
Science of Computer Programming 78 (2013) 1099–1118

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Stratified sampling of execution traces: Execution phases
serving as strata
Heidar Pirzadeh a,∗, Sara Shanian b, Abdelwahab Hamou-Lhadj a, Luay Alawneh a,
Arya Shafiee a

a Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
b Department of Computer Science, Laval University, Quebec City, QC, Canada

a r t i c l e i n f o

Article history:
Received 12 April 2011
Received in revised form 5 November 2012
Accepted 6 November 2012
Available online 3 December 2012

Keywords:
Trace analysis
Program comprehension
Sampling techniques
Stratified sampling
Execution phases

a b s t r a c t

The understanding of the behavioral aspects of a software system is an important enabler
for many reverse engineering activities. The behavior of software is typically represented
in the form of execution traces. Traces, however, can be overwhelmingly large. To reduce
their size, sampling techniques, especially the ones based on random sampling, have
been extensively used. Random sampling, however, may result in samples that are not
representative of the original trace. In this paper, we propose a trace sampling technique
that not only reduces the size of a trace but also results in a sample that is representative
of the original trace by ensuring that the desired characteristics of an execution are
distributed similarly in both the sampled and the original trace. Hence, the insights gained
from analyzing the sample trace could be extrapolated to the original execution trace.
Our approach is based on stratified sampling instead of random sampling and uses the
concept of execution phases as strata. We define an execution phase as a part of a trace
that represents a specific task of the traced system. We also present an approach for the
automatic detection of execution phases from a trace. Finally, we show the effectiveness of
our sampling technique through two case studies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing the content of execution traces can be a challenging task due to the large size of typical traces but, if done
properly, the benefits are numerous. Traces can reveal important information about the way a system behaves and help
answering questions on why it behaves in a certain way. This is useful for many maintenance tasks such as understanding
how a particular feature is implemented or uncovering places where a bug occurs [6,25,38,39,11]. Trace analysis techniques
can also be used to correlate traces generated from subsequent versions of a system to understand important variations
that can in turn help maintainers estimate the effort required to maintain evolving systems. In fact, the understanding
of the behavioral aspects of software systems goes beyond maintenance to include recent research areas, like security
and autonomic computing [47,16], where traces are used to characterize the normal behavior of a system and detect any
deviations from normalcy due to attacks, design faults, or changes in the environment.

Investing in trace analysis techniques (or what we prefer to call software behavior analysis) is therefore an important
research thread that is expected to have a significant impact. There exist today several studies that focus on ways to
make traces smaller while (ideally) keeping as much of their essence as possible (e.g., [17,35]). Several trace simplification

∗ Corresponding author. Tel.: +1 514 750 9710.
E-mail addresses: pirzadeh@ieee.org, pirzadehc@gmail.com, s_pirzad@ece.concordia.ca (H. Pirzadeh), Sara.Shanian@ift.ulaval.ca (S. Shanian),

abdelw@ece.concordia.ca (A. Hamou-Lhadj), l_alawne@ece.concordia.ca (L. Alawneh), ar_s@ece.concordia.ca (A. Shafiee).

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.11.002

http://dx.doi.org/10.1016/j.scico.2012.11.002
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:pirzadeh@ieee.org
mailto:pirzadehc@gmail.com
mailto:s_pirzad@ece.concordia.ca
mailto:Sara.Shanian@ift.ulaval.ca
mailto:abdelw@ece.concordia.ca
mailto:l_alawne@ece.concordia.ca
mailto:ar_s@ece.concordia.ca
http://dx.doi.org/10.1016/j.scico.2012.11.002

1100 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

a b

Fig. 1. (a) A trace of method calls and (b) its corresponding tree representation.

and abstraction techniques have emerged over the years to help software engineers explore the content of large traces
faster. These techniques vary in their design and range from the use of visualization techniques (e.g., [36,35]) to advanced
filtering techniques based on the removal of utilities [17]. These techniques should not be confused with data compression
methods as defined in Information Theory. The purpose of compression algorithms is to make data as small as possible;
a decompression process is required to reconstitute the data to use it for any purpose. In contrast, the purpose of trace
abstraction is to make the data somewhat smaller by eliminating unneeded data, keeping the result intelligible and useful
without the need for ‘decompressing’. Despite the significant progress that trace analysis has seen in recent years, the general
consensus is that more research in this area is needed.

In this paper, we present an approach for reducing the size of traces that is based on the sampling of the trace content.
The main drawback with existing trace sampling approaches is that there is no guarantee that the resulting sample is
representative of the original trace. That is, using common samplingmethods,wemight not be able tomake correct inference
about a trace based on a sample from that trace. To overcome this limitation, we propose the stratified sampling of execution
traces. We first divide the trace into trace segments that we refer to as execution phases. We define an execution phase as
a part of a trace that performs a specific computation [30]. In other words, a phase denotes a group of similar events1 that
together perform an essential step of the general execution. A trace can then be seen as a sequence of exhaustive and non-
overlapping execution phases rather than amere flow of events. By using execution phases as strata, we ensure that a certain
number of events will be selected from each execution phase to yield a sample that is representative of the original trace.
Our approach provides users with the freedom to choose their desired sample size and set a threshold for detecting phases.

The remaining part of this paper is organized as follows. In Section 2, we review some background concepts and related
work. In Sections 3–6 we present our approach and its components. In Section 7, we discuss the tool support. In Section 8,
we validate the effectiveness of our approach in two case studies, followed by a list of threats to validity in Section 9. We
conclude the paper in Section 10.

2. Background and related work

2.1. Background concepts

Execution Trace: An execution trace is a sequence of events (e.g., method calls, invoked objects, system calls, etc.) re-
sulted from exercising one or more features2 of a software system. The content of an execution trace (i.e., the events) is a
representation of the functionalities triggered by the user. Each event can have a number of attributes (e.g., entry time, code
line number, etc). Our focus, in this paper, is on traces where the events are method calls. Such traces are commonly used in
the field of softwaremaintenance [20,43]. A trace ofmethod calls can be represented as a tree structure. An example of inter-
actions among two objects of the classes Test and SimpMath, which implements multiplication of numbers using repeated
addition, is shown as a trace ofmethod calls in Fig. 1(a). The integer value at the right-hand-side of eachmethod call indicates
the value of the nesting level attribute of that method call. Fig. 1(b) shows the corresponding tree representation of the trace
in Fig. 1(a).

Population and Sampling: A population can be defined as a group of elements (people, plants, animals, cars, numbers,
etc.) about which we want to make judgments. Studying an entire population may be slow and expensive. Sampling is a
process through which we select parts of a population for analysis instead of analyzing the entire population. To be able to
generalize the results of the analysis on a sample to the population, the sample has to be representative of the population.
Sample representativeness means that the characteristics of the sample closely match those of the population. Thus, the
goal in sampling is to find a representative sample of the population.

Execution Trace Sampling: In trace sampling, the population is the trace under study.We refer to this trace as the original
trace. A sampled trace is a trace generated through the sampling of an original trace. Similar to other fields, in trace sampling,
the aim is to generate a sampled trace that is representative of the original trace. Given that an original trace represents the
functionalities triggered by the user, a sampled trace is representative of its original trace if the sampled trace can represent
similar functionalities triggered in the original trace.

1 In this paper, we focus on traces of method calls.
2 A feature is an observable functionality triggerable by a user [13].

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1101

2.2. Related work

Understanding a large software system can be a complex and challenging task for systems that have undergone several
years of ad-hoc maintenance activities and/or for which initial documentation (if it exists) has become outdated and
obsolete. It is also hard to rely on the knowledge of the initial designers of the system because they often move to new
projects taking with them this knowledge. The reverse engineering research, using both static and dynamic analyses, has
been very active in recent years to overcome these challenges. The objective of reverse engineering techniques is to recover
high-level views of a system from its low-level artefacts such as the code. These views can later be used by maintainers to
speed up their comprehension process.

An important activity in reverse engineering is the ability to detect the code components (e.g., classes, methods, lines
of code, etc.) that implement a particular feature, a problem known as feature location. It is has been shown that software
maintainers do not need to understand the entire system to perform a maintenance task. Instead, they can proceed with an
as-needed approach by focusing on only the features that must be maintained.

Static feature location techniques [10,22] often use system dependency graphs to help the user identify a feature. A
graph that models global variables, method invocations, and data flow in the source code is searched and navigated by
the maintainer to find events related to a specific feature. Although some guidance can be provided to the maintainer
based on the analysis of the structural dependencies of the system, the technique works well only if the maintainer has
enough knowledge of the system to know where to start exploring the dependency graph. As a result, such an approach
may be inefficient when trying to locate features in large and complex systems. Another group of static feature location
techniques uses lexical analysis to find code components related to a feature (e.g., [4]). First, the code is parsed and then using
clustering and text pattern matching techniques, a set of events (routines and identifiers) related to a feature is returned
based on naming similarities. The lexical approach has been improved using information retrieval techniques that discovers
associations between identifiers in the code and terms used in a requirement specification [1,27].

When combined, these two static approaches yield better results. The lexical approach can be used to provide ranked
results to the programmer’s queries. The programmer can have a better idea of where to start navigation in the dependency
graph. Static analysis can be used to derive mappings between events that are internal to the system. Considering that the
features are defined based on external behaviours and functionalities of the system, static analysis, may not be successful
and precise enough in deriving mapping between features and source code events.

Dynamic analysis techniques have been developed to address feature location from a different perspective. Software
Reconnaissance [51], introduced in 1995, is one of the best known techniques that fully relies on dynamic analysis to locate
source code components that implement a specific feature. Software Reconnaissance starts by generatingmultiple execution
traces by exercising several features of the system in a way that one execution trace exercises the desired feature and the
others do not. The generated traces are then compared for overlap removal. Roughly said, if the set of code components
invoked in the execution traces not exercising the desired feature is subtracted from the set of such components in the
feature specific trace, the result contains components of the system relevant to the feature of interest. Although the ultimate
goal is to only identify the components of a single feature, Software Reconnaissance requires the exercising of several
features of the system. Moreover, the number of features that must be considered for the approach to be effective is unclear.
Software Reconnaissance has been enhanced by including three measurements used to identify the extent to which a
particular component belongs to a feature [49]. As another enhancement to this approach [2], the traces can be filtered
for unwanted events (e.g., mouse motion) before the comparison phase.

The idea of ranking how likely each code component belongs to a given feature based on pure dynamic analysis was
also proposed as an approach to feature location in [12]. This approach argues that a code component executed several
times in the execution of a feature under different situations (i.e., normal and exceptional scenarios) should be regarded as
an important component, whereas a component that occurs in traces of several features should be considered as a utility
component and should be ranked lower in comparison with other components.

A hybrid approach that combines dynamic and static analysis techniques to feature location has also been proposed [13].
This approach uses dynamic analysis to gather traces that correspond to software features of the system and adds static
code dependency information to the content of traces to build a concept lattice that maps features to code components. One
of the shortcomings of this approach is that overlapping components (i.e., the ones that implement several features) can
appear in the concept lattice. To overcome this issue, users are required to navigate through the concept lattice and identify
manually the components specific to each feature. This process requires a considerable effort from the users and a good
understanding of the source code as well as the domain of the system.

Rohatgi et al. [37] proposed another feature location approach based on impact analysis: measuring the impact of a
modification made to a code component on the rest of the system. The approach uses dynamic analysis to generate a trace
that corresponds to the feature under study and applies static analysis to rank the components invoked in the generated
trace according to their relevance with respect to the executed feature. The ranking mechanism guides software engineers
in locating feature-specific components without the need for prior knowledge of the system. This approach operates on
only one trace that corresponds to the feature under study and it facilitates the automatic identification of feature-specific
components.

Dynamic analysis techniques often rely on the tracing and runtime monitoring mechanisms. Traces, however, are diffi-
cult toworkwith because they tend to be considerably large. To address this issue,many trace abstraction and simplification

1102 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

techniques have been proposed with the common objective of extracting high-level views from raw traces. Trace summa-
rization [17] is a type of trace abstraction technique in which an execution trace is taken as input and the summary of its
main content is returned as output. UML sequence diagrams are obtained from this summary that gives the high-level rep-
resentation of software system. The summary of main content of a trace is obtained by removing low-level implementation
details, such as utilities from the trace. A utility is defined as ‘‘Any event of a system designed for the convenience of the
designer and implementer and intended to be accessed frommultiple places within a certain scope of the system’’ [17]. The
extent to which an event can be considered a utility is measured by utilityhood metric based on static fan-in and fan-out as
proposed in [17].

Visualization approaches, such as the ones presented in [35,36,7], usually offer an overviewof the execution trace through
amural view that helps the user to detect segments of an execution trace that are visually distinguishable from one another
and referred to as execution phases. In their tool called ExtraVis [14,7], Cornelissen et al. proposed an approach for detecting
execution phases in a trace. ExtraVis offers a mural view where the call relations are visualized based on the system’s static
structure. This view helps the user to visually detect the different phases of the system’s execution. Being aware of the
execution scenario, the user can also hypothetically relate the repetitive (or ordered) patterns of events to the repetitive (or
ordered) features in the execution scenario. Then, zooming on a pattern, the user can verify the hypothesis. In ExtraVis, the
user is required to analyze large amounts of data visually.

Jive by Reiss et al. [35,36] is a tool that uses murals to visualize execution phases of a system while it is running. This
visualization technique can help the programmer to understand the system on the fly. As a result, unlike our approach, the
phase detection process in Jive is done in an online fashion. Although visualization techniques can provide a good trace
abstraction mechanism, we believe that these techniques alone are limited to the presentation of large amount of data [18].
What is needed is to have built-in algorithms that can quickly analyze and reduce the size of traces while keeping as much
of their essence as possible. The resulting views can then be rendered using existing visualization techniques.

Watanabe et al. [50] proposed an online phase detection technique that is based on the investigation ofmemory cache for
observing objects that are working for the current phase; a significant change in the cache shows the emergence of a new
phase. Several parameters (cache size, window size, threshold, and phase search distance) control their phase detection
algorithm. However, no solution is suggested on how to tune these parameters and changing one or more may result in
different phases.

Kuhn and Greevy [23] proposed a trace analysis techniques inspired by signal processing. The authors, first, transform
execution traces into time series by plotting the nesting level of the methods against points in time through the execution.
Then, the volume of data can be reduced to up to 90% by the application of several filters, such as a minimal nesting level
threshold, making it possible to visualize a large number of events in multiple traces on a single screen. Users can visually
identify similar phases within a trace and between the traces. This technique cannot guarantee for similarities between
methods in a phase because it does not take into consideration themethod nameswhen preparing the plot tomatch patterns
between trace signals. Also, it removes a lot of information that it considers inessential data by applying multiple filtering
logics (independent of method names), having as target mainly the representation size. This filtering potentially results in
loss of important trace information during the abstraction process.

Pirzadeh et al. [29] proposed a phase detection technique based on the fact that a phase shift within a trace appears
when a certain set of methods, responsible for implementing a particular task which are predominant in one phase, start
disappearing as the system enters another phase. The authors proposed an algorithm that operates on the trace while it is
being generated. The online algorithm keeps track of the methods encountered and raises a flag when a significant number
of these methods start disappearing and new ones start emerging. This approach is significantly different from the one
proposed in this paper because it is not based on measured similarity and continuity among trace events. Furthermore, the
approach presented in this paper involves less parameter tuning.

Zaidman proposed in his Ph.D. thesis a technique for extracting the most important classes that are most relevant to the
implementation of the traced scenario using Web page ranking techniques [52]. The objective of his approach is to address
the problem of locating features in code. These techniques often require a lot of processing and the use of different sources
of information (including the source code). The resulting components do not necessarily form a sample of a trace. That is,
there might be some analyses of the trace content that may require more than the components identified using a pure
feature location technique. We recognize that further research should be carried out to see the relationship between trace
sampling and feature location techniques. Our quick intuition is that the need for one or the other should be guided by the
type of analyses ones wishes to perform. Also, it should be noted that sampling should be done quickly and at minimum
cost. Feature location techniques rarely meet these constraints.

Sampling techniques have also been used to reduce the size of traces (e.g., [6,25,38,39,11]). Sampling consists of selecting
parts of a trace for instead of analyzing the entire trace. Existing approaches, however, are suffering from amajor drawback:
there is no guarantee that the resulting sample is representative of the original trace. This lack of representativeness appears
to be due to the fact that existing sampling techniques are blind to the information contained in the trace; they treat a trace
as a data stream for which the pieces are considered equal. Furthermore, many sampling approaches need manual tuning
of several parameters. Finding the right sampling parameters can be a difficult task and even if some parameters work well
for one trace, they might not work for another trace (even if generated from the same system) [6].

In conclusion, there exist many techniques to help with the understanding the behavioral aspects of software sys-
tems. These techniques focus on the analysis of execution traces. The common objective is to find effective ways to

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1103

reduce the size of traces so as to allow software engineers to quickly understand and analyze their content. As one can
expect, these techniques vary significantly in their design and cover a wide range of approaches including visualization
and sampling. In this paper, we propose a new approach based on stratified sampling that aims to reduce the size of
traces. Our sampling approach improves over existing techniques by extracting sampled traces that are representative of the
original trace.

3. Reasoning about sampling

A simple and a naive way to sample the content of a trace is to consider every n-th generated event. The size of the trace
can be controlled automatically based on the sampling parameter n. The sampling parameter (also called distance) for a
given trace T in systematic sampling is usually represented as follows:

n =
|T |

|T ′|

where |T ′
| is the size of the sampled trace that must be specified by the user and |T | is the size of the original trace (i.e., the

number of events recorded during the generation of the trace).
Although efficient, this sampling techniquemight be biasedwhen the original trace, for example, possesses iterations (or

patterns) that coincide with the n value. As an example, suppose a trace T where one specific event e is repeated after each
six other events. If the sampling parameter happens to be seven (n = 7), then depending on where the sampling starts, one
could obtain a sample either with all es or with no e.

One way to overcome this problem is to use random sampling, which is a technique that is commonly used in trace
analysis (e.g., [6,38,39,11]). Instead of selecting every n-th event, trace events are sampled in a way that each event has an
equal chance of being selected (if we have x event, each of them would have 1/x chance of being selected). If we do not
exclude the events that have been drawn from further selection, the resulting sampling strategy is called random sampling
with replacement. Otherwise, it is called random sampling without replacement. It should be noted that random sampling
can result in a sampled trace where the invocation order of the events is changed. This could be potentially dangerous when
sampling a trace where the temporal order of events must be kept. To avoid this, one can sort the events in the sampled
trace according to their temporal order in the original trace, if this information is available. For example, if we have a trace
T :{e1, e2, e3, e4, e5, e6, e7} and we want to generate a sampled trace T ′ of size 3 with random sampling by drawing events
one by one without replacement. The first event drawn is e6, followed by e2, and e7, that is, {e6, e2, e7}. Once sorted, we
have the sampled trace T ′

: {e2, e6, e7}. The problemwith random sampling is that it makes no use of auxiliary information
about the trace (e.g., distribution of the trace events, the homogeneous nature of its parts, outliers, etc.) that could assist in
selecting a sample that is more representative of the original trace.

Statistically, when we are dealing with a population that is not homogeneous (i.e., it is made up of elements that
are different from each other in sub-populations, and each sub-population represents a group of similar events), then
random sampling might result in an unrepresentative sample [5]. It is a common situation for execution traces not to be
homogeneous. The reason is that a trace is composed of a sequence of events where each subsequence represents a specific
task performed by the system. The events in one particular set of events can be completely different from the ones of another
subsequence.

We can study the representativeness problemof randomsampling of execution traces in the following formal framework.
Given an original trace T ofmethod calls, a sampled trace T ′ can be built by randomly drawingmethod calls from the original
trace without replacing them. Let T be composed of homogeneous subsequences of method calls {h1, h2, . . . , hn}. Then,
P (hc) is the probability that no method call from a candidate homogeneous subsequence hc appears in the sampled trace
T ′ is calculated as follows:

P (hc) =

1 −

|hc |

|T |

×

1 −

|hc |

|T | − 1

×

1 −

|hc |

|T | − 2

× · · · ×

1 −

|hc |

|T | − |T ′|

=

(|T | − |hc |) ! ×

|T | −

T ′
 !

(|T |) ! × (|T | − |hc | − |T ′|) !

where |hc | is the size of hc , |T ′
| is the size of the sampled trace. Thus, P (hc) is the multiplication of the probability that, on

each draw from the execution trace, we do not select amethod call from hc . The formula shows the problematic situations in
random sampling of trace T , which are the cases where nomethod from a homogeneous subsequence appears in the sample
(high values of P (hc)), resulting in an unrepresentative sample (and sometimes a sampled trace that is not informative at
all). Therefore, having a trace T with size |T | , we need to analyze the value of P (hc) according to the size of the sampled
trace |T ′

| and the size of a candidate homogeneous subsequence |hc | looking for cases that result in high P (hc).
Fig. 2 shows the behavior of P (hc) according to the changes of

T ′
and |hc |. As shown in Fig. 2, in random sampling, the

smaller the size of the sampled trace, the higher is the probability of having an unrepresentative sample. Furthermore, small
sizes of homogeneous subsequences can also result in unrepresentative samples. Therefore, we need a different sampling
approach.

1104 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Fig. 2. Behavior of P(hc) with respect to |T ′
| and |hc |.

Fig. 3. Stratified sampling process.

4. Stratified sampling of execution traces

Another approach to sampling, extensively studied in Information Theory, is known as stratified sampling [8]. Stratified
sampling techniques are generally used when the population on which sampling is applied is heterogeneous as a whole but
can be divided into homogeneous sub-populations, referred to as strata. We deal with similar situation in execution traces
as they are composed of a sequence of events where one can find subsequences that represent specific tasks performed by
the system. The level of granularity of a task depends on the type of samples that we want to extract.

In the stratified sampling of a population, first, the population is separated into a desired number of partitions3 (called
strata) and then sample elements are drawn from within each stratum. The size of the sample from each stratum is kept
proportional to the size of the stratum (this is called proportional stratified sampling). We thus guarantee that the final
sample contains elements representative of every part of the population. The process of stratified sampling is shown as a
flow chart in Fig. 3.

The quality of stratified sampling is determined by the way strata are specified (strata specification), and the strategy
by which sample elements are drawn from within each stratum (selection strategy). In strata specification, strata are
commonly created by dividing the population into partitions of relatively homogeneous elements. As for the selection
strategy, proportional random sampling is commonly used to draw sample elements from within each stratum.

Drawing a parallel between population sampling and trace sampling, we are interested in a trace sampling method
that can create a more representative sample in comparison with existing trace sampling methods. We propose stratified
sampling of execution traces [33]. For strata specification we propose using execution phases as strata. Our definition of an
execution phase is similar to the one presented in [36] in which a phase is defined as a segment of a system’s execution that
exhibits common behavior at a level the programmerwould recognize. In our previous work [30], we proposed an approach
to automatically detect execution phases in a trace. The essence of this approach is revisited in Section 5.

Once the phases are detected, we select sample events within each stratum (phase) using random sampling. It might
sound contradictory that we are using random sampling after criticizing it in the previous sections. In fact, the problem

3 A partition is a non-overlapping and exhaustive sub-population.

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1105

Fig. 4. Overview of the proposed sampling framework.

Fig. 5. Detailed view of the execution phase detection unit.

with random sampling is when it is used on non-homogeneous data spaces such as an entire trace. This is not the case now
because it is applied to the content of execution phases that by definition should be homogeneous.

Our framework for stratified sampling of execution traces is shown in Fig. 4. By splitting the process into different units,
our proposed framework achieves a flexible and extensible architecture where each unit or its composing components can
be supplemented or replaced by alternative approaches. As shown in Fig. 4, we first need to identify the execution phases
to serve as strata for our stratified sampling approach. We use the execution phase detection unit to detect the execution
phases of the trace. The result of this unit is then given to the sampling unit that outputs a sampled trace. Both units are
described in more details in the following sections.

5. Detection of execution phases

In our previous work [30,31], we have developed a phase detection technique that is inspired by two of the Gestalt laws
of perception (namely similarity and continuation), which describe how people group similar items visually based on their
perception [24,41,34]. Gestalt psychology [34] is an application of physics to essential parts of brain physiology describing
the processes occurring in the brain when we see visual objects and how our perceptual systems follow certain grouping
principles (e.g., good continuation, proximity, and similarity properties of the elements) to integrate the scene elements (i.e.,
objects and regions) as a whole and not just as points and lines. These laws explain how our perceptual system segments
local elements against their context and integrates them as objects. The tendency of perceiving elements having similar
characteristics as belonging to an approximately homogeneous group suggests that the same mechanism can be used for
extracting homogeneous segments (i.e., execution phases) in a trace that can serve as strata.

The phase detection unit (Fig. 5) is implemented as a lightweight algorithm that analyzes the trace in one pass,
automatically dividing its content into segments that correspond to the system’s main execution phases, such as initializing
variables, performing a specific computation, etc.

Fig. 5 shows the phase detection unit. In the application of gravitational schemes on the input trace, two schemes, the
similarity and continuation schemes, define gravitational forces between the trace events. The application of these schemes
yields the formation of dense groups of trace events, which indicate the candidate phases. We use K -means clustering with
BIC (Bayesian Information Criterion) support [40] (discussed in more details later in Section 5.4) to automatically identify
phases. The effect of applying each of the similarity and continuation schemes is as follows:

• Similarity scheme: By applying this scheme the events in the trace are rearranged in a way that the distance between
similar trace events is reduced. We consider two method calls similar if they call the same methods.

• Continuation scheme: The application of this scheme results in the repositioning of the trace events in a way that the
consecutive events are made closer to one another if there is a continuous change (no sudden jump of drop) in the values
of a certain attribute of the events. For example, in traces of method calls, the consecutive method calls that are in the
calling nesting level are made closer to one another to emphasize a trend in the execution of the system.

The two gravitational schemes that we have developed are also aligned with the fact that a phase change in an execution
trace corresponds to a significant change in the pattern of attributes of the events in the trace over time [50,35]. Therefore,

1106 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Fig. 6. An example of applying the similarity scheme.

our strategy can be seen as reducing the distances between the events for which the characteristics can form a pattern
specifying a phase. Again, this is similar to the way a human brain processes points and lines to form objects and regions.

To help with the description of these techniques, we introduce the following definitions: a trace T of size n (the number
events, here, method calls invoked in the trace) is a tree, where each node is a method call denoted as ci,d where i represents
the invocation order of the method call c and d (depth of the node) shows the nesting level of the call. Each method call ci,d
can result in calls of zero or more methods, with ci+1,d+1 as its first callee, if any.

T =

c1,0, c2,d, . . . , ci,d′ , ci+1,d′′ , . . . , cn,d′′′

To apply our gravitational schemes, we define the distance between the method calls in the trace. The difference in

invocation orders between themethod calls in the trace is considered as distance between themethod calls and it is assumed
that there is equal distance of 1 between consecutive invocations in the original trace. For instance, the distance between
ci,d and cj,d′ would be equal to |j − i|(i.e., the distance between two points on a ruler). This way, we map the ordinal scale of
method calls to an interval scale. Furthermore, for each of the schemes, we define a function Pos(ci,d) to return the position
of themethod call c in the interval scale. The position of amethod call is also the order inwhich it was invoked right after the
trace is generated. However, as the method calls are rearranged as a result of applying the two schemes, the new position
of a method call might differ from its original order of invocation. We use this rearranged trace to find the phases from the
original trace.

5.1. The similarity scheme

The objective of the similarity scheme is to reposition the events of a trace in such a way that similar events gravitate
to each other forming a group of dense events, which could indicate the presence of a phase. In other words, the events
of a trace are repositioned in a way that the distance between two same events is less than the distance between two
different events given that the difference in terms of the invocation order is the same for the events of both pairs. A simple
repositioning scheme based on the similarity scheme, which we refer to as Possim, and which divides by half the distance of
similar methods changes the position of method calls as follows:

Possim(ci,d) =

Possim(cj,d′) +

i−Possim(cj,d′)
2 if C1

i Otherwise
C1 : there is a previous call cj,d′ to the same method.

Wevisit eachmethod call ci,d in the original trace; if there is a previousmethod call cj,d′ to the samemethod,we reposition
ci,d to half way from cj,d′ (i.e., by reducing the distance to half). Otherwise, we do not change its position (ci,d remains in its
i-th position).

In Fig. 6, we show the effect of applying the similarity scheme to a simple trace (this trace does not reflect real world
traces and is used here for illustration purposes only). The resulting trace appears to contain two dense groups that may
indicate the presence of two distinct phases. The first one starts at the first invocation and is composed of calls to methods
a and b, while the other one which starts at the seventh invocation contains calls to c and d.

5.2. The continuation scheme

The similarity scheme works well for a trace that contains similar events. But what happens if there is no noticeable
similarity between the events of an execution trace? For example, Fig. 7 (step 1) shows an execution trace where it is hard
to distinguish the similar events -no distinct method is invoked more than once. However, one can perceive two different
segments in this trace. This perception can be explained by another Gestalt law, the Law of Good Continuation [15]. The Law
of Good Continuation refers to the tendency of things to group if they are visually co-linear or nearly co-linear. In this paper,
we use the continuation scheme to group trace events using the nesting level of the method calls.

For example, in Fig. 7 (step 1), one can notice that there is a good continuation between the calls from a to o, which can
intuitively suggests the existence of a phase. Using the nesting level of calls to detect execution phases has also been the
topic of other studies [23,50]. Watanabe et al. [50] used the nesting levels of a call tree to detect phases and locate phase
shifts. The authors suggested that the depth of the call stack (i.e., the nesting level) is a local-minimum at the beginning of a
phase indicating a phase transition. They also showed that the events that have a high nesting level (i.e., which are deep in
the tree hierarchy) were unlikely to initiate new phases.

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1107

Fig. 7. An example of applying the continuation scheme.

The continuation scheme groups trace events by keeping the method calls with higher nesting levels closer to the
previous method calls. The higher the nesting level of a method call, the stronger it is attracted by the previous method
call. A continuation scheme that repositions the events of a trace based on their nesting level, and that we call here Poscont ,
is as follows:

Poscont(ci,d) =

Poscont(ci−1,d′) +

1
d if d > d′/2

i Otherwise

When applied to a trace, this scheme reduces the distance between method calls based on the nesting level (d) of the
callee by changing the distance of two consecutive method calls from 1 to 1/d. The condition d > d′/2 disables gravity for
the cases in which the nesting level of the current method call is drastically lower than the nesting level of the previous
method call (i.e., the case of local minimums). For example, a call with a nesting level 6 that immediately occurs after a call
with a nesting level 12 will not be repositioned because it indicates a drastic change in nesting levels (6 ≤ 12/2) and thus
a possible phase shift.

Fig. 7 (step 2) shows the result of applying the continuation scheme to a sample trace. As we can see, the new positioning
of the trace events leads to two distinguishable groups of event. These groups, that indicate the presence of two phases, are
more distinguishable when we omit visualization of the nesting levels in step 3. The first phase begins at the first method
invocation and the second phase starts at the tenth method invocation.

5.3. Integration of the schemes

Wecombine the similarity and the continuation schemes to an integrated scheme.When applied to a trace, the integrated
scheme first reduces the distance betweenmethod calls based on their nesting level (aswehave in the continuation scheme),
followed by the application of the similarity scheme. This results in a reduction of the distance between calls to the same
methods.

The integrated repositioning scheme can be iteratively applied to a trace to detect major phases, their sub-phases, etc,
until we reach the individual events of the trace. To harness gravity so that phases could be detected with different levels
of granularity, a threshold t is defined which can be used to prevent two far methods from attracting each other and hence
forming a large block. More precisely, the threshold t works in such a way that a call to amethodm is attracted to a previous
call to the samemethod only and if only the distance between these two calls is less than the threshold. Major phases can be
detected by setting a threshold t that is close to the size of the trace. The smaller the threshold, themore fine-grained phases
we can detect. We anticipate that the threshold is application-specific. Our tool that supports this approach allows enough

1108 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Fig. 8. Detailed view of BIC-supported K -means clustering.

flexibility to vary the threshold (see Section 7). An integrated scheme with threshold t changes the position of method calls
as follows:

Possim(ci,d) =

Possim(cj,d′) +

Pos(ci,d)cont−Possim(cj,d′)
2 if C1 & C2

Poscont(ci,d) Otherwise
where
C1 : there is a previous call cj,d′ to the same method
C2 : Poscont(ci,d) − Possim(cj,d′) < t
and

Poscont(ci,d) =

Poscont(ci−1,d′) +

1
d if d > d′/2

i Otherwise

5.4. Identifying the beginning and end of phases

Once the method calls of a trace are repositioned according to the integrated scheme and dense groups of method calls
are formed in the rearranged trace, we need a way to automatically identify the beginning and end of each phase on the
original trace because it would be impractical to expect from programmers to distinguish the various phases visually for
considerably large traces. We use a clustering algorithm to automatically find the beginning and the ending method call
of each dense group based on the positions of method calls. The beginning method call of each group is then marked as
the beginning of a corresponding phase on the original trace. Therefore, the beginning of each phase in the original trace is
marked by the beginning of a corresponding group in the rearranged trace and the ending of that phase is marked by the
beginning of the next phase.

In [44], a number of hierarchical and partitional clustering algorithms and their applications to software engineering are
presented. In this paper,we chose a partitional clustering algorithm, theK -means clustering [26], as our clustering algorithm.
The study of the impact of various clustering algorithms on our approach is left as future work. In K -means clustering, the
number of clusters K (i.e., the number of phases) should be given as an input to the algorithm (perhaps by counting the
number of dense groups that can be visually perceived on the rearranged trace). However, it would be advantageous if the
number of dense groups could be automatically selected according to the complexity of the data. Pelleg et al. [32] proposed
an approach to find the best partitioning of data where the average variance of the clusters is minimum. It is clear, that as
the number of clusters increases, the average variance of the clusters decreases (as K approaches the number of data points
the variance becomes zero; this is known as overfitting). Therefore, the problem is reduced to finding a tradeoff between
the number of clusters and the average variance of the clusters that can keep the number of clusters and the variance both
minimized. We find this trade-off via the Bayesian Information Criterion (BIC) [40].

As shown in Fig. 8, we assume that the user has run the K -means algorithm on the repositioned trace (i.e., a trace with
dense groups of methods formed using the similarity and continuation schemes) for a set of different values of K, which
results in a set of alternative partitionings. To evaluate these partitionings, we compute the BIC score of each partitioning,
the highest BIC score means the best available partitioning of the execution trace and consequently the best estimation of
the number of clusters K (which also corresponds to the number of phases).

In [30], we applied our phase detection algorithm to large traces generated from two object-oriented systems. We
validated our results by studying documentation of both systems and showed that our approach was successful in dividing
these traces into meaningful phases.

6. Sampling unit

Once the phases are detected, we start the stratified sampling process, which is implemented in our framework, as part
of the sampling unit (shown in Fig. 9). The sampling unit receives a phased execution trace as its input and outputs a sample
of the execution trace using stratified sampling.

We use the sample trace shown in Fig. 10 (part 1) to explain how the sampling is performed in a step by step fashion.
Fig. 10 (part 2) shows the trace divided into 4 major phases as a result of the application of our phase detection approach
presented in Section 5. The trace in Fig. 10 contains 25 events and we would like to obtain a sampled trace of size 6.

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1109

Fig. 9. The sampling unit in details.

Fig. 10. An example of applying the integrated scheme on a sample trace.

Table 1
Execution phases that were detected.

Phase Phase location Strata Size

P1 1–9 Stratum1 9
P2 10–14 Stratum2 5
P3 15–21 Stratum3 7
P4 22–25 Stratum4 4

As mentioned previously, the sampling unit treats the phases of the execution trace as strata. More precisely, given a
phased trace Tp the sampling unit defines H strata in the trace, where each stratum is a phase. Each event of the trace is
assigned to one, and only one:

|Tp| = |Stratum1| + |Stratum2| + · · · + |StratumH−1| + |StratumH |

where Stratumhis the number of events in each stratum and |Tp| (the size of the phased trace) is equal to the size of the
original trace. Table 1 shows the number of events within each stratum of our sample trace in Fig. 10.

The next step is to select a sampled trace of size |T ′
| , which is an aggregation of the samples selected from each stratum.

More precisely:T ′
 = |S1| + |S2| + |S3| + · · · + |SH−1| + |SH |

where |Sh| is the number of events sampled from Stratumh. For sample allocation we must determine the size of the sample
for each stratum. The number of events to be sampled from each stratum is kept proportional to the size of the stratum:

|Sh| ≈
|Stratumh|Tp ×

T ′
 h ∈ {1 . . .H}

Therefore, we select |Sh| events from each stratum. For our sampled trace of Fig. 10, the number of samples to be drawn
from each stratum is calculated the same way:

|S1| ≈
9
25

× 6 = 2 |S2| ≈
5
25

× 6 = 1

|S3| ≈
7
25

× 6 = 2 |S4| ≈
4
25

× 6 = 1

1110 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Finally, since the events within each stratum are homogeneous, we perform the selection of trace events from each
stratum using random sampling as discussed earlier.

7. Tool support

Different tools have been implemented and reused to support the proposed approach. These tools are implemented in
Java as part of a tool-suite called Tratex4 which is an Eclipse plug-in. The phase detection unit of the Tratex implements the
integrated scheme (Section 5.3) and the clustering component (Section 5.4).

The integrated scheme is implemented as a one pass algorithm. The algorithm creates a position table (a HashMap5). For
each method, the position table keeps the position of the last call to that method (as used in similarity scheme). Visiting
each method call in the original trace, the algorithm looks up the position table for that method, if not found, it adds the
method and the position of the method call to the table, otherwise, it fetches the previous position of the method call. The
algorithm also records the nesting level of the previousmethod call (as used in the continuity scheme). The time complexity
of the algorithm that implements the integrated scheme is O(n), where n is the size of the trace.

K -means clustering is chosen as the clustering algorithm in the clustering unit because of its main advantages: simplicity
and observed speed, which allow it to run on large datasets [46]. The K -means and cluster evaluation implemented in Java-
ML library [3] are used as the basis of the clustering unit. Modifications aremade to the code to support threading.6 The time
complexity of the standard k-means algorithm is O(icnd), where i is the number of iterations, c is the number of clusters, n
is the size of the dataset, and d is the dimensionality [28]. In our case, the size of the dataset is equal to the size of the trace,
the number of iteration is fixed to 50 (as common case for K -means clustering), the dimension is 1 (because each event has
a position on a single axis), and the number of clusters is set from 1 to 14 (in parallel).

The Sampling unit (Section 6) of the Tratex implements random sampling that is used in stratified sampling. The
implementation of random sampling uses the Random class in Java to generate a random number in constant time. Similar
implementation is used to generate sampled traces through random sampling in our case studies.

8. Case studies

We apply our proposed phase-based stratified sampling approach in two case studies. The goal of the first case study is
to analyze the use of phase-based stratified sampling of execution traces, with the purpose of comparing its usefulness with
random sampling in program comprehension. The second case study is a real-world running example of the problematic
case that is theoretically discussed in Section 3 and shows how our phase-based stratified sampling compares to random
sampling of execution traces. The case studies are on traces generated from two different systems: WEKA 3.0 [48] and
JHotDraw 5.2 [21]. To generate the traces we instrumented both systems using TPTP (the Eclipse Test and Performance
Tools Platform) [45].

8.1. First case study

The experimental unit in this study is WEKA [48], a Java-based machine learning tool that implements several learning
algorithms. WEKA (v. 3.0) has 10 packages, 147 classes, 1642 public methods, and 95 KLOC. We selected to analyze the C4.5
classification algorithm that builds a decision tree for classifying data instances. For this we use the C4.5 trace (the original
trace) generated by Hamou-Lhadj et al. [17].

The main factor in this study is the sampling method that is applied on the original trace to extract a sample to be
used for program comprehension. The dependent variable in this study is the comprehension level. The comprehension
level is evaluated on authoritative bases. That is, for each sampling method, the extracted sampled trace is compared with
established reference data provided by Hamou-Lhadj et al. [17]. The reference data is a summarized version of the original
trace (hereby referred to as the oracle trace) that has been shown to have captured the most important interactions of
the trace and to be effective in program comprehension. The comprehension score of a sampled trace is the percentage
of events that exist in both the sampled trace and the oracle trace. This way, a higher comprehension score of a sampled
trace represents a higher comprehension level and a lower comprehension score represents a lower comprehension level
that can be achieved using the sampled trace. It is important to note that the comprehension score calculated by means of
comparison to the oracle trace represents, by consequence, a subjective feedback, and that more objective measurements
such as those used to assess the comprehension level during themaintenance tasksmay result in amore precise conclusions.

To investigate the effect of the main factor on the dependent variable we formulate the following hypotheses:

• H0 (Null hypothesis):Whenperforming a comprehension task, the use of phase-based stratified randomsampling (versus
random sampling) does not significantly improve (or decline) the comprehension level.

4 http://www.ece.concordia.ca/∼s_pirzad/sampling-case-study/.
5 Provides constant-time performance for the lookup operation [19].
6 In the case where user wants the number of phases to be automatically selected, several clusterings are performed and the one with the best score is

selected as the best clustering. Each clustering can be implemented as a thread because the clusterings are independent of one another.

http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1111

Fig. 11. Overview of the experiment.

• Ha (Alternative hypothesis):When performing a comprehension task, the use of phase-based stratified random sampling
(versus random sampling) significantly improves (or declines) the comprehension level.

We are interested in investigating how the effect of phase-based stratified sampling on software comprehension
compares to the ones of random sampling. Therefore, our null hypothesis is two-tailed.

Experiment Design and Procedure

The experiment design in our study is a variant of after-only with control group design [53] where we compare two groups
of subjects: one treated with random sampling and the other treated with phase-based stratified sampling and then trying
to infer a difference in the performance of the two treatments.

For this, as shown in Fig. 11, we apply random sampling on the original trace to obtain a sampled trace T1 of a given size.
Similarly, we apply the phase-based stratified random sampling on the original trace to obtain another sampled trace T ′

1.
Both T1 and T ′

1 are of a given size s (equal to the oracle trace size) and the sampling is performed without replacement. The
C-Score Calculation module, receives the sampled trace T1 and compares it with the oracle trace and assigns it a
comprehension score C(T1), the percentage of the elements that are common between T1 and the oracle trace. Similarly,
a C(T ′

1) is assigned to T ′

1. The pair of (C(T1), C(T ′

1)) is added to the list of observations for statistical analysis.

Statistical Analysis:

Since the observed comprehension scores of sampled traces are not normally distributed we need to use a type tests that
has no assumption on normality of observations. Non parametric tests are a good choice as they have minimal assumptions
on the observations. Furthermore, comprehension scores are ordinal data which is a natural fit for non-parametric tests.
Moreover, non-parametric test are not sensitive to outliers.

Since the same original trace (the subject) is used for both random sampling and phase-based stratified sampling we use
a paired test (similar in concept with pre-test/post-test data). Wilcoxon signed ranks test [9] is a non-parametric paired test.
We decided to use Wilcoxon test to evaluate out two tailed null hypothesis.

We carried out our statistic analysis procedures through the statistical package for the social sciences software (SPSS v.20)
[42]. A statistic significance level of 0.05 was considered, that is, the null hypothesis could be rejected in all the situations
where the probability associated with the statistics of the test (p-value) was inferior to this value.

Results

This section reports and analyzes results obtained from our experiments.7 The original trace contained 97,413 method
calls. We applied our phase detection technique on the trace to detect its major phases (i.e., threshold t = trace size). The
application of our integrated scheme results in the formation of 11 dense groups in the rearranged trace. These groups can
be seen in Fig. 12. These 11 groups indicate 11 phases when mapped back the original trace. Table 2 shows the detected
phases and their information. On an Intel Core i5 CPU 2.30 GHz, 4.00 GB main memory, runningWindows 7 it took 12.838 s
for our phase detection algorithm to detect phases. Out of this time, 1.375 s were spent on the application of the integrated
scheme and 11.463 s were spent on clustering.

These phases were then used as strata to perform stratified sampling. To implement the random sampling within
each stratum, our program randomly draws a method call from that stratum and excludes the drawn method call from
further selection. The oracle trace contained 31 method calls. We executed the experiment 100 times (obtain 100 pairs of
observation) with s = 31. Table 4 shows the list of observations.

7 For replication purposes, the experimental package and raw data from the experiment are available for downloading at: http://www.ece.concordia.ca/
∼s_pirzad/sampling-case-study/.

http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/
http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/

1112 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Fig. 12. Eleven dense groups are resulted from applying the integrated scheme on the WEKA trace.

Table 2
Phases information.

Phase Phase location Size

P1 1–8836 8,836
P2 8837–19,299 10,463
P3 19,300–27,673 8,374
P4 27,674–35,500 7,827
P5 35,501–51,651 16,151
P6 51,652–60,537 8,886
P7 60,538–69,728 9,191
P8 69,729–78,640 8,912
P9 78,641–87,275 8,635
P10 87,276–95,811 8,536
P11 95,812–97,413 1,602

A pair-wise application of the Wilcoxon test shows that comprehension scores of phase-based random sampling are
significantly higher than random sampling scores, (z = −2.628, n = 100, p = 0.009, two-tailed). This information is shown
in detail in Table 3. This table tells us that the statistic is based on the negative ranks, that the z-score is −2.628 and that
this value is significant at p = 0.009. Therefore, because this value is based on the negative ranks, we should conclude that
there was a significant increase in comprehension score from random sampling to phase-based stratified random sampling.

8.2. Second case study

In this section,we showhowour approach compares to randomsamplingwith regards to the problematic cases discussed
in Section 3. To generate an execution trace, we used an execution scenario that involves several major features. The
execution trace was generated based on a scenario where the features F1 to F12 shown in Table 5 were exercised one after
another.

Because JHotDraw registers all mouse movements, and mouse movements are required while drawing figures, the trace
that resulted from our scenario was bound to contain a lot of noise. We have therefore filtered these mouse movements
to obtain a trace that is cleaner. We are aware that the detection of noise in a trace might not always be straightforward
and that noise detection techniques such as the ones presented by Hamou-Lhadj et al. in [17] might need to be used. The
resulting trace contained 36,571 method invocations and the trace file was of size 1.8 MB. Note that a method invocation
requires at least two events to be collected, the entry and exit of a method. The trace size in terms of events is therefore
about 73,142 events, which is considered a relatively medium-sized trace.

We randomly set the phase detection threshold to t = 200 so as to detect phases that are not too large but not too fine-
grained either. This threshold is a result of conducting several experiments with JHotDraw traces. We still do not have
a solution on how such a threshold should be selected automatically to detect adequate phases. Although, we anticipate
that it would be application-specific, further studies should be conducted to, at least, provide hints on acceptable ranges of
thresholds and their impact on detecting phases. We have not done such studies yet.

Fig. 13 shows the results of applying the integrated gravity, using t, to the JHotDraw trace. The results are shown in
the form of a histogram, where the x-axis shows the distance between the positions of the calls and the y-axis shows the
frequency (the number of methods that their position falls into one interval of x-axis). As part of our technique, in order to
automatically determine the number of phases and their location, the trace resulted from applying the integrated gravity

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1113

Table 3
Statistical analysis.

Descriptive statistics

N Mean Std. deviation Minimum Maximum

Random sampling 100 .9355 1.73352 .00 6.45
Phase-based stratified sampling 100 1.7742 2.35468 .00 9.68

Ranks

N Mean rank Sum of ranks

Phase-based stratified sampling - random sampling Negative ranks 17a 26.65 453.00
Positive ranks 37b 27.89 1032.00
Ties 46c

Total 100

Test Statisticsd

Phase-based stratified sampling - random sampling
Z −2.628e

Asymp. Sig. (2-tailed) .009

a Phase-based stratified sampling < random sampling.
b Phase-based stratified sampling > random sampling.
c Phase-based stratified sampling = random sampling.
d Wilcoxon Signed Ranks Test.
e Based on negative ranks.

Table 4
Comprehension scores of trace resulted from random sampling and stratified sampling.

Random sampling Stratified sampling Random sampling Stratified sampling Random sampling Stratified sampling

1 0.00 0.00 35 0.00 3.23 69 0.00 0.00
2 0.00 0.00 36 3.23 0.00 70 0.00 3.23
3 3.23 0.00 37 0.00 6.45 71 0.00 3.23
4 6.45 0.00 38 3.23 3.23 72 0.00 3.23
5 0.00 0.00 39 0.00 0.00 73 0.00 3.23
6 3.23 0.00 40 3.23 0.00 74 0.00 3.23
7 0.00 3.23 41 0.00 3.23 75 0.00 0.00
8 0.00 0.00 42 0.00 0.00 76 0.00 0.00
9 0.00 6.45 43 0.00 3.23 77 3.23 3.23

10 0.00 0.00 44 0.00 6.45 78 0.00 0.00
11 3.23 0.00 45 0.00 0.00 79 0.00 0.00
12 0.00 0.00 46 3.23 0.00 80 0.00 3.23
13 0.00 0.00 47 0.00 0.00 81 0.00 0.00
14 0.00 3.23 48 6.45 3.23 82 0.00 0.00
15 0.00 0.00 49 0.00 0.00 83 0.00 0.00
16 3.23 3.23 50 0.00 0.00 84 3.23 0.00
17 0.00 0.00 51 0.00 3.23 85 3.23 0.00
18 0.00 0.00 52 0.00 0.00 86 0.00 0.00
19 0.00 0.00 53 0.00 0.00 87 0.00 3.23
20 0.00 3.23 54 0.00 0.00 88 3.23 3.23
21 0.00 0.00 55 0.00 0.00 89 0.00 0.00
22 0.00 0.00 56 0.00 0.00 90 0.00 3.23
23 0.00 3.23 57 3.23 9.68 91 3.23 6.45
24 0.00 3.23 58 0.00 9.68 92 0.00 3.23
25 0.00 3.23 59 0.00 0.00 93 0.00 0.00
26 0.00 6.45 60 3.23 0.00 94 0.00 3.23
27 0.00 3.23 61 0.00 3.23 95 0.00 0.00
28 0.00 0.00 62 0.00 3.23 96 0.00 3.23
29 0.00 0.00 63 3.23 6.45 97 0.00 3.23
30 3.23 0.00 64 6.45 0.00 98 3.23 0.00
31 3.23 0.00 65 0.00 6.45 99 3.23 0.00
32 6.45 0.00 66 0.00 3.23 100 0.00 0.00
33 0.00 6.45 67 0.00 0.00
34 0.00 3.23 68 3.23 3.23

scheme is partitioned by K -means clustering for K from 1 to 10. The highest BIC score was for the partitioning with K = 8
as the best fit. Fig. 13 shows the location of the eight clusters (P1 to P8), highlighted by dashed rectangles. These phases are
explained in Table 6. Each row contains the location of the phase in the execution trace, the task performed in the phase,

1114 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Table 5
The features included in the traced scenario.

F1: Drawing a rectangle F5: Drawing a circle F9: Drawing a round rectangle
F2: Moving the rectangle F6: Moving the circle F10: Moving the round rectangle
F3: Saving work sheet F7: Deleting the circle F11: Deleting the round rectangle
F4: Deleting the rectangle F8: Saving work sheet F12: Saving work sheet

Table 6
Execution phases that were detected.

Phase Phase location Description Strata Size

P1 1–1134 Initialization Stratum 1 1134
P2 1135–10,948 New sheet, F1, F2 Stratum 2 9814
P3 10,949–14,816 F3, F4 Stratum 3 3868
P4 14,817–22,391 F5, F6 Stratum 4 7575
P5 22,392–26,298 F7, F8 Stratum 5 3907
P6 26,299–32,812 F9, F10 Stratum 6 6514
P7 32,813–36,461 F11, F12 Stratum 7 3649
P8 36,462–36,571 Finalization Stratum 8 110

Fig. 13. Detected phases in JHotDraw trace.

and the corresponding stratum. This information was used for stratification. As shown in this table, we were able to use our
phase detection technique to successfully recover parts of the trace that implement each of the features that were traced.
We validated the results by browsing the source code and reviewing JHotDraw documentation. We like to note that our
research teamhas a very good understanding of JHotDraw’s design andwe have used the same system inmany other studies
(e.g., [29]).

We chose to generate three sampled traces from the original trace that vary in size and assess their effectiveness in
being representatives of the original traces. The three sampled traces are respectively of sizes 3646, 1829, and 365, shown
as Strat1, Strat2, and Strat3 in Table 7. In this table, the sampling parameter |Stratumh| / |T | for each stratum is calculated
according to the size of the stratum Stratumh and the size of original trace (|T | = 36,571). Then, the sampling parameter and
|T ′

| the sample size are used for calculation of the number of calls to be sampled from each stratum (i.e., |Sh|). For example,
we can see that to obtain a sample trace of size 365 we need to randomly sample 12 calls from ‘‘Stratum 1’’ of the original
trace, 96 calls from ‘‘Stratum 2’’ and so on.

The next step is to assess the representativeness of the three samples with respect to the original trace. We compared
the sample traces generated by our approach to the ones generated using mere random sampling. For this purpose, we first
created three other sampled traces (Rand1, Rand2, and Rand3) of sizes 3646, 1829, and 365 using random sampling from
our original trace.

As mentioned earlier, a sampled trace is representative if it closely resembles the execution trace fromwhich it is drawn.
This resemblance could be quantified by the extent of similarity of statistical characteristics between the original trace and
each set of generated samples. We consider the distribution of features and their contribution to the overall size of the
original execution trace as our comparison reference. The closer the distribution of features in sample traces is to the actual
distribution of features in the original trace, the more representative the sampled trace is. The distribution of features in
each sample trace in terms of their contribution to the size of the sample trace is shown in Table 8. For example, the number
of calls belonging to feature F12 in the sample trace ‘‘Strat 3’’ is 37; its contribution to the size of ‘‘Strat 3’’ (i.e., 365) is 10.13%.
The same feature contributes only 14 calls (3.83%) to the sampled trace ‘‘Rand 3’’, generated using random sampling. When
we contrast this with the contribution of the features to the size of the entire trace (shown in Table 9), we can see that
feature F12 represents 10.01% of the size of the original. Therefore, F12 is better represented in ‘‘Strat 3’’ than in ‘‘Rand 3’’.

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1115

Table 7
Contribution of features of JHotDraw trace to the size of the sample traces using both stratified
and random sampling.

10% of Orig. Size (3646) 5% of Orig. Size (1829) 1% of Orig. Size (365)

Strat 1 Rand 1 Strat2 Rand2 Strat3 Rand 3

Initialization 113 115 57 51 12 5
NewSheet 47 47 22 14 4 6
F1 31 31 14 13 3 2
F2 915 914 460 464 90 98
F3 420 418 211 225 46 47
F4 30 35 15 12 3 4
F5 13 11 7 8 1 2
F6 674 672 339 354 63 55
F7 14 11 6 9 1 1
F8 381 368 191 197 39 36
F9 15 8 6 6 1 1
F10 598 653 308 308 63 74
F11 21 14 8 4 1 15
F12 362 342 182 157 37 14
Finalization 11 7 6 7 1 0

Table 8
The samples obtained from applying our approach to JHotDraw trace.

Strata Nh |Stratumh| / |T | |Sh| (
T ′

 = 365) |Sh| (
T ′

 = 1829) |Sh| (
T ′

 = 3646)

1 1134 0.031 12 57 113
2 9815 0.265 96 492 983
3 3868 0.105 39 193 384
4 7575 0.207 76 379 756
5 3907 0.106 39 194 387
6 6514 0.178 65 326 650
7 3649 0.099 37 182 362
8 109 0.003 1 6 11

When we applied the same reasoning to all features, we found that our approach provided better results in more than
80% of the cases and in all these cases, it led to a more representative sampled trace. Furthermore, as the size of the sample
decreases, our approach maintains its representativeness while random sampling, as theoretically discussed in Section 2,
leads to cases that are significantly unrepresentative of the original trace. Some of these cases are shown in Fig. 14. For
example, as it can be seen in Fig. 14, the trace ‘‘Rand 3’’ contains a sudden high number of calls from feature F11 (shown as
the rightmost yellowbar)while the percentage of the presence of the same feature in all the traces generated in our approach
(the three plumbars) ismaintained close the its percentage in the original trace (the blue bars). In all cases reported in Fig. 14
show that our approach maintains the same distribution of features with respect to the original trace, which is not the case
for random sampling. This demonstrates (at least for this case study), the superiority of our approach compared to random
sampling.

9. Threats to validity

Although our approach performed well when applied to the traces in our case studies, there are several aspects that can
impact its effectiveness.

First, the phase detection algorithm relies on method calls names to assess the similarity between the method calls and
decide whether to bring them together or not when applying the similarity scheme. Method names, however, might not be
sufficient. For example, some methods might be overloaded and we should not assume that they all perform computations
related to the same phase. Also, one can use patterns of calls instead of mere method names. Future work should focus on
investigating better similarity criteria and metrics between the trace events.

Another limitation of our approach is that the sampling is performed in a post-mortem manner, i.e., after the trace is
generated and saved. This type of sampling contradicts the common application of sampling, which consists of sampling a
trace while it is being generated. We intend to improve our algorithm to sample the traces on the fly.

In the second case study, we removed mouse movement events because they cluttered the trace. However, we did not
attempt to remove all low-level utilities, an activity which might be needed when we generalize our approach and apply it
to other systems. In general, we must study the impact of removing utilities on the final sample before the phase detection
algorithm is applied.

1116 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

Table 9
Contribution of features to the size of
the entire trace.

Initialization 3.101%
NewSheet 1.233%
F1 0.845%
F2 25.094%
F3 11.731%
F4 0.727%
F5 0.353%
F6 18.496%
F7 0.325%
F8 10.454%
F9 0.358%
F10 16.486%
F11 0.481%
F12 10.019%
Finalization 0.298%
TOTAL 100%

Fig. 14. Comparison between the distribution of a number of features in the original trace, stratified sample, and random sample. The x axis shows the
contribution of the feature to the size of the trace in percentage. The y axis shows the feature name and the sample size.

Varying clustering algorithms might also have an impact on the phase detection method, which forms the basis for
sampling. It is therefore important to study how various clustering algorithms can be used.

10. Conclusion and future work

In this paper, we presented a novel sampling technique of large execution traces that does not only reduce the size of
traces by also generates samples that are representative of the original traces. Our approach relied on stratified sampling,
using execution phases as strata. We defined an execution phase as part of a trace that represents a specific task (or feature).
We presented a phase detection algorithm based on Gestalt laws of gravity.

When applied to a trace generated from two target systems, our approach showed promising results. We recognize that
further studies and experiments are needed.We alsowant to draw the attention to the need to investigate proper thresholds
for the proposed phase detection algorithm. Several other future directions are needed to address the points raised in the
previous section.We also intend to look into signal processing techniques andother related research areas inwhich sampling
is used extensively to improve our sampling technique.

Acknowledgment

This work is supported partially by the Natural Science and Engineering Council of Canada (NSERC).

H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118 1117

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, Recovering traceability links between code and documentation, Software Engineering, IEEE
Transactions on 28 (10) (2002) 970–983.

[2] G. Antoniol, Y.-G. Guéhéneuc, Feature identification: a novel approach and a case study, Software Maintenance, 2005. ICSM’05. Proceedings of the
21st IEEE International Conference on, Sept. 2005, pp. 357–366, pp. 26–29.

[3] T. Abeel, Y.V. de Peer, Y. Saeys, Java-ML: a machine learning library, Journal of Machine Learning Research 10 (2009) 931–934.
[4] T.J. Biggerstaff, B.G. Mitbander, D.E.Webster, Program understanding and the concept assignment problem, Communications of the ACM37 (5) (1994)

72–82.
[5] H.D. Brunk, An introduction to mathematical statistics, Ginn and Company, Boston, 1960.
[6] A. Chan, R. Holmes, G.C. Murphy, A.T.T. Ying, Scaling an object-oriented system execution visualizer through sampling, in: Program Comprehension,

2003. 11th IEEE International Workshop on, 2003, pp. 237–244.
[7] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J.J. van Wijk, A. van Deursen, Understanding Execution Traces Using Massive Sequence and Circular

Bundle Views, Program Comprehension, 2007. ICPC ’07. 15th IEEE International Conference on, 2007, pp. 49–58, pp. 26–29.
[8] W.G. Cochran, Sampling Techniques, John Wiley & Sons, Inc, New York, NY, 1977.
[9] WJ. Conover, Practical nonparametric statistics, John Wiley & Sons, New York (NY), 1980.

[10] K. Chen, V. Rajlich, Case Study of Feature Location Using Dependence Graph, Program Comprehension, IWPC’00. Proceedings of 8th International
Workshop on, 2000, pp. 241–249.

[11] P. Dugerdil, Using trace sampling techniques to identify dynamic clusters of classes, in: CASCON’07, Proceedings of the IBM Software and Systems
Engineering Symposium, 2007, pp. 306–314.

[12] A.D. Eisenberg, K. De Volder, Dynamic feature traces: finding features in unfamiliar code, in: Software Maintenance, 2005. ICSM’05. Proceedings of
the 21st IEEE International Conference on, 2005, pp. 337–346, pp. 26–29.

[13] T. Eisenbarth, R. Koschke, D. Simon, Locating features in source code, Software Engineering, IEEE Transactions on 29 (3) (2003) 210–224.
[14] EXTRAVIS: http://www.swerl.tudelft.nl/extravis/.
[15] W.S. Geisler, J.S. Perry, B.J. Super, D.P. Gallogly, Edge co-occurrence in natural images predicts contour grouping performance, Vision Research Journal

41 (6) (2001) 711–724.
[16] G.K. Ghosh, C. Michael, M. Schatz, M. Schatz, A real-time intrusion detection system based on learning program behavior, in: Proc. of the third Intl.

Workshop on Recent Advances in Intrusion Detection, Toulouse, France, 2000, pp. 93–109.
[17] A. Hamou-Lhadj, T. Lethbridge, Summarizing the Content of Large Traces to Facilitate the Understanding of the Behaviour of a Software System,

Program Comprehension, ICPC 2006. 14th IEEE International Conference on, 2006, pp.181–190.
[18] A. Hamou-Lhadj, T. Lethbridge, A Survey of Trace Exploration Tools and Techniques, Collaborative research, CASCON’04, Proceedings of the 2004

Conference of the Centre for Advance Studies on, 2004, pp. 42–54.
[19] Oracle Corporation, Inc. Java Platform, Standard Edition 7.0 API Specification. Available at: http://docs.oracle.com/javase/7/docs/api/, 2011.
[20] D. Jerding, J. Stasko, T. Ball, Visualizing Interactions in Program Executions, in: Proc. of the International Conference on Software Engineering, ACM

Press, 1997, pp. 360–370.
[21] JHOTDRAW, http://www.jhotdraw.org/.
[22] J. Kothari, T. Denton, S. Mancoridis, A. Shokoufandeh, Reducing Program Comprehension Effort in Evolving Software by Recognizing Feature

Implementation Convergence, Program Comprehension, 2007. ICPC 2007. The 15th IEEE International Conference on, Banff, Canada, 2007.
[23] A. Kuhn, O. Greevy, Exploiting the Analogy Between Traces and Signal Processing, Software Maintenance, 2006. ICSM ’06. 22nd IEEE International

Conference on, 2006, pp.320–329, pp. 24–27.
[24] K. Koffka, Principles of Gestalt Psychology, Hartcourt, New York, 1935.
[25] B. Liblit, A. Aiken, A.X. Zheng,M.I. Jordan, Bug isolation via remote program sampling, in: Programming Language Design and Implementation, PLDI’03,

Proceedings of the ACM SIGPLAN 2003 conference on, 2003, pp. 141–154.
[26] j.MacQueen, Somemethods for classification and analysis ofmultivariate observations,Math Statistics andProbability, Proceedings of the 5thBerkeley

Symposium on, 1967, pp. 281–296.
[27] A. Marcus, J.I. Maletic, Recovering documentation-to-source-code traceability links using latent semantic indexing, in: Software Engineering, ICSE’03.

Proceedings of 25th International Conference on, 2003, pp. 125–135.
[28] C.D. Manning, P. Raghavan, H. Schtze, Introduction to Information Retrieval, Cambridge University Press, New York, NY, USA, 2008.
[29] H. Pirzadeh, A. Agarwal, A. Hamou-Lhadj, An approach for detecting execution phases of a system for the purpose of program comprehension,

in: Proceedings of Software Engineering Research, Management and Applications (SERA), 2010 Eighth ACIS International Conference on, 2010, pp.
207–214.

[30] H. Pirzadeh, A. Hamou-Lhadj, A novel approach based on gestalt psychology for abstracting the content of large execution traces for program
comprehension, in: Proceedings of the 16th IEEE International Conference on Engineering of Complex Computer Systems, 2011, pp. 221–230.

[31] H. Pirzadeh, A. Hamou-Lhadj, A software behaviour analysis framework based on the human perception systems, in: Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, New Ideas and Emerging Results Track, 2011, pp. 948–951.

[32] D. Pelleg, A. Moore, X-means: extending K -means with efficient estimation of the number of clusters, in: Machine Learning, ICML’00, in: Proceedings
of 17th International Conference on, 2000, pp. 727–734.

[33] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, A.Mehrabian, The concept of stratified sampling of execution traces, in: Proceedings of the 19th International
Conference on Program Comprehension, ICPC 2011, Kingston, Ontario, Canada, June 2011.

[34] P.C. Quinn, R.S. Bhatt, Perceptual organization in infancy: bottom-up and top-down influences, Optometry and Vision Science 86 (6) (2009) 589–594
(Special Issue on Infant and Child Vision Research: Present Status and Future Directions).

[35] S.P. Reiss, Dynamic detection and visualization of software phases, in: Dynamic Analysis, WODA’05, Proceedings of the 3rd International Workshop
on, 2005, pp. 1–6.

[36] S.P. Reiss, Visual representations of executing programs, Journal of Visual Languages and Computing 18 (2) (2007).
[37] A. Rohatgi, A. Hamou-Lhadj, J. Rilling, An approach for mapping features to code based on static and dynamic analysis, in: Program Comprehension,

2008. ICPC 2008, The 16th IEEE International Conference on, 2008, pp. 236–241.
[38] S.P. Reiss, M. Renieris, The BLOOM Software Visualization System, in: Software Visualization – From Theory to Practice, MIT Press, 2003.
[39] J. Roberts, C. Zilles, TraceVis: an execution trace visualization tool, Modeling, Benchmarking and Simulation, MoBS’05, Proceedings of Workshop on,

2005, pp. 5–15.
[40] G. Schwarz, Ëstimating the dimension of a model, The Annals of Statistics 6 (2) (1978) 461–464.
[41] K. Smith-Gratto, M. Fisher, Gestalt theory: a foundation for instructional screen design, Journal of Instructional Technology Systems 27 (4) (1999)

361–371.
[42] SPSS, Inc., 2009, Chicago, IL, www.spss.com.
[43] T. Systä, Understanding the behaviour of Java programs, in: Proceedings of the 7th Working Conference on Reverse Engineering, IEEE Computer

Society, 2000, pp. 214–223.
[44] V. Tzerpos, R.C. Holt, Software botryology: automatic clustering of software systems, in: DEXAWorkshop, pp 811–818, 1998.
[45] Eclipse TPTP, Eclipse Test & Performance Tools Platform Project, http://www.eclipse.org/tptp/.
[46] S Vassilvitskii, K-Means: algorithms, analyses, experiments, Ph.D. Dissertation, Stanford University, Stanford, CA, USA. Advisor(s) Rajeev Motwani,

2007.

http://www.swerl.tudelft.nl/extravis/
http://docs.oracle.com/javase/7/docs/api/
http://www.jhotdraw.org/
http://www.spss.com
http://www.eclipse.org/tptp/

1118 H. Pirzadeh et al. / Science of Computer Programming 78 (2013) 1099–1118

[47] W. Wang, X.H. Guan, X.L. Zhang, Modeling program behaviors by hidden Markov models for intrusion detection, in: Proc. of Intl. Conf. on Machine
Learning and Cybernetics, Shanghai, China, pp. 2830-2835, 2004.

[48] WEKA, URL: www.cs.waikato.ac.nz/ml/weka/.
[49] W.E.Wong, S.S. Gokhale, J.R. Horgan, Quantifying the closeness between program components and features, Journal of Systems and Software - Special

issue on software maintenance 54 (2) (2000) 87–98.
[50] Y. Watanabe, T. Ishio, K. Inoue, Feature-level phase detection for execution trace using object cache, in: Dynamic Analysis, WODA’08, Proceedings of

the International Workshop on, pp. 8–14, 2008.
[51] N. Wilde, M.C. Scully, Software reconnaissance: mapping program features to code, Journal of Software Maintenance: Research and Practice 7 (1)

(1995) 49–62.
[52] Zaidman Andy, Scalability solutions for program comprehension through dynamic analysis, Ph.D. Dissertation, Universiteit Antwerpen, 2006.
[53] W. Zikmund, Exploring marketing research, 7th ed., in: Applied Social Research Methods Series, vol. 5, Sage Publications, California, USA, 2000.

http://www.cs.waikato.ac.nz/ml/weka/

	Stratified sampling of execution traces: Execution phases serving as strata
	Introduction
	Background and related work
	Background concepts
	Related work

	Reasoning about sampling
	Stratified sampling of execution traces
	Detection of execution phases
	The similarity scheme
	The continuation scheme
	Integration of the schemes
	Identifying the beginning and end of phases

	Sampling unit
	Tool support
	Case studies
	First case study
	Second case study

	Threats to validity
	Conclusion and future work
	Acknowledgment
	References

