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Abstract
The Monte Carlo method exhibits generality and insensitivity to the number of stochastic

variables, but is expensive for accurate yield estimation of electronic circuits. In the literature,

several variance reduction techniques have been described, e.g., stratified sampling. In this

contribution the theoretical aspects of the partitioning scheme of the tolerance region in stratified

sampling is presented. Furthermore, a theorem about the efficiency of this estimator over the

Primitive Monte Carlo (PMC) estimator vs. sample size is given. To the best of our knowledge,

this problem was not previously studied in parametric yield estimation. In this method we

suppose that the components of parameter disturbance space are independent or can be

transformed to an independent basis. The application of this approach to a numerical example

(Rosenbrock’s curved-valley function) and a circuit example (Sallen-Key low pass filter) are

given.

Index Terms: Parametric yield estimation, Monte Carlo method, optimal stratified sampling.

I. INTRODUCTION

Traditionally, Computer-Aided Design (CAD) tools have been used to create the nominal

design of an integrated circuit (IC), such that the circuit nominal response meets the desired

performance specifications. In reality, however, due to the disturbances of the IC manufacturing

process, the actual performances of the mass produced chips are different from those of the
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nominal design. Process-related performance variations may lead to low manufacturing yield,

and unacceptable product quality. For these reasons, statistical circuit design techniques are

required to design the circuit parameters, taking the statistical process variations into account.

Moreover, the statistical analysis permits finding out the causes of low yield or unacceptable

quality, to change the topology and to redesign the circuit.

The Monte Carlo (MC) method [3], [4] is the most reliable technique in yield estimation of

electronic circuits. The method is applicable to any type of circuit without requiring simplifying

assumptions of the forms of the probability distribution of parameter values or restrictions on the

number of parameters. Nevertheless, it requires a large number of circuit simulations to have a

valuable estimation (to have a low variance estimator).

To date, several variance reduction techniques [3] which can be applied to the yield

estimation, (in particular, importance sampling [6]-[8], stratified sampling [6], [9], control

variates [6], [10]-[12], and Latin hypercube sampling [13]-[15]), have been studied. Hocevar et

al. [6] have shown that the importance sampling method is not generally very useful for variance

reduction in the MC yield estimation. In addition, these methods require some information about

the acceptability region of the circuit. The generality and usefulness of the control variate or

shadow model technique, in comparison with alternative methods in MC yield estimation, has

since been confirmed by Hocevar et al. [6], [12] and Soin and Rankin [10], [11]. But an

approximate model of the circuit, which involves some additional simulation costs, is required in

this method. Latin hypercube sampling (LHS) [13] is a type of stratified MC sampling, and its

efficiency in circuit yield and Average Quality Index (AQI) estimation has been shown in [14],

[15], [19].

In this paper, we suppose that there is no particular information about the performance

behavior or any approximation of acceptability region. Therefore, among the variance reduction

techniques, the stratified sampling and LHS can be chosen for variance reduction technique. In

what follows, the application of stratified sampling in MC yield estimation will be discussed.

The plan of paper will be as follows. In Section 2, we describe the MC parametric yield

estimation and briefly review the variance reduction techniques in MC method. Section 3

describes the stratified sampling and some aspects of the theoretical bases of the partitioning
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scheme of the tolerance region. Asymptotic behavior of stratified sampling efficiency with

respect to (w.r.t.) the sample size is discussed in Section 4. In Section 5, several examples

illustrate good agreement with theoretical aspects. Finally, concluding remarks are made in

Section 6.

II. MONTE CARLO PARAMETRIC YIELD ESTIMATION

In order to estimate yield for analysis and design, one first defines a set of performance or

response functions, along with constraints for those functions, for each circuit as

g i mi ( ) , ,...,p ≤ =0 12        , (1)

where p is the vector of circuit parameters. Also, the acceptability region Ap  is defined as

{ }A g i mp i= ≤ =          p p( ) , ,..,0 12 . (2)

The constraints functions are usually only known implicitly via simulations, and thus their

evaluation can be very costly.

Mathematically, parametric yield of an integrated circuit is defined as the probability of a

circuit meeting the design specifications, i.e.,

Y I f dpRd
= ∫ ( ) ( )p p pp , (3)

where fp p( )  is the joint probability density function (pdf), and I p( )p  is an indicator function

defined as

I
A

p

p
( )p

p
=

∈

î

1

0

       

      otherwise
. (4)

In VLSI circuits, the probability distribution of integrated circuit parameters is difficult to

model. The parameters p are correlated in a complicated way, and it is impossible to find an

analytic expression for their pdf [1].

In the case of integrated circuits, the circuit parameters can be modelled as functions of their

deterministic nominal values, p0 , and a set of process disturbances, ξ , i.e., p p p0= ( , )ξ . The
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components of ξ  can be considered mutually independent [2]. One can formulate the yield in

disturbance space as

[ ]Y E I I f d
Rn

= = ∫ξ ξ ξ ξξ ξ ξ ξ( ) ( ) ( ) , (5)

where Iξ(ξ) and fξ (ξ ) are defined in the same way as in (3).

Yield can be evaluated numerically using either the quadrature-based, or MC based [3]

methods. The quadrature-based methods have computational costs that grow exponentially with

the dimensionality of the disturbance space. The MC method is the most reliable technique for

the statistical analysis of electrical circuits. The unbiased PMC based estimator of yield can be

expressed as

�
( )Y

N
IMC

i

i

N

=
=
∑1

1
ξ ξ , (6)

where ξ i ’s are independently drawn random samples from fξ (ξ ), and N  is the sample size. The

variance of ˆ Y MC  is as follows:

σ
σξ

Y
B

I

N

Y Y

N N
2

21
= =

−
=

Var( ) ( )
, (7)

where σB
2  is the variance of the binomial random variable Iξ(ξ) [5]. The variance of the

estimator is independent of the dimension of the parameter space, but depends on the sample size

N.

III. STRATIFIED SAMPLING

Stratified sampling [3], [4], [6] is a variance reduction technique in MC estimation. It consists

of dividing the sample space to strata and then estimating the yield in each stratum. It was

developed by statisticians for use in sample surveys many years ago, and has since been adapted

for use in MC estimation.
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A. Sample Generation

The sample space is stratified to r  disjoint region by choosing a partitioning scheme. Let

these partitions be given by { }Qi

r

1
 with Qi ∩ Qj = ∅  for i ≠ j , and ∪ i Qi = RT , where RT  denotes

the tolerance region [16] of disturbances, which is usually an orthotope. Then in each partition,

Ni  samples are generated by the following pdf

f
f p Q

Qi

i i

i

( )
( )

ξ
ξ ξ

ξ
ξ=

∈

∉


î

    

               0
,

∫p f di Qi
= ξ ξ ξ( ) , (8)

and the Ni  are chosen such that

N Ni
i

r

=
=
∑

1

. (9)

Then the stratified sampling yield estimator is expressed as follows:

�
Y p

N

NS i
si

ii

r

=
=
∑

1

, (10)

where Nsi  is the number of circuits which meets all the specifications in the partition Qi . This is

an unbiased estimator for the parametric yield, and its variance can be expressed as

( )
σ

ξξ
s i

i

ii

r

i
i i

ii

r

p
I Q

N
p

Y Y

N
2 2

1

2

1

1
=

∈
=

−
= =
∑ ∑

Var ( )  
, (11)

where Yi  is the partial yield related to partition Qi , and is stated as

Y I
f

p
d I f di

Q i R
i

i T

= =∫ ∫ξ
ξ

ξξ
ξ

ξ ξ ξ ξ( )
( )

( ) ( ) . (12)

B. Optimal Sample Size of Partitions

Suppose that the number of samples N  is given, and one wishes to determine the optimal
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value Ni  such that the variance σs
2  is minimized subject to the constraint (9) and Ni ≥ 0 for all i .

This has been done analytically [6], [17] by solving the Kuhn-Tucker equations and verifying the

second-order sufficiency condition. The optimum sample size for a partition is

N
p S

p S
Ni

opt i i

i i
i

r=

=
∑

1

, (13)

where S Y Yi i i
2 1= −( ) . This is called Neyman or optimal allocation, and the variance of the

estimator is

σ N i i
i

r

N
p S2

1

2
1

=








=
∑ . (14)

From (13), it is seen that the optimal number of sample size for each partition depends on the

partial yield Yi . Since for a practical problem Yi  is unknown, then this method cannot be in

practice used for yield estimation.

Another method for choosing the sample size in partitions is called “ Proportional Allocation

Stratified Sampling”  (PASS) where N p Ni i=  for all i . By using (11), the corresponding

variance is obtained as follows:

( )σ ξξP i i
i

r

i i i
i

r

N
p I Q

N
pY Y2

1 1

1 1
1= ∈ = −

= =
∑ ∑Var ( )  . (15)

Furthermore, it can be shown that

σ σ σN P Y

Y Y

N
2 2 2 1

≤ ≤ =
−( )

, (16)

because

σ σP N i i j j
j

r

i

r

N
p S p S2 2

11

2
1

0− = −








 ≥

==
∑∑ . (17)

The proof of (17) is shown in [17]. Consider the following property for showing σ σP Y
2 2≤ .
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Property 1: The variance of the Monte Carlo estimator with PASS is less than or equal to the

PMC estimator, and the difference between the variances of corresponding estimators is

described as [6]

∆ yp Y P i i
i

r

N
p Y Y≡ − = − ≥

=
∑σ σ2 2 2

1

1
0( ) . (18)

It should be emphasized that the effectiveness of PASS is due to the differences of the

partition yields and the overall yield. The gain of Neyman allocation over PASS is due to

differences of the partition standard deviations and the overall average standard deviation. The

Neyman allocation is difficult to implement because the partition standard deviations must be

known. On the contrary, the PASS method can be easily implemented. In what follows the

properties of PASS will be studied.

C. Some Theoretical Aspects of Geometric Shapes of Partitions

The efficiency of the PASS over the PMC estimator can be defined as the ratio of their

variances

η
σ
σ

= =
−

−
=
∑

Y

P
i i i

i

r

Y Y

pY Y

2

2

1

1

1

( )

( )
. (19)

It is seen that this efficiency is independent of sample size N . But it depends on the following:

1- the partitioning scheme of the tolerance region,
2- the number of partitions.

To the best of our knowledge, the problem of optimal partitioning scheme of the tolerance region

RT  in stratified sampling for parametric yield estimation has not been studied. In what follows,

in order to obtain some insight of efficiency, the effect of the partitioning scheme in PASS is

studied in some special cases.

Problem 1: Consider a two dimensional disturbance space such that the tolerance region RT

is a rectangle (Fig. 1(a)) with uniform pdf. Assume that the boundary of acceptability region Aξ

cuts RT  such that RT  is divided into two rectangles, RT ∩ Aξ  and RT ∩ Aξ
c  (Fig. 1(a)). However,
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the position of the cut line L  is unknown. The normalized and simplified model is given in Fig.

1(b). Moreover, we consider a class of circuits [20] in which the position of the cut line L  is a

uniform random variable over RT . The criterion of partitioning is to minimize the expectation of

PASS estimator variance (15) for the defined class of circuits. Now the two following

partitioning schemes will be considered.

Scheme a: The tolerance region is partitioned into r  vertical strips (Fig. 2(a)). Let ai  denote

the width of partition Qi . The problem of optimal partitioning in this case can be formulated as

the following optimization problem

(P1) 

minimize   

subject to   

a
aF E pY Y

a

l i i i
i

r

i
i

r

( ) ( )= −










î





=







î



=

=

∑

∑

1

1

1

1

, (20)

where [ ]a = a a ar1 2, ,..., , and El [.]  is the expectation with respect to l. By using the “ Total

Probability Theorem”  [5], the objective function F( )a  can be expressed as

F E pY Y L Q P L Ql
j

r

i i i
i

r

j r j( ) ( ) ( )a = −



 ∈







∈
= =

∑ ∑
1 1

1   . (21)

The following results can be shown easily

P L Q a

p a

r j j

i i

( )∈ =

=
, (22)

[ ]E pY Y L Q
p i j

i jl i i i j

j
( )1

6

0
− ∈ =

=
≠



î

  
     for 

                
. (23)

By substituting (22) and (23) into (21), one obtains

F ai
i

r

( )a =
=
∑1

6
2

1

. (24)

Using the Lagrangian function, problem (P1) can be transformed to an unconstrained

optimization. It can be shown that the solution of this problem is
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a r i ri = =1 12     , ,..., . (25)

Therefore, the optimal partitioning of Scheme a is obtained when the width of all strips are equal.

The variance of the estimator corresponding to optimal proportional allocation w.r.t. yield value

is shown in Fig. 3. It is seen that in order to decrease the maximum value of σP
2  for a given value

of N , one can increase the number of partitions r . Here, the maximum of r  is obtained when

one sample per stratum is chosen, i.e., r N= .

Furthermore, the solution of the problem for other pdf (e.g., Gaussian) of disturbance space is

very complicated. However, it is felt that the solution should be almost in such a way that the

tolerance region is divided into equal probability partitions.

Scheme b: Consider that the tolerance region is partitioned into r  horizontal strips (Fig. 2(b)).

The problem of optimal partitioning can be formulated in the same way as that of Scheme a.

From Fig. 2(b), one can see that the partial yield Yi  is equal to the overall parametric yield Y .

Therefore we have

σ σP i i i
i

r

i
i

r

YN
pY Y

Y Y

N
p

Y Y

N
2

1 1

21
1

1 1
= − =

−
=

−
=

= =
∑ ∑( )

( ) ( )
. (26)

Thus the variance is independent of the position of the cut line L  and the width of the strips.

Consequently, proportional allocation with this partitioning scheme has no advantages over the

PMC method.

From the results of the two schemes, one can conclude that in order to have an efficient

estimator, the partitioning scheme should be such that the probability of each stratum belonging

to Aξ  or its complement Aξ
c must be maximum. Now consider the following problem which

describes a more general case than Problem 1.

Problem 2: A two dimensional disturbance space with a uniform pdf over tolerance region

RT  is considered. Suppose that the region RT ∩ Aξ  is a rectangle as shown in Fig. 4(a). In order

to define a criterion for optimization, we need to define a class of circuits. Suppose that the

positions of cut lines L1 and L2  have independent uniform pdf’s over RT . Here, the tolerance

region is partitioned by vertical and horizontal lines (Fig. 4(b)) such that the overall number of
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partitions is r . The partitioning criterion is to minimize the expectation of the PASS estimator

variance (15) for the above class of circuits. Thus, the problem of optimal partitioning can now

be formulated as the following optimization problem

(P2) 

minimize   

subject to     ;     ;   

a,b
a b

, , ,

,

( , , , ) ( )
m k

l ij ij ij
i j

m k

i
i

m

j
j

k

F m k E p Y Y

a b mk r

= −














î







= = =








î




=

= =

∑

∑ ∑

1

1 1

1

1 1

, (27)

where [ ]a = a a am1 2, ,..., , [ ]b = b b bk1 2, ,..., , and [ ]l = l l1 2, .

In problem (P2), by using the “ Total Probability Theorem”  [5], the objective function can be

expressed as a sum of expectations over the disjoint region as follows:

F m k E p Y Y L L Q P L L Qij ij ij
j

k

i

m

i j
j

k

i

m

r i j( , , , ) ( ) , ( , )a b l= − ∈












∈
==

′ ′
′ =′ =

′ ′∑∑∑∑ 1
11

1 2
11

1 2  . (28)

From the assumptions of Problem 2, the following results are straightforward

P L L Q a b

p ab

r i j i j

i j i j

( , )1 2 ∈ =
=

′ ′ ′ ′
, (29)

and

[ ]
[ ] [ ]

E p Y Y L L Q p E Y Y L L Q

p E Y Y L Q p E Y Y L Q

ij ij ij
j

k

i

m

i j i j i j i j i j

i j l i j i j i j
j

j

i j l ij ij i j
i

i

l l( ) , ( ) ,

( ) ( )

1 1

1 1

11
1 2 1 2

1
1

1

2
1

1

1 2

− ∈












= − ∈

+ − ∈ + − ∈

==
′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′
=

′ −

′ ′ ′ ′ ′
=

′ −

∑∑

∑ ∑

  

          

. (30)

By evaluating the expectations in (30), we have

[ ]
[ ] [ ]

E Y Y L L Q

E Y Y L Q E Y Y L Q

i j i j i j

l i j i j i j l ij ij i j

l ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

− ∈ =

− ∈ = − ∈ =

( ) ,

( ) ( )

1
5

36

1 1
1

6

1 2

1 21 2

. (31)

By substituting (29)-(31) into (28), the objective function can be expressed as
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F m k a b a b b b a ai
j

k

i

m

j i
i

m

j j
j

j

j

k

i
j

k

i i
i

i

i

m

( , , , )a b = +













 +









 



′

′ =′ =
′ ′

′ =
′

=

′ −

′ =
′

′ =
′

=

′ −

′ =
∑∑ ∑ ∑∑ ∑ ∑∑5

36

1

6

1

6
2

11

2 2

1 1

1

2

2

1 1

1

2

. (32)

Furthermore

b b b b b

a a a a a

j j
j

j

j

k

j
j

k

j
j

k

j
j

k

i i
i

i

i

m

i
i

m

i
i

m

i
i

m

′
=

′ −

′ =
′

′ =
′

′ =
′

′ =

′
=

′ −

′ =
′

′ =
′

′ =
′

′ =

∑∑ ∑ ∑ ∑

∑∑ ∑ ∑ ∑

=








 − = −

=






− = −

1

1

2 1

2

2

1

2

1

1

1

2 1

2

2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

. (33)

By substituting (33) into (32), we obtain

F m k b a bj
j

k

i
i

m

j
j

k

( , , , )a b = −








 +′

′ =
′

′ =
′

′ =
∑ ∑ ∑1

12
1

1

3

1

12
2

1

2

1

2

1

. (34)

In order to solve problem (P2), one can first optimize it w.r.t. a , i.e.,

minimize   

subject to     

a
a bF m k K a K

a

i
i

m

i
i

m

( , , , ) =






+


î





=







î



′
′ =

′
′ =

∑

∑

1
2

1
2

1

1

, (35)

where K1  and K2  are determined from (34) and are not functions of a . It can also be shown that

they are always positive numbers. This problem can be solved by the Lagrangian function, and

the solution is

a m i mi = =1 12           , ,..., . (36)

Now, we substitute solution (36) into the objective function (34), and optimize it with respect to

b. The solution is obtained in the same way

b k j kj = =1 12          , ,..., . (37)

Using (34), (36), and (37) in problem (P2), the following equivalent problem is obtained
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minimize   

subject to    

m k
F m k

m k m

mk r

,
( , ) = −



 +



î





=






î


1

12
1

1

3

1 1

12 . (38)

If r  is an integer number, then it can easily be shown that the solution of this problem is

m k r= = . Therefore, the overall solution of Problem (P2) is given by

a b r i ri i= = =1 12      , ,..., . (39)

If r  is not an integer, one should choose values of m  and k  such that mk = r , and each as near

as possible to r .

Moreover, by substituting the optimal solution (39) into (P2), the objective function is

obtained as

F r
r

r
( ) =

−6 1

36
. (40)

It can easily be verified that F(r)  is a decreasing function. Thus one can choose the maximum

value of r which is N , i.e., one sample per stratum. In addition, the results of Problem 2 can be

extended to higher dimensions.

In fact, the tolerance region can be considered as a weighted hypervolume by the pdf of

disturbances, and the performance specifications create a hypersurface in this hypervolume. The

hypersurface divides the hypervolume into acceptability region and failure region. The optimal

partitioning scheme can be intuitively stated as follows: one should partition the hypervolume in

such a way that the probability that each partition belongs to either the acceptability region or the

failure region be maximum. For example, in the case of Gaussian pdf , one should first choose

the number of divisions related to each disturbance, then the ranges of each of the n components

of ξ  is partitioned into related ni  intervals of probability size 1 ni . The Cartesian product of

these intervals partitions the tolerance region into ni
i

n

=
∏

1
 cells each of probability size ni

−1

i=1

n

∏ . This

is, to some extent, similar to “ Latin Hypercube Sampling”  (LHS) [13], [19].
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IV. ASYMPTOTIC EFFICIENCY OF OPTIMAL PASS W.R.T. SAMPLE SIZE

In this section the behavior of optimal PASS efficiency over PMC w.r.t. sample size N  will

be discussed theoretically. Throughout this section, it is assumed that one sample per stratum is

chosen, i.e., N = r  and p Ni = 1  (equal probability strata).

The variance of PASS estimator (15) can also be written as

( )[ ]σ ξξP iN
E I Q2 1

= ∈Var . (41)

Using (7) and (41) in (19), the efficiency of the PASS estimator can be described as

( )[ ] ( )[ ]η
ξ ξ
ξ

ξ ξ

=
∈

=
−

∈

Var( )

Var

( )

Var

I

E I Q

Y Y

E I Qi i

1
. (42)

Now consider the following theorem.

Theorem 1: It is assumed that the set of the non continuity points of the indicator function

Iξ (ξ)  over disturbance space is of the zero Lebesgue measure [5] . Then the efficiency of optimal

PASS over PMC approaches infinity when the sample size N → ∞  and { }Y ∉ 01, .

Proof: Suppose that a hyperbox stratum Qi  can be determined by [ ]∆ ∆ ∆ ∆ξ ξ ξ ξi i i
n
i= 1 2, ,...,

and ξ i  is an arbitrary point in this stratum (Fig. 5). For a sufficiently large value of N , we have

for each stratum

1

1N
f i

j
i

j

n

≈
=

∏ξ ξ ξ( ) ∆ . (43)

Therefore, the denominator of (42) can be approximated as

( )[ ] ( )
( )

E I Q
N

I Q

I Q f

v f

i i
i

N

i
i

N
i i

N
i

N
i i i

Var Var

Var ( )

( ) ( )

ξ ξ

ξ ξ

ξ

ξ ξ

ξ ξ δξ

ξ ξ δξ

∈ = ∈

≈ ∈

=

=

=

=

∑

∑

∑

1

1

1

1

                             

                             

, (44)
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where δξ ξi
j
i= ∏ ∆  and vN(ξ i )  stands for ( )Var I i

ξ ξ ξ  ∈ ∆ . It can be concluded that if Iξ (.)  has

no discontinuity in ∆ξ i  then vN(ξ i ) = 0.

Now, if we take the limit on both sides of (44) w.r.t. sample size N, the right hand side can be

written in integral form as follows:

( )[ ]lim Var ( ) ( )
N

i R
E I Q v f d

T→∞ ∞∈ = ∫ξ ξξ ξ ξ ξ  , (45)

where v∞ (ξ)  is non zero at the discontinuity points of the indicator function Iξ (.) . It can be

demonstrated that the maximum value of v∞ (ξ)  at discontinuity points equals 1/4. Consequently,

from the assumption of the theorem about zero Lebesgue measure over discontinuity of Iξ (.) ,

one can conclude that the right hand side of (45) equals zero. The result follows immediately.
�

Two brief comments can be made about Theorem 1. First, it should be emphasized that the

assumption of this theorem holds for all realistic problems and is not therefore a restrictive

condition. Secondly, it can be shown that for other partitioning schemes where the dimensions of

strata do not approach zero, the efficiency of PASS generally converges to a bounded value (e.g.,

in [6] the strata are chosen to be hyperellipsoid annuli with identical probability).

Furthermore, the result of Theorem 1 can be extended to AQI estimation of integrated circuits

which is a more general definition than parametric yield. Moreover, this theorem confirms some

aspects of the optimality of the partitioning scheme that is obtained from the extension of the

results of studying some special cases (Problem 1 and 2) in the previous section.

V. NUMERICAL AND CIRCUIT EXAMPLES

In this section, we will first present the computational results of a numerical example to show

the advantage of the optimal partitioning scheme of PASS over other partitioning procedures.

Then a circuit example is given.

Example 1: Analytic Boundary of Acceptability Region

The acceptability region Aξ  is defined as

{ }A Rξ ξ ξ ξ ξ= ∈ − + − ≤2
2 1

2 2
1

2100 1 8( ) ( ) (46)
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(Rosenbrock’s curved-valley function [18]). The acceptability region and the tolerance region RT

are shown in Fig. 6. It is assumed that the joint pdf of variables are Gaussian with [ ]ξ = −050. ,

and σξ1
= σξ2

= 0.07. Figs. 7(a) and 7(b) illustrate the standard deviations of the optimal PASS

and PMC yield estimators and the efficiency of PASS over PMC method, respectively. In order

to study the behavior of efficiency gain vs. different values of yield, the boundary of acceptability

region is moved. The results of efficiency gain are shown in Figs. 7(c) and 7(d). The curve of

Fig. 7(b) confirms the result of Theorem 1. From the experimental results, it is found that the rate

of convergence of efficiency to infinity depends on the dimension of disturbance space. Greater

dimension results in slower convergence.

Example 2: Sallen and Key  Lowpass Filter [6]

One practical example considered is the second-order lowpass Sallen and Key active filter

shown in Fig. 8. The nominal frequency response of the filter is illustrated in Fig. 9. The

specifications of this filter are given in Table I. The parameters are chosen to be independently

distributed Gaussian random variables with standard deviations equal to one-third of 10 percent

of the nominal values for the resistors and 5 percent for the capacitors. Figs. 10 and 11 shows the

histograms of the optimal PASS and PMC estimators for two different values of sample size.

The efficiency and standard deviation of the estimators are illustrated in Fig. 12. It is seen that

the efficiency gain increases w.r.t. sample size. In [6], the yield estimation of this circuit by

stratified sampling has been studied. There, the strata were chosen to be hyperellipsoid annuli

with equal probability. The efficiency gain was 1.2 versus PMC. It can be shown that the

efficiency gain by ellipsoidal partitioning converges to a bounded value (in this case ≈ 1.2) when

the number of strata approaches infinity. On the contrary, in Fig. 11, it is seen that the efficiency

gain η is equal to 4.

VI. CONCLUSIONS

In this paper, the partitioning scheme of Proportional Allocation Stratified Sampling (PASS),

which is a variance reduction technique in Monte Carlo yield estimation of discrete and

integrated circuits was presented. For accurate yield estimation by Primitive Monte Carlo [3], [4]

a large number of simulations is required. Several variance reduction techniques have been
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developed for reducing the computational cost [3], [6]-[12]. The majority of these methods

generally require some knowledge about the circuit responses, which in turn requires further

computational procedures. In addition, the efficiency of these methods depend on the quantity of

the knowledge. The PASS approach can be realized without any assumptions on circuit

responses and a priori knowledge of circuit behavior. Here, some optimal aspects of the

partitioning scheme of the tolerance region in PASS, which provide some theoretical and

practical insights, were discussed. This scheme permits obtaining potentially higher efficiency

w.r.t. the PMC method, i.e., to have a more accurate yield estimation than that of PMC.
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Fig. 2. Partitioning scheme of the tolerance region. (a) Vertical partitioning. (b)
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Fig. 12. Efficiency of optimal PASS over PMC estimator for Sallen and Key

filter.

Table I PERFORMANCE SPECIFICATIONS FOR SALLEN AND KEY FILTER

Frequency (Hz) Lower
magnitude (dB)

Upper
magnitude (dB)

10 -0.25 1.5

100 -0.25 1.5

500 -0.25 1.5

600 -0.25 1.5

700 -0.25 1.5

800 -0.25 1.5

900 -0.25 1.5

1000 -0.25 1.5

3000 −∞ -18

5000 −∞ -27
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Figure Captions

Fig. 1. Description of Problem 1.

Fig. 2. Partitioning scheme of the tolerance region. (a) Vertical partitioning. (b) Horizontal

partitioning.

Fig. 3. Variance of estimator for proportional allocation.

Fig. 4. Description of partitioning for Problem 2.

Fig. 5. A 2-dimensional strata scheme of optimal PASS.

Fig. 6. Rosenbrock’s curved-valley acceptability region.

Fig. 7. Efficiency of optimal PASS over PMC estimator for Example 1.

Fig. 8. Schematic circuit of Sallen and Key filter.

Fig. 9. Frequency response of Sallen and Key filter.

Fig. 10. Histograms of estimators for Sallen and Key filter, N=81.

Fig. 11. Histograms of estimators for Sallen and Key filter, N=2401.

Fig. 12. Efficiency of optimal PASS over PMC estimator for Sallen and Key filter.
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