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Abstract
Background: An important question in the design of experiments is how
to ensure that the findings from the experiment are generalizable to a larger
population. This concern with generalizability is particularly important
when treatment effects are heterogeneous and when selecting units into
the experiment using random sampling is not possible—two conditions
commonly met in large-scale educational experiments. Method: This
article introduces a model-based balanced-sampling framework for improv-
ing generalizations, with a focus on developing methods that are robust to
model misspecification. Additionally, the article provides a new method for
sample selection within this framework: First units in an inference popula-
tion are divided into relatively homogenous strata using cluster analysis, and
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then the sample is selected using distance rankings. Result: In order to
demonstrate and evaluate the method, a reanalysis of a completed
experiment is conducted. This example compares samples selected using
the new method with the actual sample used in the experiment. Results
indicate that even under high nonresponse, balance is better on most
covariates and that fewer coverage errors result. Conclusion: The article
concludes with a discussion of additional benefits and limitations of the
method.

Keywords
cluster analysis, experimental design, external validity, model-based sam-
pling, stratified sampling, treatment effect heterogeneity

In the social, educational, and medical sciences, evaluations of interventions

are typically conducted using randomized experiments. Randomized experi-

ments are preferred since they have high internal validity, ensuring that the

treatment effect estimated within the experiment is the causal effect of the

treatment. This random assignment to treatment conditions, however, does

not help when generalizations about the effect of the treatment for units not

in the experiment are desired. Since experiments very rarely select units using

probability sampling from a well-defined population (Shadish, Cook, and

Campbell 2002), any generalization must typically be based on qualitative

judgments regarding how similar a particular population of interest is to the

composition of units in the experiment (Cornfield and Tukey 1956).

Recently, statisticians have begun developing new methods for

improving generalizations from completed experiments. Stuart et al.

(2011) introduced propensity score-based methods for quantitatively eval-

uating the degree of similarity between a population and an experimental

sample, while Hedges and O’Muircheartaigh (2011) developed a method

for adjusting the estimate and standard errors to account for these differ-

ences using a propensity score poststratification estimator. Tipton (2013)

further developed the assumptions necessary for causal generalization using

propensity score methods and properties of the poststratification estimator.

Furthermore, Tipton showed that these propensity score-based methods

perform best when there is no coverage error. Coverage errors arise when

particular segments of the population do not have relevant comparison units

‘‘like’’ them in the sample used in the experiment.

In contrast to these retrospective approaches, this article provides a new

framework and method for sample selection in experiments that improve
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causal generalizations prospectively. The goal of this framework is for the

sample selected for inclusion in the experiment to be compositionally

similar to the inference population on a variety of important covariates that

possibly explain variation in potential treatment effects. The approach can

be used broadly and does not require (nor preclude) random sampling. To

achieve these goals, the method uses cluster analysis techniques to classify

the population into nearly homogenous strata and then provides a simple

distance-based approach for selecting units within each stratum into the

experiment. The method is similar to that proposed by Tipton et al. (2014)

but differs in that here eligibility criteria differentiating between the inference

population and the units eligible to be in the study are not required.

Since in most practical cases the units selected into an experiment are in

fact clusters or aggregates of individuals—for example, schools or school

districts—the method developed here is a version of a stratified cluster sam-

pling design. The goal is to first divide the clusters (e.g. schools) into strata

using cluster analysis methods and then to select clusters (e.g. schools)

within each of these strata into the experiment. Note that the language used

here can be confusing, since the word cluster is used differently in the field

of cluster analysis than in the fields of experimental design and survey sam-

pling. In order to clearly differentiate, we use the word cluster throughout to

mean a group of aggregated individuals, for example, a school or school dis-

trict. This follows practice common in the design and analysis of large-scale

experiments. We then refer to the groups of these clusters that are created

using cluster analysis methods as strata, since these will be used for the

creation of a stratified sampling plan for generalization.

Overall, the article is organized as follows. In the first section, we frame

the problem of sample selection in the model-based sampling literature and

introduce the goals for our approach. In the second section, we develop a

stratified sample selection method using cluster analysis to meet these

goals. In the third section, we apply and evaluate this method using an

example. Finally, in the last section, the article concludes with a discussion

of additional benefits and extensions to the method.

Generalizations From Experiments

The Role of Models in Generalization

In developing a method for sample selection, it is helpful to begin by

reviewing what would happen in an ideal study aimed at causal generaliza-

tion. In this ideal study, first a well-defined inference population P of size N
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would be carefully enumerated and defined. For example, in a large-scale

educational experiment, this might be a list of the 65,134 regular middle

schools in the United States obtained from the Common Core of Data

(National Center for Education Statistics). Second, a sample S of n sites

would be randomly selected from this population. For example, in an educa-

tional experiment, the sample would typically include between 20 and 60

schools or districts, depending on the study design (Spybrook 2012). Third,

within these n schools, units would be randomly assigned to treatment con-

ditions. Depending upon the design of the study, this randomization might

happen at the cluster level (e.g., schools) or at a lower level (e.g., classrooms

or students). This dual randomization would ensure that both the site and the

treatment selection processes were ignorable or noninformative, where an

ignorable selection process is one in which unobserved covariates have no

effect on the conditional distribution of outcomes given the observed

covariates (Rubin 1976; Smith and Sugden 1988). The result would be an

‘‘experiment within a survey,’’ which would clearly enable causal generaliza-

tions (Smith and Sugden 1988; Shadish, Cook, and Campbell 2002).

In practice, this dual randomization procedure is generally infeasible

(Bloom 2005; Rubin 1974; Shadish, Cook, and Campbell 2002). In fact,

Olsen et al. (2013) found that random site selection was implemented in

only 7 of the 273 experiments reported in the Digest of Social Experiments

(Greenberg and Schroder 2004). Instead, study designers and analysts often

choose only one level of randomization, resulting in either a probability

survey or an experiment (Fienberg and Tanur 1987; Imai, King, and Stuart

2008). In experiments, while treatment is assigned randomly, the typical

practice is to select a convenience sample of n sites, where here by ‘‘con-

venience’’ we mean without clear reference to a well-defined population

(Shadish, Cook, and Campbell 2002).

Given the infeasibility of random site selection, in experiments causal

generalizations are typically made through the use of statistical models.

To see why models are necessary, note that we can decompose a population

average treatment effect (PATE) as follows (Imai, King, and Stuart 2008),

PATE ¼ ðn=NÞ SATE þ ð1� n=NÞ NATE;

where the sample average treatment effect (SATE) and nonsample average

treatment effect (NATE) are the average treatment effects for those in the

sample and not in the sample, respectively, the sample includes n units and

there are N total units in the population. While we can estimate the SATE

directly from the n units in the experiment, estimating the average treatment
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effect for units not in the experiment (NATE) is difficult. If the sites were

selected using probability sampling, the NATE could be estimated by tak-

ing into account the selection probabilities for the units in the sample. Since

the sites in an experiment are typically not selected randomly, the NATE

must be predicted based upon a model relating the sample to the population.

In experiments, when generalizations beyond the sample of n sites are of

interest, the results are typically analyzed using random effects models

(Kirk 1995; Raudenbush 1993); these multilevel models are generalizations

of the analysis of variance models typically used to analyze single-site

experiments. These super-population models make generalizations through

use of random effects (with an assumed distribution), not based upon selec-

tion or random assignment probabilities. Specifically, two super-population

models are common: the hierarchical model (for cluster-randomized

designs) or the random block model (for multisite trials). Whether estimated

using traditional hierarchical linear model methods (Raudenbush and Bryk

2002) or the Neyman model (Schochet 2013), the average treatment effect

estimated is therefore considered generalizable to schools or districts that

are ‘‘similar’’ to those in the study. These ‘‘bottom-up’’ generalizations are

difficult since what is meant by similar is typically vaguely defined.

Recent work in the analysis of experiments has focused on how to

improve generalizations within this super-population framework. The

methods begin by carefully defining an inference population of interest,

using a population frame like the Common Core of Data or a state longitu-

dinal data system (e.g., Stuart et al. 2011; Tipton 2013). An important fea-

ture of these population frames is that they both enumerate all units in the

population and include a rich set of covariate information on these units.

Next, the N schools in the population and the n schools in the sample used

in the experiment are compared on a set of p covariates using a propensity

score (Rosenbaum and Rubin 1983). These covariates are selected so as to

meet a sample selection ignorability condition; here, ignorability is met if

this set includes all covariates associated with both the site selection process

and the treatment effect variability (Stuart et al. 2011; Tipton 2013). Pro-

pensity score methods are then used to reweight the sample and the popu-

lation so that the two groups are balanced on this set of p covariates, where

balanced means that the means (and higher order moments) of these covari-

ates are similar for the two groups. These reweighting estimators include

subclassification or poststratification estimators used in combination with

the multilevel models given earlier (e.g., Hedges and O’Muircheartaigh

2011). The result is an estimate of the average treatment effect given for

a well-defined population based upon a super-population model.
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Retrospective generalizations, like those given earlier, are helpful in that

they shift generalizations from vaguely defined to well-defined populations.

However, as Tipton (2013) shows, sometimes the effectiveness of these

methods is limited, particularly when there are coverage errors. Coverage

errors arise when there exist segments of the population for whom there are

no similar units in the experiment; this, we argue, is the lasting effect of the

bottom-up generalization approach. In this article, we focus instead on

developing a method for site selection that makes these generalizations

‘‘top-down.’’

Instead of carefully defining the inference population after the study is

completed, our goal here is to begin the study with a well-defined inference

population and then design a site-selection process that makes model-based

generalizations possible.

Balanced Sampling

Just as in the ideal study, the goal here is to begin by first carefully defining

and enumerating an inference population P of size N and then to select the n

units in the sample S strategically, using a more formal sample selection

plan. The goal is for the sample selection process to be noninformative or

ignorable (Rubin 1976) by which we mean that the resulting sample and

population are compositionally similar on the set of covariates that explain

treatment effect variability (Stuart et al. 2011; Tipton 2013).

The approach we develop here builds on theory and results found in

model-based sampling in the sample survey literature (Valliant, Dorfman,

and Royall 2000). Model-based sampling is a purposive sampling alterna-

tive to design-based random sampling methods; while random selection can

be used within the model-based framework, it is not required. The

model-based sampling approach, while not as commonly used in survey

sampling, has much in common with the model-based super-population

approach commonly used to analyze experiments (Fienberg and Tanur

1987; Rao 2005). As such, this method will allow inferences from a sample

to super-population using the same random effects approach currently used

in the analysis of large-scale experiments; the key difference here is that

now the definition of the super-population will be clearly and carefully

defined.

In order to develop this strategy, we first define the causal effects of

interest in the potential outcomes framework. For each unit in the

population P, let W ¼ 1 if a unit is assigned to the treatment condition.

Then assume that for each unit, there exists two potential outcomes,
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Y(1) ¼ Y(W ¼ 1) and Y(0) ¼ Y(W ¼ 0), where Y(1) is the unit’s potential

outcome under treatment and Y(0) is the unit’s potential outcome under

some specified alternative condition. Now for each unit in the population

P, let the potential treatment effect D ¼ Y(1) � Y(0). Note that as a result

of the Fundamental Problem of Causal Inference, both potential out-

comes—and by extension the potential treatment effect—can never be

observed for a particular unit (Holland 1986). However, the goal of an

experiment is generally to estimate the PATE tP ¼ E[D], where the expec-

tation is across all units in the inference population P. Finally, let Z ¼ 1 if a

unit in the population P is selected into the sample S. Since only units in the

sample (Z ¼ 1) are in the experiment, we focus here on causal impact esti-

mators that are based only on the n units in S.

An important question is under what conditions an estimator T that is

unbiased for the SATE, tS ¼ E(D|Z¼1), is unbiased for the PATE, tP ¼
E(D). Stuart et al. (2011) and Tipton (2013) show that bias arises in relation

to covariates that explain variation in potential treatment effects. Since we do

not know, a priori, what these covariates are (since we have yet to conduct the

experiment), this requires us to propose a model. We might posit a simple model

D ¼ b0 þ b1X ; ð1Þ

where X is a single covariate with known values for all units in the popula-

tion. For example, based on theoretical or previous empirical findings, we

may believe that the effect of a school-based reading intervention (D) line-

arly increases or decreases in relation to last year’s school average reading

test scores (X).

If in fact the potential treatment effects do vary in relation to X, then by

selecting the sample so that the average value of X in the sample and pop-

ulation is the same (i.e., E(X|Z ¼ 1) ¼ E(X)), an estimator T of the SATE tS

would be model unbiased for the PATE tP. We call this a balanced sample

since the sample and population are balanced on the covariate X.

Importantly, this idea of balance is similar to the goal of balance found in

retrospective methods; the key difference is that retrospective balance is

achieved through reweighting, while here balance is achieved through the

strategic selection of the sample.

The idea of a balanced sample is in many ways similar to the naive sense

of a ‘‘representative sample’’ (Royall and Herson 1973), where here by rep-

resentative we mean that the sample is a like a ‘‘miniature’’ of the popula-

tion (Kruskal and Mosteller 1980). Importantly, while random sampling

will result in a balanced sample on average, it is not the only or best method

Tipton 7



for achieving such balance, particularly when the sample is small. Develop-

ing a method that performs well in small samples is of particular concern

here since in most cluster-randomized or multisite studies in education, the

number of higher level units (e.g. schools or districts) tends to be between

20 and 60 (Spybrook 2012).

Bias-Robust Balanced Sampling

Based on the model 1.1, we might propose to develop a sample selection

plan that results in a sample that is balanced for the covariate X (i.e.,

E(X|Z ¼ 1) ¼ E(X)). This necessarily leads us to ask: what happens if our

model is wrong? For example, suppose that potential treatment effects actu-

ally vary in relation to the model

D ¼ b0 þ b1X þ b2X 2 þ b3W : ð2Þ

For example, it may be that the potential treatment effects vary

nonlinearly in relation to school average pretest scores (X) and vary also

in relation to the proportion of the school that is minority (W). Now the bias

of an estimator T for tP can be written as

E Tð Þ � tP ¼ b2 E X 2jZ ¼ 1
� �

� E X 2
� �� �

þ b3 E W jZ ¼ 1ð Þ � E Wð Þ½ �:

Clearly, T is only unbiased for tP if E(X2|Z¼ 1)¼ E(X2) and E(W|Z¼ 1)¼
E(W). This means that a sample that is balanced on X is only adequate if our

former model (1) holds but not under this new model (2).

In model-based sampling, the goal is to select the sample so that the

method is bias robust, where bias robust is shorthand for ‘‘bias-robust-

against-model-failure’’ (Valliant et al. 2000). In this framework, in causal

generalization this requires us to first propose multiple models relating the

potential treatment effects to possible moderators, and second, to develop a

sample selection plan that guards against selection of the wrong model.

Here the key tool guarding against model failure is the selection of a

balanced sample. Subsequently, we define this more formally.

Definition: balanced sample (of order R). Let X ¼ fX1, . . . , Xpg be a set of

covariates that might explain variation in the potential treatment effects

D. A sample S is said to be a balanced sample (of order R) if for each cov-

ariate Xh (for h ¼ 1 . . . p) and for each power r ¼ 1 . . . R, E(Xh
r|Z ¼ 1) ¼

E(Xh
r), where E(Xh

r|Z ¼ 1) is the average value of Xh
r in the sample S and

E(Xh
r) is the average value in the population P
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When a balanced sample (of order R) is selected on p covariates, it is

easy to show that an unbiased estimator T of the SATE tS is unbiased for

the PATE tP if the true model is of the form

D ¼ d0b0 þ
Xp

h¼1

XR

r¼1

dhrbhr X r
h ; ð3Þ

where for h ¼ 1 . . . p, bhr is the regression coefficient associated with the

covariate Xh
r and dhr ¼ 1 if the coefficient bhr is included in the model and

zero otherwise. For example, if a sample is balanced (of Order 2), then T is

unbiased when the true relationship is linear

D ¼ b0 þ b11X1 þ b21X2 þ . . .þ bp1Xp; ð4Þ

quadratic,

D ¼ b0 þ b11X1 þ b21X2 þ . . .þ bp1Xp þ b12X 2
1 þ b22X 2

2 þ . . .þ bpX 2
p ; ð5Þ

when it includes only a subset of the covariates,

D ¼ b0 þ b11X1 þ b21X2; ð6Þ

or any other combination of the models. Since we cannot and do not know

the true model, in the language of model-based sampling, the goal is to

select a sample using a bias-robust strategy. In causal generalization, this

is a strategy that leads to an unbiased estimate of tP ¼ E(D) under a variety

of possible models.

A sample selection strategy can be bias robust in two ways. First, the

sample becomes more bias robust as the dimension p of X increases. This

is because in practice when balance is achieved on a wide variety of covari-

ates it is often approximately achieved on other covariates, including those

that may have been omitted from the model (Stuart 2010; Smith and Sugden

1988; Royall and Herson 1973; Brewer 1999; Rubin and Thomas 1996).

Second, for a fixed set of covariates X, a sample becomes more bias robust

as the order of R increases. For example, a sample which is balanced on not

just the first moments but also the second moments of X—a balanced

sample of Order 2—will lead to an unbiased estimate whether the true

model is linear or quadratic (Valliant, Dorfman, and Royall 2000).

The idea that the sample should be selected using a bias-robust strategy

with the goal of achieving balance on both the means and the higher

moments of multiple covariates is familiar—it is exactly the post hoc

approach used in the propensity score literature (Rosenbaum and Rubin
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1983). Propensity scores are commonly used to achieve balance under a

variety of models when random processes are not possible (e.g., quasi-

experiments; post hoc generalizations from experiments) or when they fail

(e.g., attrition in experiments; nonresponse in surveys). While the method

we develop here does not use a propensity score approach, the goals of the

procedure are the same—to replace a random process with a model and to

design the study in such a way that the results do not depend heavily on any

one model.

Once the sample of n units is selected, the robustness of the sample to

model misspecification can be evaluated by comparing the R moments of

the p covariates under study in the realized sample and population. Ideally,

these differences will be small, enabling the use of the simple multilevel

random effects estimator commonly used in experimental analysis. If

differences remain, post hoc methods like regression adjustment or those

introduced by Hedges and O’Muircheartaigh (2011) and Tipton (2013) can

be used to decrease bias. Importantly, since the sample was selected with an

eye toward balance, however, the achieved sample and population are likely

to be more similar than if a bias-robust selection method had not been used.

The fact that the sample and population are more similar will mean that

there will be fewer coverage errors and that, if adjustment is needed, the

cost in terms of variance inflation will be smaller (Tipton 2013).

Stratified Sampling as a Tool for Generalization

Defining a Stratified Estimator

Recall that in the balanced-sampling framework, the goal is simply to select

the sample so that it is like a ‘‘miniature’’ of a well-defined population. To

do so, we begin by positing a model explaining variation in potential treat-

ment effects (e.g., Model 1.1), and then propose alternative models (a bias-

robust strategy). To this end, we need a method for sample selection that

allows for balance on orders greater than one (i.e., not only on first but also

on second or higher moments) and enables X to include a large and varied

set of covariates. While many possible methods exist, in model-based

sampling, the simplest method that achieves this goal is that of stratified

sampling with proportional allocation (Valliant, Dorfman, and Royall

2000).

Stratified sampling is already widely used in both survey sampling and in

large-scale experiments. In probability sampling, strata are used to reduce

the variance of an estimate; since the focus is on variance reduction (not
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bias), here it is common for the strata to be created on only one or two cov-

ariates (Lohr 1999). The use of one or two covariates for strata creation is

also sometimes used for nonrandom site selection in experiments. For

example, experiments sometimes attempt to include sites in rural and urban

locations (i.e., urbanicity) or in regions throughout the country (e.g., north-

east, southeast, midwest, west). Here while strata are created in order to

improve generalizations, the method and framework for making these gen-

eralizations are typically informal. In contrast, in this article we propose to

create strata with the goal of reducing bias through the inclusion of many

covariates—hopefully all covariates that explain treatment effect heteroge-

neity—and in order to balance the sample and population on both means

and higher order moments. In contrast to prevailing practice, our goal is

to explicitly state, develop, and evaluate a bias-robust strategy for sample

selection aimed at generalization.

If a simple Model (1) is of interest, in order to create a stratified sample

with proportional allocation, three steps would be involved. First, the values

of the covariate X would be divided into strata. If X is categorical with k

categories, then k strata could be naturally created. If X is continuous, many

possible strategies for strata creation could be used; one of the simplest is to

define the j ¼ 1 . . . k strata so that each contains an equal portion (i.e.,

wpj ¼ N/k ¼ Nj/N) of the population units (Cochran 1968). Second, under

proportional allocation, stratum j would be allocated nj ¼ wpj � n units

in the sample. This means that in stratum j, nj/Nj units would need to be

selected into the experiment. Third, in stratum j, the sample would need

to be selected so that E(X|Z ¼ 1, j ¼ j) ¼ E(X|j ¼ j), which is to say that

the stratum-specific mean of X is the same in the population and the sample.

The main benefit of using a stratified sampling approach with propor-

tional allocation is that the resulting sample is self-weighting. This means

that the sample and population are balanced on the covariate X, since

E X jZ ¼ 1ð Þ ¼ S nj=n
� �

E X jZ ¼ 1; j ¼ jð Þ ¼ SwpjE X j j ¼ jð Þ ¼ E Xð Þ:
ð7Þ

The fact that the sample is self-weighting means that no additional

adjustments are needed and that the usual multilevel random effects model

can be used for estimating the average treatment effect and making general-

izations. Since the standard estimator can be used, this means that the

sample selection process does not impact the power analysis (used to deter-

mine the sample size n). As a result, the issues of statistical power and

generalization can be separated, which is logistically helpful in designing
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the experiment. It is also helpful that stratified sampling with proportional

allocation is conceptually easy to understand and explain, making it

appealing in the policy context where many of the results of large-scale

experiments are used and interpreted.

When X is a single covariate, k strata can be easily created leading to a

balanced sample. However, when the dimension of X is large and when X

includes both categorical and continuous covariates, strata creation

becomes more difficult. For example, if each covariate takes only two val-

ues, this would lead to 2p unique strata, which can easily be larger than the

total sample size n. For this reason, a method for stratification is needed that

allows for the selection of balanced and bias-robust samples with fewer

strata.

In the survey sampling literature, the problem of stratified sampling

under a multivariate and continuous X has been addressed through the use

of cluster analysis. These methods were pioneered by Day and Heeler

(1971) and Golder and Yeomans (1973) who used cluster analysis to clas-

sify units in a pricing experiment and city wards in a study of seat belt use,

respectively. Since 1980 cluster analysis methods have been used to create

strata for the Current Population Survey (CPS) and other demographic sur-

veys administered by the U.S. Census Bureau (Mansure and Reist 2010;

Murphy 2008) as well as in surveys by census agencies around the world

(e.g. Northern Ireland Statistics and Research Agency [2001] 2002).

Additionally, in education research clustering methods have been used to

classify schools (e.g. ETS 2008; Sleegers, Bergen, and Giesbers 1994; Lip-

son et al. 2004), and in the analysis of experimental data clustering methods

have been developed to combine similar treatment groups (e.g. Cox and

Spjotvoll 1982; Scott and Knott 1974; Tukey 1949) and to analyze sub-

group average treatment effects in experiments (e.g., Peck 2005; Peck

et al. 2012). Here, we propose to use cluster analysis to define strata for a

stratified sampling design aimed at improving generalizations from

experiments.

Cluster Analysis Method

The goal of cluster analysis is to divide units in the inference population into

strata so that units in the same stratum are more similar than units in

different strata. We focus here on the k-means partitioning method, though

other methods are available (Everitt et al. 2011). The basic idea of k-means

clustering is to create k strata and then to assign each unit to one stratum so
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that a measure of similarity is maximized. There are two main steps

involved in a cluster analysis, and we briefly review these here.

Choosing a Distance Metric. In this article, we use cluster analysis to group

units into strata that are as close to homogeneous as possible. This means

that a measure of distance or similarity is required to define ‘‘close.’’ There

are two common distance measures that we argue are useful for our pur-

poses, though others are available (Everitt et al. 2011). The decision to use

one of these metrics over the other will largely depend on the type of

covariates included in X and on information or assumptions regarding the

importance of each covariate.

When all of the covariates in X are continuous, the distance metric most

commonly used is the weighted Euclidean distance,

de
ii0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
wh Xih � Xi0hð Þ2

q
; ð8Þ

where each covariate Xh has weight wh, and Xih and Xi’h are the values of the

hth covariate for units i and i’. One option for weights is to set wh ¼ 1 for all

covariates h, in which case de
ii’ is the Euclidean distance; this gives the most

weight to covariates with the largest variances. Alternatively, if there is no

information regarding which covariate is a more important or better predictor

of treatment effect heterogeneity, then the obvious solution is to use inverse-

variance weights, where wh ¼ 1/V(Xh). In this framework, the weighted cov-

ariates have a common variance of one, and each covariate contributes

equally to the distance metric (though other weighting methods are possible).

Alternatively, when X includes both continuous covariates and categori-

cal or dummy variables, any Euclidean-based measure does not perform as

well. There are various solutions to this problem. One solution that is com-

monly used and easily implemented is to use a general similarity (distance)

measure proposed by Gower (1971),

d
g
ii0 ¼

Xp

h¼1
wii0hdii0h

.Xp

h¼1
wii0h; ð9Þ

where dii’h is the similarity between units i and i’ on the covariate Xh. Note

that this measure of distance, dii’h, can differ for different variable types. For

dummy and categorical variables, dii’h ¼ 1 if the two units i and i’ have the

same value and 0 otherwise. For continuous variables, it is standard to use

dii0h ¼ 1� Xih � Xi0hj j
Rh

; ð10Þ
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where |.| indicates absolute value and Rh is the range of observations for the

covariate Xh. Using distance measures defined this way ensures that dii’h 2
[0,1] for covariates of all types. Additionally, this general distance measure

allows for missing data. For example, the weights can be determined so that

wii’h ¼ 0 if the outcome of the Xh is missing for either or both of units i and

i’. Again, other weighting schemes can also be used, particularly if informa-

tion on the importance of particular covariates in explaining potential treat-

ment effect heterogeneity is available.

Determining Strata. In k-means clustering, once a set of covariates X, a

distance metric, and the number of strata k have been defined, optimization

algorithms are used to classify units into these k strata so that the distance

metric is minimized.

One difficulty with this procedure is that the number of strata k must be

determined in order to generate the strata. One solution to this is to use other

cluster analysis methods—for example, hierarchical cluster analysis—to

explore the structure of the population. A second solution is to generate and

evaluate the strata created using different values of k, where k ¼ 1, 2, . . . q

for some maximum number of strata q. While it is obvious that q� n, it may

also be desirable to choose a manageable number of strata as the maximum,

such as q¼ 10 or 20. After determining q, for each value of k, the optimiza-

tion algorithm is used to divide the population of units into k strata.

Once results have been generated for various values of k, the results are

then compared to determine which value of k is best for the particular pop-

ulation and experiment. One common evaluation method is simply to parti-

tion the total variability in the covariates in X into the total variability

within clusters (sw
2) and the variability between clusters (sb

2). From this,

a measure of the between-cluster variability, rk ¼ sbk
2/(swk

2 þ sbk
2), can

be calculated for each number of clusters k. Importantly, as rk approaches 1,

most of the variation is between strata, leading to a balanced sample of

increasingly higher orders. After calculating rk for k ¼ 1 . . . q, the values

can be compared visually via an elbow graph, where on the x-axis are

values of k and on the y-axis are values of rk. Since the value of rk

monotonically increases with k, the statistical criteria commonly used for

selecting k is based on when the rate of change for each additional stratum

slows; this is akin to how a scree plot is used in principal components anal-

ysis (Timm 2002). Other criteria for determining the number of clusters can

be found in Milligan and Cooper (1985) and include the cubic clustering

criteria (CCC; Sarle 1983), the pseudo-F (PSF), and the pseudo-T-square

(PTS).
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In practice, choosing the optimal number of strata involves both statisti-

cal and practical criteria. Statistically speaking, the ideal number of strata

can be large, since this results in more homogeneous strata and a more

bias-robust sample. Practically, however, it can be difficult to achieve an

adequate sample if some of the strata are too small (since the response rate

for recruitment in experiments is often small). Additionally, the amount of

resources (in terms of time, people, money) aimed at recruitment can be

small, which leads to a desire for fewer strata.

Sample Allocation, Selection, and Evaluation

Once the number of strata k has been selected, a strategy for sample

selection within each cluster must be developed. In this section, we detail

the steps involved in this process.

Allocate the Sample to the Strata. In each of the k-clusters developed in the

previous section, there are Nj units in the population, where N1 þ N2 þ
. . . þ Nk ¼ N. Using proportional allocation, the sample is then allocated

so that nj ¼ [(Nj/N)n], where we use [.] to signify that each value must be

rounded to the nearest integer.

Calculate and Rank Within Stratum Distances. Since the overall goal is to select

a balanced sample (of some order R), a method for sample selection within

each stratum is needed. The goal is to simply select a balanced sample (of

Order 1) within each stratum. This means selecting a sample such that in each

stratum j ¼ 1 . . . k, E(Xh|Z¼ 1, j ¼ j)¼ E(Xh| j ¼ j) for each covariate Xh in

X and where Z¼ 1 indicates units in the sample. One method for meeting this

goal is to select the nj units randomly. This would ensure that on average

(over repeated samples) units in stratum j would be balanced on both

the observed covariates (in X) and the unobserved covariates (not in X).

While this certainly increases the bias robustness of the method by guarding

against having the wrong model, in any particular sample this method may

not result in balance, particularly when the sample size nj is small. This is

particularly important since the multilevel random effects model used for

generalization makes inferences in reference to the realized sample.

An alternative method for selection is as follows. First, in each stratum,

calculate E(Xh| j¼ j) for each covariate Xh. Then for each of the i¼ 1 . . . Nj

units in stratum j, a measure of distance is calculated. One strategy is to use

the weighted Euclidean distance
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dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
wh Xijh � EðXhjj ¼ jÞ
� �2

q
; ð11Þ

where wh is the weight given to covariate Xh, E(Xh|j¼ j) is the average value

of the hth covariate in stratum j, and Xijh is the value of the hth covariate for

unit i in stratum j. Thus, each unit i in stratum j has one total combined dis-

tance measure dij. Again, just as discussed previously, different weights

could be used, particularly if it is hypothesized that one covariate matters

more in terms of explaining potential treatment effect heterogeneity than

another covariate. Note that to the degree that the strata are homogenous

(having small within-stratum variances), we would expect these distances

dij not to vary by much.

Based on these within-stratum distance measures, each of the Nj

population units within a particular stratum j can be ranked from smallest

to largest. This ranked list can then be used for selecting the nj units into

the experiment. For example, a recruiter might start at the top of the list with

the unit ranked ‘‘1,’’ then if the unit does not agree to be in the experiment,

move on to the unit ranked ‘‘2,’’ and so on until nj units agree to be in the

experiment.

Nonresponse (refusals). As noted earlier, it is assumed that many units will

not agree to be in the experiment. For example, after ranking units within

a stratum, it is possible that the first unit to successfully enter the experi-

ment is not ‘‘1’’ but instead ‘‘14.’’ Here the concern is that the nj units that

agree to be in the sample are different than the Nj units in the population on

either the covariates in X or other covariates (related to nonresponse). The

method we propose here guards against both of these problems. To see this,

first note that if the strata are completely homogenous on X, then each of the

Nj units in the same stratum can be considered ‘‘replicates’’; in this case, all

of the rankings would be identical (since all of the distances would be zero).

In practice, although the strata will not be completely homogenous (result-

ing in rankings), when the strata are sufficiently different, the absolute

differences between the Nj units within each stratum will be small. This

means that differences between the units ranked ‘‘1’’ and ‘‘14’’ within the

same stratum will generally be smaller than differences between any two

units from different strata.

The second concern is that units that refuse to take part in the experiment

are different than those that agree to be in the experiment. This is a question

regarding an omitted variable X*. Note that differences in relation to X* will

only cause bias if the potential treatment effects are a function of X*
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(conditional on the other X values). This concern suggests that a bias-robust

approach to selecting X is particularly helpful here—both through the inclu-

sion of a large variety of covariates and through a clear statement and eva-

luation of models; together this makes a discussion of the effects of possible

omitted variable bias on generalization possible.

Evaluation of the Sample. In practice, it is unlikely that the nj ‘‘best’’ units

(those with the smallest distances dij) in each stratum will all agree to be

in the study. As discussed earlier, when the strata are sufficiently homoge-

nous, the inclusion of later ranked units will typically not be problematic.

Regardless, once the sample is selected, it is important to evaluate the

degree of balance between the final sample S and population P. To do so,

balance (of Order 1) can be assessed in each stratum j by comparing E(Xh|Z

¼ 1, j¼ j) to E(Xh|j¼ j) for each covariate Xh. Then the overall balance of the

final sample S and the population P can be evaluated by comparing E(Xh
r|Z¼

1) to E(Xh
r) for various values of r. In order to evaluate whether this degree of

balance is adequate, both substantive criteria regarding the importance of

each covariate can be used and statistical criteria like standardized mean dif-

ferences or t-tests. Finally, if large residual differences are detected, these can

be reduced through post hoc strategies like regression adjustment or

reweighting (e.g., Hedges and O’Muircheartaigh 2011).

Example

In order to illustrate the implementation of this method and its benefits

compared to the conventional bottom-up approach to generalization, in this

section we present a reanalysis of an experiment evaluating a middle-

school mathematics program, SimCalc. The original study included 73

schools that, while selected with an eye toward generalization, did not use

any formal method for doing so (Roschelle et al. 2010). In order to better

generalize from these schools to the population of noncharter schools ser-

ving seventh graders in Texas (N¼ 1,713), Tipton (2013) reanalyzed these

data using a propensity score subclassification estimator based on 26

covariates from the state academic excellence system. Here we present

a new analysis in which we ask, what would happen if we could go back

in time and instead collect the sample using the sample selection method

developed here? How different would this sample be from the sample

actually collected in experiment?

All analyses presented here were conducted in the statistical program R

(R Development Core Team 2012), though clustering algorithms are
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available in most statistical packages. Since the 26 covariates in Table 1

includes one covariate (‘‘rural’’) that is binary, we use the measure of dis-

tance provided by Gower (1971), which can be calculated using the function

daisy in the cluster package (Maechler et al. 2005). For numbers of classes

k¼ 1 . . . 20, we then used the kmeans function to create different segmen-

tations of the population. For each of these 20 iterations, we saved the mea-

sures of the proportion of variance between classes. The results of this

analysis are presented in the elbow plot in Figure 1.

Figure 1 is an elbow plot illustrating the proportion of variance between

strata. Note that at first, adding strata dramatically increases rk, but eventu-

ally these changes become smaller. Based on this figure, we selected the k¼
9 strata solution, since for this number over 80% of the total variation in the

26 variables in X is between strata. In Table 1, we give the population

means by stratum for each of the 26 covariates. These reveal some interest-

ing differences between strata. For example, almost all schools located in

rural counties are found in Strata 3, 5, and 6; of these, Stratum 3 contains

smaller schools with larger proportions of at-risk, mobile, and low-

achieving students. In contrast, Strata 4, 8, and 9 include no schools located

in rural counties; of these, Stratum 9 includes schools that have a larger pro-

portion of minority, at-risk, and economically disadvantaged students,

while Stratum 8 includes schools with higher academic achievement.

Table 1 also includes, for each stratum, the proportion of the population

(wpj¼ Nj/N), the number of units in the sample allocated using proportional

allocation with rounding (nj), and the number of units in the actual experi-

ment (nej). This reveals that while the actual experiment represented the

population fairly well, it did greatly overrepresent schools from Stratum

1 and underrepresent schools in Stratum 3. The fact that the experiment did

not include any schools from Stratum 3 is an example of a coverage error.

In order to evaluate the overall balance and bias robustness that would be

achieved using this approach, in Table 2 we report the E(Xh
r) for r ¼ 1,2,3

for each of the 26 covariates in the population. We then use our distance-

based method to order the units in each stratum j, where lower ranks indi-

cate smaller distances from the stratum mean for the population. Since we

do not have a sense of which covariate is likely to have the largest impact,

we set the weights so that wh ¼ 1/V(Xh), therefore weighting each covariate

equally. In order to illustrate the usefulness of the method under both ideal

and high nonresponse, we include two possible samples. The first sample

selects the nj highest ranked schools in each stratum; this is the ‘‘ideal’’

sample. The second (‘‘nonresponse’’) sample instead assumes that the first

50 units in each stratum refused to participate in the experiment and that
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from there the next nj schools agreed. Note that this would mean that in total

450 schools refused participation before any agreed to participate, which

corresponds to a nonresponse rate of at least 83%. In each sample of

schools, we then calculated E(Xh
r|Z ¼ 1) for r ¼ 1,2,3 for each covariate.

We also calculated these moments for the actual sample used in the

experiment.

In order to compare the ideal and nonresponse samples, as well as the

‘‘actual’’ sample used in the experiment to the population, in Table 2 we

report the percentage of absolute bias, where

% absolute bias ¼ EðX r
h

�� ��Z ¼ 1Þ � E X r
h

� �
j=E X r

h

� �
; ð12Þ

for each r ¼ 1,2,3, and where depending upon the column Z ¼ 1 indicates

the actual sample or the proposed sample based on the method developed

here. Bolded values indicate variables for which the balance achieved is

better using either the ideal or nonresponse sample selection strategies

developed here than that achieved in the actual experiment. This balance

is better for 19 or more variables (of 26) in terms of first and second

Figure 1. Elbow plot of the proportion of total variance between strata.
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moments and 14 or more in terms of third moments. Additionally, the max-

imum absolute relative difference is 0.253 for the ideal sample (over all 26

covariates) and 0.297 for the nonresponse sample, compared to 0.695 for

the actual experiment. In general balance is better for both Orders 1 and

2 than Order 3, indicating that the ideal and nonresponse samples lead to

approximately balanced samples of Order 2.

Since there are some imbalances remaining, post hoc propensity score

methods could be used for further adjustments. In these methods, the

achieved sample of 73 schools is compared to the population of 1,713

schools on the 26 covariates using a logistic regression to estimate the pro-

pensity score. Comparing the empirical densities of propensity score

logits indicates how well the results might generalize (Stuart et al.

2011). When these densities are similar, generalizations are easier since

reweighting approaches lead to large reductions in bias with only small

increases in variance; when they differ, particularly when the region of

common support is small (indicating coverage errors), reweighting

approaches are less effective, leading to estimates with remaining bias and

larger variance inflations (Tipton 2013).

In Figure 2, we compare the empirical densities of the propensity scores

in the sample and population for each of the three samples under compar-

ison (actual, ideal, and nonresponse). As the shapes of the densities and

the lines marking the population quintiles indicate, the samples selected

using methods from this article are more similar to the inference popula-

tion than the actual sample used in the experiment. Importantly, the long-

tail in the actual sample indicates a large coverage error (Tipton 2013);

this longtail is not present in either of the samples produced using the

methods developed here, making additional adjustments using post hoc

methods more effective.

Discussion and Conclusion

The purpose of this article has been twofold. First, it proposes a framework

for site selection in large-scale randomized experiments (model-based sam-

pling) that can be used in conjunction with the super-population models

commonly used to estimate PATEs. Second, it provides a method for select-

ing a self-weighting bias-robust balanced sample within this framework

through the creation of strata based on cluster analysis methods. In this

section, we conclude by briefly discussing the benefits, limitations, and

possible extensions of the method.

Tipton 21



T
a
b

le
2
.

C
o
m

p
ar

is
o
n

o
f
B
al

an
ce

o
f
O

rd
er

s
1
,2

,3
fo

r
th

e
P
o
p
u
la

ti
o
n
,
P
la

n
n
ed

Sa
m

p
le

,
an

d
C

o
m

p
le

te
d

E
x
p
er

im
en

t.

D
es

cr
ip

ti
o
n

B
al

an
ce

(O
rd

er
1,

E(
X

h)
)

B
al

an
ce

(O
rd

er
2,

E(
X

h2
))

B
al

an
ce

(O
rd

er
3,

E(
X

h3
))

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

T
ea

ch
er

te
nu

re
(m

ea
n

ye
ar

s)
7.

1
0
.0

1
0
.0

2
0.

04
57

.0
0
.0

9
0
.0

9
0.

11
51

3.
2

0.
22

0
.1

9
0.

20
T

ea
ch

er
ex

pe
ri

en
ce

(m
ea

n
ye

ar
s)

11
.6

0
.0

0
1

0
.0

2
9

0.
05

14
3.

1
0
.0

3
7

0
.0

8
7

0.
12

1,
87

4.
4

0
.1

0
2

0
.1

6
4

0.
18

T
ea

ch
er

–s
tu

de
nt

ra
ti
o

12
.7

0
.0

2
7

0
.0

3
6

0.
04

17
0.

29
0
.0

3
6

0
.0

7
3

0.
08

2,
38

7.
90

0
.0

2
9

0.
12

0
0.

10
T

ea
ch

er
s

w
ho

ar
e

A
fr

ic
an

A
m

er
ic

an
(%

)
8.

4
0
.1

3
9

0
.2

0
4

0.
70

32
8.

68
0
.2

8
6

0
.0

1
3

0.
93

19
,6

85
.5

8
0
.3

9
6

0
.2

4
3

0.
98

T
ea

ch
er

s
w

ho
ar

e
H

is
pa

ni
c

(%
)

14
.7

0
.1

8
1

0
.1

4
5

0.
47

79
4.

20
0
.4

0
5

0
.1

4
5

0.
67

57
,7

12
.3

9
0
.5

5
6

0
.1

2
5

0.
80

T
ea

ch
er

s
in

th
e

sc
ho

o
l(

to
ta

l)
39

.9
0.

07
8

0
.0

2
3

0.
08

2,
16

3.
31

0
.0

4
5

0
.0

0
9

0.
08

13
8,

60
1.

57
0.

04
5

0
.0

3
4

0.
04

T
ea

ch
er

s
in

fir
st

ye
ar

o
f
te

ac
hi

ng
(%

)
8.

3
0.

10
8

0.
14

7
0.

05
12

3.
39

0.
39

3
0.

18
2

0.
09

2,
65

0.
02

0.
66

1
0.

06
8

0.
01

T
ea

ch
er

s
w

it
h

1–
5

ye
ar

s
ex

pe
ri

en
ce

(%
)

28
.0

0
.0

2
4

0.
07

4
0.

03
93

4.
47

0.
11

2
0.

13
0

0.
01

35
,2

59
.7

1
0.

23
2

0.
22

4
0.

04
T

ea
ch

er
s

w
it
h

>
20

ye
ar

s
ex

pe
ri

en
ce

(%
)

20
.3

0
.0

2
4

0
.0

6
3

0.
13

52
6.

68
0
.1

6
7

0
.1

9
1

0.
27

17
,0

06
.5

8
0
.3

5
9

0
.3

6
6

0.
44

St
ud

en
ts

in
di

sc
ip

lin
ar

y
al

te
rn

at
iv

e
ed

uc
at

io
n

pr
o
gr

am
s

(%
)

3.
1

0
.0

7
3

0
.0

4
8

0.
10

19
.3

6
0
.1

7
2

0
.0

6
5

0.
18

17
9.

69
0.

47
4

0.
24

9
0.

14

Se
ve

nt
h

gr
ad

e
re

te
nt

io
n

(r
at

e)
1.

8
0
.2

5
3

0.
29

7
0.

29
34

.8
1

0
.6

8
8

0.
86

2
0.

82
2,

21
7.

74
0
.9

0
2

0.
98

8
0.

98
St

ud
en

ts
w

ho
ar

e
m

o
bi

le
(%

)
19

.2
0
.0

4
3

0
.0

1
6

0.
23

58
9.

22
0
.1

5
0

0
.0

7
1

0.
58

32
,3

68
.2

2
0
.3

1
6

0
.1

3
1

0.
86

St
ud

en
ts

in
sc

ho
o
lt

ha
t

ar
e

in
se

ve
nt

h
gr

ad
e

(%
)

31
.2

0
.0

2
4

0
.0

2
2

0.
12

1,
15

6.
94

0
.0

3
9

0
.0

0
7

0.
20

47
,0

20
.6

3
0
.1

3
4

0
.0

2
0

0.
25

St
ud

en
ts

in
se

ve
nt

h
gr

ad
e

(t
o
ta

l)
19

0.
4

0
.0

6
9

0
.0

2
7

0.
18

60
,5

38
.0

8
0
.0

4
9

0
.0

5
1

0.
17

22
,9

92
,2

40
.2

4
0.

20
8

0.
15

9
0.

10
St

ud
en

ts
w

ho
ar

e
A

fr
ic

an
A

m
er

ic
an

(%
)

11
.8

0
.1

2
1

0
.1

3
1

0.
57

39
3.

08
0
.3

6
4

0
.1

9
2

0.
87

19
,6

93
.0

3
0
.5

2
5

0
.1

7
2

0.
97

St
ud

en
ts

w
ho

ar
e

H
is

pa
ni

c
(%

)
40

.3
0
.0

1
2

0
.0

6
3

0.
17

2,
51

1.
52

0
.0

2
4

0
.0

9
0

0.
29

18
9,

54
3.

89
0
.0

6
5

0
.0

8
5

0.
38

St
ud

en
ts

w
ho

ar
e

LE
P

(%
)

7.
5

0
.0

5
0

0
.0

3
1

0.
25

15
8.

82
0
.3

3
4

0
.1

6
9

0.
42

5,
97

6.
16

0.
64

2
0
.0

0
5

0.
41

St
ud

en
ts

w
ho

ar
e

ec
o
no

m
ic

al
ly

di
sa

dv
an

ta
ge

d
(%

)
53

.6
0.

03
8

0
.0

0
8

0.
03

3,
46

7.
40

0.
09

6
0
.0

1
3

0.
02

24
8,

72
4.

52
0.

15
2

0.
05

1
0.

01

St
ud

en
ts

w
ho

ar
e

at
ri

sk
(%

)
43

.5
0.

03
5

0
.0

1
1

0.
07

2,
22

0.
43

0
.0

3
6

0
.0

5
8

0.
15

12
9,

40
1.

04
0
.0

3
5

0
.1

3
0

0.
27

(c
on

tin
ue

d)

22



T
a
b

le
2
.

(c
o
n
ti
n
u
ed

)

D
es

cr
ip

ti
o
n

B
al

an
ce

(O
rd

er
1,

E(
X

h)
)

B
al

an
ce

(O
rd

er
2,

E(
X

h2
))

B
al

an
ce

(O
rd

er
3,

E(
X

h3
))

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

Po
pu

la
ti
o
n

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(id

ea
l)

%
B

ia
s

us
in

g
pl

an
ne

d
sa

m
pl

e
(n

o
n-

re
sp

o
ns

e)

%
B

ia
s

us
in

g
co

m
pl

et
ed

ex
pe

ri
m

en
t

St
ud

en
ts

pr
o
fic

ie
nt

in
se

ve
nt

h
gr

ad
e

re
ad

in
g

(%
)

81
.9

0
0
.0

0
2

0
.0

0
9

0.
05

7,
14

5.
30

0
.0

1
0

0
.0

1
2

0.
04

62
9,

83
2.

50
0
.0

2
5

0
.0

1
4

0.
04

St
ud

en
ts

pr
o
fic

ie
nt

in
se

ve
nt

h
gr

ad
e

m
at

h
(%

)
72

.7
9

0
.0

1
3

0
.0

1
7

0.
04

5,
76

2.
90

0.
03

8
0.

01
9

0.
02

46
8,

04
1.

73
0.

06
4

0.
02

3
0.

01

St
ud

en
ts

pr
o
fic

ie
nt

in
G

ra
de

s
3–

11
m

at
h

(%
)

73
.6

0
0.

02
0

0
.0

0
5

0.
02

5,
70

7.
96

0.
04

3
0
.0

0
4

0.
01

45
3,

31
1.

23
0.

06
6

0.
00

4
0.

00

St
ud

en
ts

pr
o
fic

ie
nt

in
G

ra
de

s
3–

11
al

l(
%

)
63

.2
9

0.
01

6
0
.0

0
3

0.
01

4,
27

8.
33

0.
03

4
0.

00
6

0.
00

30
1,

18
4.

65
0.

05
5

0.
01

2
0.

01
St

ud
en

ts
w

it
h

co
m

m
en

de
d

pe
rf

o
rm

an
ce

,
G

ra
de

s
3–

11
,m

at
h

(%
)

19
.6

1
0.

05
4

0.
04

5
0.

04
51

6.
45

0.
14

9
0
.0

4
8

0.
10

16
,8

12
.2

4
0.

26
2

0
.0

1
0

0.
22

St
ud

en
ts

w
it
h

co
m

m
en

de
d

pe
rf

o
rm

an
ce

,
G

ra
de

s
3–

11
,r

ea
di

ng
(%

)
8.

71
0
.0

0
3

0
.0

0
9

0.
02

12
0.

03
0
.1

0
5

0
.0

0
7

0.
13

2,
21

3.
91

0
.2

4
8

0
.0

1
9

0.
30

C
o
un

ty
o
f
sc

ho
o
li

s
ru

ra
l

0.
33

0
.0

1
5

0.
06

7
0.

04
0.

33
0
.0

1
5

0.
06

7
0.

04
0.

33
0
.0

1
5

0.
06

7
0.

04

N
ot

e.
LE

P
¼

lim
it
ed

E
n
gl

is
h

p
ro

fic
ie

n
cy

.%
b
ia

s
is

th
e

ab
so

lu
te

d
iff

er
en

ce
fr

o
m

th
e

p
o
p
u
la

ti
o
n
,s

ta
n
d
ar

d
iz

ed
b
y

th
e

p
o
p
u
la

ti
o
n

va
lu

e.
B
o
ld

fa
ce

va
lu

es
in

d
ic

at
e

th
e

sm
al

le
st

b
ia

s
w

h
en

co
m

p
ar

in
g

th
e

p
la

n
n
ed

sa
m

p
le

to
th

e
co

m
p
le

te
d

ex
p
er

im
en

t.
T

h
e

‘‘i
d
ea

l’’
p
la

n
n
ed

sa
m

p
le

se
le

ct
s

th
e

fir
st

n j
u
n
it
s

fr
o
m

ea
ch

st
ra

tu
m

(s
ee

T
ab

le
1
),

w
h
ile

in
ea

ch
st

ra
tu

m
in

th
e

‘‘n
o
n
re

sp
o
n
se

’’
p
la

n
n
ed

sa
m

p
le

,
th

e
fir

st
5
0

sc
h
o
o
ls

re
fu

se
d

p
ar

ti
ci

p
at

io
n

an
d

th
e

n
ex

t
n j

u
n
it
s

ag
re

ed
.

23



Subgroup Analyses

When treatment effects do in fact vary, a single PATE is clearly inadequate

for summarizing the effectiveness of a program or an intervention. One

solution is to additionally report subgroup average treatment effects. A ben-

efit of our site-selection approach is that a separate average treatment effect

can be calculated for each of the k strata. This strategy is similar to the

method for subgroup creation proposed by Peck (2005) in general, and,

when the covariates contained in X also predict treatment compliance (or

other post-random-assignment groupings), to the methods proposed by

Peck (2003), (2013) and Bell and Peck (2013).

Eligibility Problems

It is possible that some of the N units in the population P are not eligible for

inclusion in the experiment. For example, certain schools may already use

the program under study, or when resources are limited, travel outside a par-

ticular area may be infeasible. The goal of bias-robust sample selection is

still useful here, particularly since it requires study planners to determine

whether the reasons for ineligibility explain variations in treatment effects

(warranting inclusion in X). For example, if only large schools are eligible

to be in an experiment (because of the design of the study), then generaliza-

tions to all schools in the population are only warranted if treatment effects

do not vary in relation to school size. Otherwise, the population needs to be

redefined to focus only on large schools. Second, stratified sample selection

using cluster analysis can also be used here. Again, the strata would be

created based on the N units in the population P, though only eligible

schools or sites would be included in the ranked list for sample selection.

As a result of ineligibility, however, the sampling fractions nj/Nj may differ

by stratum. Tipton et al. (2014) includes a full discussion of sample selec-

tion under eligibility constraints, including an alternative bias-robust

approach using propensity score methods.

Nonresponse Analysis

One of the biggest practical concerns in sample selection in experiments is

the fact that many sites will not agree to be in the experiment. A benefit of

this approach is that by articulating at the outset a set of covariates (X) that

possibly explain treatment effect variability (thereby leading to bias),

information on sites that refuse to be in the study can be tracked and later

24 Evaluation Review
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compared to those that accept and to the inference population of interest

using available nonresponse analysis methods (e.g., Little and Rubin

1987). Additionally, this method requires designers to plan for refusals and

even allows for the collection of additional information on those who refuse

or accept.

Relationship to Post Hoc Methods

The goals and framework for balanced sampling have much in common

theoretically with the goals of propensity score matching for post hoc

adjustments for generalization. Even when using the stratified sampling

method introduced here, differences may remain between the achieved

sample and the population, particularly when nonresponse is high.

However, as illustrated in the example, these remaining imbalances can

be more easily adjusted if generalization is planned for; this is both because

any remaining imbalances are typically smaller (Table 2) and since cover-

age errors are greatly reduced (Figure 2), both of which make reweighting

procedures more effective.

Random Selection and Design-Based Inference

Given the infeasibility of random sampling in experiments, this article has

provided a method for site selection that is strategic, model based, and non-

random. However, the method we develop for site selection—stratified

sampling with proportional allocation based on cluster analysis—can also

be used in a design-based framework with probability sampling.

Data Frame Concerns

A potential weakness of the stratified selection method developed here is

that it requires an available sampling frame. This results in two limitations

to our approach. First, like the post hoc methods available for generaliza-

tion, this sampling frame needs to include a rich set of covariates on all units

in the population, where here the covariates that matter are those that

explain variation in treatment effects. Since most censuses of schools and

districts focus on demographics, using any model-based approach could

result in omitted variable bias. An important feature of this method is that

it requires a thoughtful discussion of the benefits and limitations of the

achieved sample for generalizations and to whom, where, and under what

conditions or assumptions these generalizations are most warranted.
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Second, the fact that the sampling frame must enumerate all N units in

the population means that the method we have developed here is most

useful when the sampling units are aggregates, since data on aggregates

(e.g., schools) are typically publically available, while data on individuals

are not. However, while the strata creation method developed here may not

be practical when the unit of analysis is the individual, we argue that the

bias-robust framework is still useful. Stratified sampling is only one method

for creating a balanced sample in the bias-robust framework. Future

research should investigate the practicality of methods that do not require

such detailed population frames—for example, quota sampling and

respondent-driven sampling (e.g., Smith 1983; Watters and Biernacki

1989).
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