with three different scenarios, namely complete, partial or zero informa-
tion, see Rı́os, Rı́os Insua and Rı́os Insua (1989), Miettinen (1999) and Steuer
(1986), among others. Let us now consider the problem (2) from the stand-
point of each of the multi-objective optimisation methods, using the following
classification:

Multi-Objective

Optimisation Methods





Complete information





Value function

Lexicographic

Partial information
{

ε− constraint

Zero information
{

Distances.

Optimum allocation via multi-objective optimisation

Note that V (ȳj
st) is defined using the populational variances S2

h, h = 1, 2, . . . , H,
which are usually unknown, and therefore these are substituted by the sample
variances s2

h, h = 1, 2, . . . , H, defined as

sh
2 =

1

nh − 1

nh∑

i=1

(yhi − yh)
2.
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And thus V (ȳj
st) is substituted by the estimated variance V̂ (ȳj

st), which is given
by

V̂ (yj
st) =

H∑

h=1

Wh
2s2

hj

nh

−
H∑

h=1

Whs
2
hj

N
.

Value function

This method is applicable in experiments in which the information on the char-
acteristics to be evaluated is complete, i.e. when the importance of each one is
fully known. For example, when using the value function with the weighting
method, its hierarchy must be so perfectly understood that the evaluator is
able to assign an appropriate weight to each characteristic, see Rı́os, Rı́os Insua
and Rı́os Insua (1989), Miettinen (1999) and Steuer (1986), among others.

Under the value function technique, programme (2) is expressed as follows:

min
n

v(V̂ (yst)),

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

(3)

where v(·) is a scalar function that summarises the importance of each of the
variances of the G characteristics.

Clearly, all the approaches described in the literature constitute particular
cases of the above method.

Evidently, for every problem the value function v(·) may take an infinite num-
ber of forms, and this is what constitutes the difficulty for the evaluator in
defining such a function. However, some simple functions have given excellent
results in the applications, providing the evaluator with a relatively straight-
forward task. One of these particular forms is the weighting method. Under
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this approach, problem (3) can be expressed as:

min
n

G∑

j=1

λjV̂ (yj
st),

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

such that
G∑

j=1

λj = 1, λj ≥ 0 ∀ j = 1, 2, . . . , G; where λj weights the

importance of each characteristic.

In the context of multi-objective optimisation, this is without doubt the method
that has been most thoroughly studied. Its popularity is due to the fact that
the value function is not unique, and thus the investigator can select the func-
tion that is most suitable for the occasion. Furthermore, this method can be
applied in experiments in which there are antecedents that help us to weight
the characteristics to be evaluated; in other words, the value function method
is utilised for recurrent studies in which, over time, the results obtained help
us reach a better inference for future experiments, in which the appropriate
weighting can be applied.

Lexicographic method

This method, like the previous one, requires complete information on the phe-
nomenon in order to create an importance-ordered hierarchy of the character-
istics evaluated, these being measured in this case by means of their variances.
Unlike the value function method, it is not necessary to know what weight to
allocate to each characteristic, but only the order of importance they represent
in obtaining the sample, see Rı́os, Rı́os Insua and Rı́os Insua (1989), Steuer
(1986), among others. In practice, this is very useful, as on various occasions
the evaluator will not know the value of the weight of each characteristic to
be evaluated, but only the order in which each one affects the study.

In this case, to optimise programme (2), the evaluator must order the vari-
ances, beginning with the one presenting the most important characteristics,
and then by descending order of importance, thus obtaining

V̂ (yi1
st), V̂ (yi2

st), . . . , V̂ (yiG
st ),

where i1, . . . , iG is a permutation with the desired, descending order of the
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set of superindices 1, 2, . . . , G. Now, it is necessary to resolve the following
programme:

min
n

V̂ (yi1
st)

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

(4)

If the minimum of problem (4) is v1 , in the next stage we must resolve the
problem

min
n

V̂ (yi2
st)

subject to
H∑

h=1

Wh
2s2

h1

nh

−
H∑

h=1

Whs
2
h1

N
= v1

H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

(5)

Now, let v2 be the minimum of problem (5), and in the third stage we resolve
the problem

min
n

V̂ (yi3
st)

subject to
H∑

h=1

Wh
2s2

h1

nh

−
H∑

h=1

Whs
2
h1

N
= v1

H∑

h=1

Wh
2s2

h2

nh

−
H∑

h=1

Whs
2
h2

N
= v2

H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

8



Thus, we reach stage G, where the next problem to be solved is

min
n

V̂ (yiG
st )

subject to
H∑

h=1

Wh
2s2

h1

nh

−
H∑

h=1

Whs
2
h1

N
= v1

H∑

h=1

Wh
2s2

h2

nh

−
H∑

h=1

Whs
2
h2

N
= v2

H∑

h=1

Wh
2s2

h3

nh

−
H∑

h=1

Whs
2
h3

N
= v3

...
H∑

h=1

Wh
2s2

hG−1

nh

−
H∑

h=1

Whs
2
h2G−1

N
= vG−1

H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

Thus, the vector obtained in this stage is the optimum solution to the problem.

ε-constraint method

This is a method to resolve the problem when only partial information is
available. In order to apply this method, the investigator need only identify
the most important characteristic, see Rı́os, Rı́os Insua and Rı́os Insua (1989)
and Miettinen (1999). This method is extremely useful in studies in which the
investigator has been able to identify the characteristic that has most influence
on the obtention of the sample, and the limits to be attributed to the other
characteristics.

Let us again start from problem (2), and assume that the most important char-
acteristic in the study is the k-th one, k ∈ {1, 2, . . . , G}. Under this technique,
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the problem can then be restated as follows:

min
n

V̂ (yk
st)

subject to

V̂ (yr
st) ≤ vr, r 6= k, r = 1, 2, . . . , G

H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N,

(6)

where, in this case, vr is a pre-established bound for each of the G−1 remaining
variances, which are given as constraints.

For all practical purposes, these vr values can be taken as the upper limit of
the confidence interval for each variance or, alternatively, they can be defined
as the minimum individual values of the following problems:

min
n

V̂ (yr
st)

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N, r = 1, 2, . . . , G, r 6= k.

Note that the choice of the k characteristic and the lower limits vr represent the
evaluator’s subjective preferences, and so if there were no solution to problem
(6), this would mean that the vr limits had been set too low and that at least
one must be revised, see Rı́os, Rı́os Insua and Rı́os Insua (1989).

Distance-based method

On many occasions, the investigator comes up against the problem that no
antecedents are available with which to address it, or otherwise it might be
difficult to decide which of the characteristics being evaluated is the most
important. In such cases, the method presented in this section is the most
suitable. No antecedent is required, as the only requirement for solving a
problem using this method is a vector of ideal goals, which is determined with
the null information expressed in the problem, see Rı́os, Rı́os Insua and Rı́os
Insua (1989) and Steuer (1986).
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Then, from problem (2), with this method it is possible to obtain the optimum
values, minimising the distance between the optimum and the vector of targets,
simultaneously.

Let vj be the ideal point or goal for the objective V̂ (yj
st), j = 1, . . . , G, i.e. the

vector of targets V is given as

V =




v1

...

vG




.

A great advantage of this method is that this vector of targets V can be calcu-
lated without additional information. This is done by minimising, separately,
each objective V̂ (yj

st), j = 1, . . . , G , such that the vector V is defined as the
vector of its individual minima, which is achieved on resolving the following
G non-linear minimisation programmes for integers, see Rao (1978):

min
n

V̂ (yj
st),

subject to
H∑

h=1

chnh + c0 = C,

2 ≤ nh ≤ Nh,

h = 1, 2, . . . , H

nh ∈ N.

for j = 1, . . . , G.

When the vector V has been established, we proceed to examine the problem
to be optimised with the new objective function, namely

min
n

d
(
V (yj

st),V
)

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

where d corresponds to a weighted norm. More generally, we will consider the
weighted norm Lq−, and so the problem to be optimised takes the following
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form:

min
n




G∑

j=1

λj|V (yj
st)− vj|q




1
q

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N,

with 1 ≤ q ≤ ∞ and λj ≥ 0, which is the weight or priority given to each
objective j. To illustrate this technique, let us take λj = 1, that is, we shall
give the same priority to each characteristic, and we shall use the particular
cases q = 1, q = 2 and q = ∞.

Thus, with q = 1, we have the following problem:

min
n




G∑

j=1

|V (yj
st)− vj|




subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

As vj are constant for all j = 1, . . . , G, the problem is reduced to

min
n

G∑

j=1

V (yj
st)

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

With q = ∞, we need only take into account the maximum deviation, and so
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the problem to be optimised will be

min
n

max
j=1,2,...,G

[
V (yj

st)− vj

]

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

and for q = 2 the problem is

min
n




G∑

j=1

[
V (yj

st)− vj

]2




1/2

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

Alternatively, another distance has been proposed by Khuri and Cornell (1987):

min
n

G∑

j=1




(
V (yj

st)− vj

)2

v2
j




subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

Note that with all these optimisation methods, we have utilised the cost re-

striction
H∑

h=1

chnh+c0 = C. However, on some occasions, the restrictions do not

apply to the costs but rather to the availability of man-hours for carrying out
a survey, or simply to the total time available for performing the survey. These
limitations can be described using the following expression, see Arthanari and
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Dodge (1981):

H∑

h=1

nh = n.

3 Alternative approach

Note that in problem (2) it is assumed that the covariances between the dif-
ferent characteristics are zero, which under the assumption of normality is
equivalent to assuming the characteristics to be stochastically independent,
a fact that is not necessarily so in the applications used. This idea led us
to propose the problem of optimum allocation under multivariate stratified
sampling as follows:

min
n

Θ

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

(7)

where Θ = Cov(yst) is the matrix of variances - covariances of the vector
yst = (y1

st, . . . , y
G
st)

′.

Obviamente la dificultad de plantear de esta forma el problema es como definir
que significa el mı́nimo de una matriz. Sin embargo, si dicho problema puede
ser tratado a través del método de la función de valor, fácilmente surgen
interpretaciones del mı́nimo de una matriz. De esta forma, el programa (7)
empleando la técnica de la función de valor está dado por

Obviously, the difficulty of expressing the problem in this way lies in defining
the meaning of the minimum of a matrix. However, if this problem can be
dealt with using the value function method, then it is easy to arrive at inter-
pretations of the minimum of a matrix. Thus, programme (7), using the value
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function technique, is given by

min
n

v (Θ)

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

Note that, if in particular v (Θ) = tr (Θ), and all the characteristics are given

the same weighting, such that
G∑

j=1

λj = 1, λj ≥ 0 ∀ j = 1, 2, . . . , G, then

we obtain the particular solution described in the section on the value func-
tion. Similarly, as a particular case, too, we obtain the solution described by
Dalenius, for which we simply define v (Θ) = det (Θ) = |Θ|, to obtain the
following programme under approach (2):

min
n
|Θ|

subject to
H∑

h=1

chnh + c0 = C

2 ≤ nh ≤ Nh, h = 1, 2, . . . , H

nh ∈ N.

Note that the trajectory and the determinant are not the only value functions
that can be used. Alternative definitions of the value function that have been
used in other statistical contexts include:

(1) The sum of all the elements of the matrix Θ = (θkl); v(Θ) =
G∑

k,l=1

θkl.

(2) v (Θ) = λ1 (Θ), where λ1 is the maximum eigenvalue of the matrix of
covariances Θ.

(3) v (Θ) = λG (Θ), where λG is the minimum eigenvalue of the matrix of
covariances Θ.

4 Example

Let us now use the data from the example described by Sukhatme et al. (1984,
p. 164) to calculate sample sizes by means of the five methods examined above.
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The results obtained with the LINGO software, for all the techniques, are
shown in Table 1.

For this example, the multi-objective optimisation programme under approach
(2) is

min
n




V̂ (y1
st)

V̂ (y2
st)




subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.

(8)

Furthermore, consider the following two programmes for the non-linear min-
imising of integers:

min
n

V̂ (y1
st)

subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.

min
n

V̂ (y2
st)

subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N,

(9)

the individual minima of which are concentrated in the following vector

V =




23.86

92.50


 . (10)

Value Function

Under this method, it is assumed that both characteristics are equally im-
portant, and so the same weighting is given to the two characteristics being
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evaluated, λ1 = 0.5 and λ2 = 0.5. From the above, we have

min
n

(
0.5

(
V̂ (y1

st)
)

+ 0.5
(
V̂ (y2

st)
))

subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.

Lexicographic Method

The first step in resolving the problem by means of the lexicographic method
is to order the characteristics by order of importance, assuming that V̂ (y1

st) is
the most important. In this first stage, we must resolve the first programme in
(9). Then, in the second stage, and in the present case this is the final stage,
we have the following optimisation programme:

min
n

V̂ (y2
st)

subject to

V̂ (y1
st) ≤ 23.86

4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.
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ε-constraint methods.

Let us again assume characteristic 1 to be highest in the hierarchy, programme
(8), and then the problem to be resolved using this technique is

min
n

V̂ (y1
st)

subject to

V̂ (y2
st) ≤ 92.50

4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N,

where v2 = 92.50 is the upper bound for the variance of characteristic 2, and
this is calculated by minimising the second problem in (9).

Distance-based Method

Starting from problem (8), we apply the procedure for the distance q = 1
(norm of the absolute value), q = 2 and the distance proposed by Khuri and
Cornell (1987). Taking (10) as the vector of targets, we then have:

for q = 1, the distance to be minimised is

min
n

(
|V̂ (y1

st) + V̂ (y2
st)|

)

subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.
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With q = 2, we have

min
n

[(
V̂ (y1

st)− 23.86
)2

+
(
V̂ (y2

st)− 92.50
)2

]

subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N,

and with the distance proposed by Khuri and Cornell (1987), the problem to
be optimised is

min
n




(
V̂ (y1

st)− 23.86
)2

23.862
+

(
V̂ (y2

st)− 92.50
)2

92.502




subject to
4∑

h=1

nh = 382

2 ≤ nh ≤ Nh, h = 1, 2, 3, 4

nh ∈ N.

Table 1: Sample sizes for the different allocations calculated.

Allocation n1 n2 n3 n4

Value Function 201 28 32 121

Lexicographic 207 27 31 117

ε-constraints 120 39 55 168

Distances q=1 201 28 32 121

Distances q=2 190 29 36 127

Khuri and Cornell distance 191 29 35 127

Note that the strata with the highest numbers of units allocated are numbers 1
and 4, irrespective of the multi-objective optimisation technique implemented.
This is due to the fact that the variances of the characteristics being evaluated
are larger in these strata, see Sukhatme et al. (1984, p. 164).

It should also be noted that all the methods are illustrated using the same
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example, but in real life this does not occur, because when considering the
method to be utilized it is necessary to decide whether complete, partial or
zero information is available, and then apply the most appropriate method to
each situation, according to the investigator’s criteria and experience.

5 Conclusions

The problem of optimum allocation in multivariate stratified sampling has
been examined previously in statistical literature, but the solutions proposed
have been particular cases of a multi-objective optimisation technique. Fur-
thermore, all the solutions proposed have been merely particular cases of the
technique known as the value function, within the context of multi-objective
optimisation. In the solution to a programme for multi-objective optimisa-
tion, there are three possible scenarios, namely that the investigator possesses
no information, partial information or complete information. Unfortunately,
the value function technique has been proposed within a context of complete
information. To extend this idea to a sampling context would require the
investigator to be perfectly informed of the study population, such that it
would be possible to propose a value function reflecting the importance of
every single one of the variances of the characteristics being studied, and this
possibility, today, is very rarely encountered. Taking these circumstances into
account, the present study examines alternative techniques within the contexts
of partial information (whereby it may be sufficient to know about the most
important characteristic) and of zero information (in which it is not necessary
to possess any information other than the estimators of the parameter being
studied), in order to reach a more appropriate solution. Having addressed the
problem of optimum allocation within stratified sampling as a programme of
multi-objective optimisation, the techniques proposed for the resolution of the
problem are illustrated by means of an example from the standard literature
in the field, namely Sukhatme et al. (1984). In addressing the problem of op-
timum allocation in multivariate sampling, it is first necessary to determine in
which of the three contexts (i.e., total information, partial information or zero
information) this problem resides. Once this has been done, we then decide the
technique to be applied, on the basis of the information available. It is impor-
tant to note that the solution for an allocation problem should be achieved by
the implementation of a single method. For this reason, the results obtained
for the example are comparable only within the context in which the example
was established.

Bearing these considerations in mind, note that the sample sizes allocated by
the value function and lexicographic methods (both in the context of complete
information) vary only slightly. Similarly, it can be shown that with the sample
sizes allocated by the distance method (zero information) for the three different
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distances examined (q = 1, q = 2 and the Khuri and Cornell distance), the
sample sizes for the different strata are very similar, particularly so for the
q = 2 distance and that proposed by Khuri and Cornell, in which the strata
sizes differ by only one unit in stratum 1 and in stratum 3.

It is important to stress that the alternative approach based on the philosophy
put forward by Dalenius is somewhat closer to a real-world situation, as it
takes into account the possible correlation between the characteristics being
studied.

Finally, we can explain the recent vertiginous development of the multiobjec-
tive optimisation by the adaptation of the metaheuristics techniques, thus, we
have now methods for finding the solution of the problem, or better, for deter-
mining the set of efficient solutions (in the sense of Pareto’s optimisation), or
for obtaining a good approximation. This wide group of alternatives provides
to the researcher more freedom for taking the best solution of the particular
problem.

In fact, the development of the multiobjective optimisation in the above-cited
direction could be used in the context of the optimal location in the stratified
survey, see Jones et al. (2002).
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