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Systematic sampling of discrete and continuous
populations: sample selection and the choice of
estimator

Harry T. Valentine, David L.R. Affleck, and Timothy G. Gregoire

Abstract: Systematic sampling is easy, efficient, and widely used, though it is not generally recognized that a systematic
sample may be drawn from the population of interest with or without restrictions on randomization. The restrictions or the
lack of them determine which estimators are unbiased, when using the sampling design as the basis for inference. We de
scribe the selection of a systematic sample, with and without restriction, from populations of discrete elements and from
linear and areal continuums (continuous populations). We also provide unbiased estimators for both restricted and unre
stricted selection. When the population size is known at the outset, systematic sampling with unrestricted selection is most
likely the best choice. Restricted selection affords estimation of attribute totals for a population when the population
size - for example, the area of an areal continuum - is unknown. Ratio estimation, however, is most likely a more pre
cise option when the selection is restricted and the population size becomes known at the end of the sampling. There is no
difference between restricted and unrestricted selection if the sampling interval or grid tessellates the frame in such a way
that all samples contain an equal number of measurements. Moreover, all the estimators are unbiased and identical in this
situation.

Resume: L'echantillonnage systematique est simple, efficace et largement utilise, bien qu'Il ne soit pas communement ac
cepte qu'on puisse prelever un echantillon systematique dans la population visee avec ou sans contraintes sur le caractere
aleatoire de l'echantillonnage. La presence ou l'absence de contraintes determine quels estimateurs sont non biaises
lorsqu'on utilise le plan dechantillonnage comme base pour faire de I'inference statistique. Nous decrivons la selection
d'un echantillonnage systematique avec et sans contraintes a partir de populations delements discrets et apartir de contin
uums lineaire et areal (populations continues). Nous fournissons egalement des estimateurs non biaises it la fois pour une
selection avec ou sans contraintes, Lorsque la taille de la population est connue au depart, l'echantillonnage systematique
par selection sans contraintes est tres probablement le meilleur choix. La selection avec contraintes permet d'estimer les
totaux des attributs pour une population lorsque la taille de la population est inconnue (par exemple l'aire d'un continuum
areal). Cependant, I'estimation par ratio est fort probablement une option plus precise lorsque Ie choix est soumis ades
contraintes et que la taille de la population devient connue a la fin de I'echantillonnage. II n'y a pas de difference entre la
selection avec contraintes et la selection sans contraintes si l'intervalle d'echanrillonnage et la grille du damier sont tels
que tous les echantillons contiennent un nombre egal de mesures. En outre, tous les estirnateurs sont identiques et sans
biais dans cette situation.

[Traduit par la Redaction]

Introduction

Systematic sampling designs are widely used in natural
resource assessment and monitoring surveys. The regular
dispersion of units within systematic samples can appreci
ably increase precision and almost always simplifies the col
lection of field data. Although these aspects of systematic
sampling are well known, important statistical issues regard-

ing sample selection and estimation bias appear to be less
well understood, particularly when populations distributed
over linear or spatial continuums are considered.

Standard treatments of systematic sampling (Cochran
1977; Schreuder et al. 1993) focus on discrete populations,
Systematic sampling is generally presented as a l-in-a rou
tine, wherein a set of elements separated by an interval a
are selected in tandem. In this context, randomization is
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and

Table 1. Symbols for discrete populations.

Definition

Number of sets in {Ps (I-in-a systematic sample)
Number of elements in {Pu
Number of elements in set ~Sj

Selection probability of ,Sj
Population of sets 8 1• 0)'2, ••. , 8"
Population of elements 1lt, H2....• UN
The jth of a sets of elements in {p.)

Sum of attributes for elements in set Sj
The k1h of N elements in {Pu
Average attribute per element in set "S1
Attribute of element lik
Average attribute per element in [PII

Total attribute in {P u and in [Ps

Symbol

a
N

[2]

Thus, the design parameter, a, and the order of the ele
ments in !/J" determine a population, {jJs, comprising the a
sets of elements; it is this latter population that is sampled
when a l-in-a design is applied. The expected number of
elements per set is Nla, a real valued number. However, a
set can comprise only whole elements, so the a different
sets in iPs comprise the same number of elements only if N
is an integer multiple of a. Regardless,

[1]

Under the usual protocols of a l-in-a systematic sampling
design, the N discrete elements of !/J'I aggregate into a mu
tually exclusive sets of elements, set 8 j comprising nj ele
ments, with different sets possibly containing different
numbers of elements. Suppose, for example, that element
U 1 belongs to set 8 t • The other nt - 1 elements of set 8\
are determined systematically by the design parameter a, i.e.,

[3] 8\ = {U t , lll+a, liJ+2a, 11\+30•... }

More generally, if tl, E 8j , then

Systematic sampling of a discrete population
Let [flu be a population comprising N discrete elements,

Ui.Ua, ... , UN (see Table 1). Each element, lib manifests
a measurable amount, Yk, of some trait or attribute of inter
est. Our objective is the estimation of the total amount of
attribute, rv, or the average amount of attribute per element,
J-Ly ' for !/J,i, where

N

r, = """' Vk.\ ~,.,

k=1

commonly introduced by the uniform random selection of an
integer between ] and a, which indexes the initial selection
and anchors the chain of elements forming the sample. The
restriction imposed on random selection allows for system
atic sampling in the absence of a priori knowledge of a pop
ulation's size; it can also be appealing because it results in
an equal probability design, every element of the population
being observed with equal frequency. Nonetheless, an impli
cation of this restriction is that when the population size is
not evenly divisible by the sampling interval the sample
average is a biased estimator of the population mean. Essen
tially, since some systematic samples contain more elements
than others, the sample average weights too heavily ele
ments selected in smaller samples and too lightly those
found in larger samples.

Natural populations, being distributed over space or
through time, are often most readily sampled from a contin
uous areal or temporal frame. Stands of trees, for example,
are commonly sampled via the selection of spatial coordi
nates that serve to locate plots, lines, or points. Any
bounded continuous frame can be fractioned into a finite
number of disjoint units that can be treated collectively as a
discrete population, but if the frame has irregular boundaries
it may be impossible to divide it into cells of the same size
and shape. Treating a frame as a continuous entity is appro
priate also if point-sampling methods such Bitterlich or crit
ical height sampling are used, if sampling designs that
cannot tessellate the continuum are applied (e.g., circular
fixed-area plots), or if the resource of interest is itself con
tinuously distributed. Regardless of how the frame is speci
fied, however, if its confines are known in advance then
systematic samples can be chosen in two distinct ways: (i)
with restricted randomization, where the first sample unit is
drawn at random from a subset of the frame, or (ii) with un
restricted randomization, where the first sample unit is
drawn at random from the full extent of the frame. Both ap
proaches are used in practice, though it does not appear to
be widely appreciated that they produce distinct sampling
designs and recommend distinct unbiased estimators.

This article is partly review and partly new, motivated by
our perceived need for a more thorough treatment of the
connection between restrictions on systematic selection and
unbiased estimation. Johnson (2000), Iles (2003), and Man
dallaz (2008) describe restricted selection from discrete pop
ulations and continuums. Thompson (2002) briefly covers
unrestricted and restricted selection in discrete populations,
and Gregoire and Valentine (2008) cover restricted selection
in discrete populations and unrestricted selection in continu
ous populations. No one, so far as we know, covers restricted
and unrestricted selection of systematic samples from both
discrete and continuous populations. Thus, we begin with
l-in-a sampling of discrete populations and extend this de
sign to the systematic sampling of linear and areal contin
uurns. Our prime objective is to demonstrate how
restrictions on the selection of a systematic sample deter
mine which estimators are unbiased, when using the sam
pling design as the basis for inference. Several practical
issues are addressed in the discussion. Proofs of the un
biasedness of some estimators are provided in the appen
dix. An extensive bibliography on systematic sampling is
provided by Gregoire (2009).
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[5]
a

N= Lllj
I""I

Table 2. Bias and standard errors (SE) of estimators of total leaf
area (Tv = 1582 crrr') from l-in-n samples of 64 leaves.

The total amount of attribute in set 8j is t;, i.e.,

[6] ~; = LYk
IIkE'')j

whence

a

[7] Ty = L Ij

jc-=I

In the systematic selection process, we ordinarily select
an element, Ub at random from [Pu and then identify the
other elements of the unique set to which U; belongs. The
systematic sample comprises this set of elements. How we
go about selecting U« from [Pu determines which estimators
are unbiased.

Restricted selection
Systematic sampling with a random start is an equal prob

ability design - each of the a sets of elements has the same
chance of becoming the sample. The selection is restricted
to the first a elements in [PII' that is, one of the elements
(H j , H2, . · . , Lia ) is selected uniformly at random with prob
ability 1Ia. The set, 8 j E {]Js, to which the selected element
1Lj (l s j s a) belongs is our systematic sample. Alterna
tively, we could restrict the selection of an element to one
of the first a elements after Lib i.e., (Llk+ j , Hk+ 2, .•• , Llk+a ) ,

where llk+a ::; N. In either case, c::\'; is selected with proba
bility Pj = sla, so the target parameter, TV' is unbiasedly esti
mated with the Hansen-Hurwitz estimator:

Bias SE
Restriction II Estimator (crrr') (cm2)*

Yes 6 Ty, rs = atj 0.0 112.4

'iy, rat = N5'j -1.5 56.8

Yes 8 'iy, rs = atj 0.0 97.5

'i,l" rat = N5'j 0.0 97.5

No 6 Ty. rs = at, 4.6 56.4

Ty, us = NYj 0.0 58.4

No 8 'iy. rs =atj 0.0 97.5

T.v. us =N.Vj 0.0 97.5

*Square root of the estimator's variance.

l-in-6 and l-in-S systematic samplings from a population of
N = 64 leaves, where Tv = 1582 ern? (from Barrett and Nutt
1979). The ratio estimator is biased but more precise than
the Horvitz-Thompson estimator for the l-in-6 sampling.
The two estimators are identical and unbiased for the l-in-S
sampling because the population size, N = 64, is an integer
multiple of the sampling interval, a =8.

Unrestricted selection
Systematic sampling with unrestricted selection is an un

equal probability design because a set, (~j, is selected from
/]J8 as the systematic sample unit with probability propor
tional to the number of elements in the set. An element, Lib
is selected uniformly at random with probability liN from
[Pu, which selects set 8 j 3 llk from [P8 as the systematic
sample with probability Pj = niNo Accordingly, the un
biased Hansen-Hurwitz estimator of r:v is

tj N N-
Ty. LIS = - = - tj = v;

Pj flj '.

..... lj . _
T v, LIS = - = NYj

. ]'{j

[11]

[12]

At the elemental level. this estimator can also be motivated
by the fact that the inclusion probability of llk E 8j is n/N
under unrestricted selection.

Note that both the unbiased Hansen-Hurwitz and Horvitz
Thompson estimators for unrestricted selection are identical
to the ratio estimator for restricted selection. Also, if N is an
integer multiple of a, then all the estimators of Tv are identi
cal and unbiased with either method of selection. Moreover,
Jly is unbiasedly estimated by Yj in this situation.

On the other hand, if N is not an integer multiple of a,
then the unbiased estimators for restricted selection are
biased for unrestricted selection, and the unbiased estimators
for unrestricted selection are biased for restricted selection
(as shown in Table 2). The bias of the unrestricted estima
tors under restricted selection is equivalent to the bias of
the ratio estimator. However, the bias is small relative to
the standard error. Estimators with "Hansen-Hurwitz" and
"Horvitz-Thompson" labels are, by definition, unbiased, so

As with restricted selection, Pj =]'{j' so the Horvitz-Thompson
estimator of Tv is identical:

..... t;
T y, rs = - = alj

]'{j

..... tj
Tv. rs = - = at,'. Pj .

Because the single sample unit is actually the set, c\'j, the se
lection probability, Pj, and the inclusion probability, ]'{j, of
8 j are identical, so Tv is unbiasedly and identically estimated
by the Horvitz-Thompson estimator:

[8]

[10]

[9J

which can also be derived by noting that the inclusion prob
ability of U, is identically l/a for all k. The average amount
of attribute per element, ltv, is unbiasedly estimated by
ry. rslN. The ratio estimator is a third alternative (e.g.,
Thompson 2002):

..... N
Ty, rat = - tj = Ny;n.i .

where )j = llnj is the average amount of attribute per ele
ment in ('~i' The corresponding estimator of 11)' is
iiv, rat = .v;. The ratio estimator is unbiased for random-start
systematic sampling only if N is an integer multiple of a, in
which case Pj = TIj = lIa = nlN for all i.

Despite its bias, ry, rat often is more precise than an un
biased alternative. For example, Table 2 contains the bias
and standard errors of estimators of total leaf area based on
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[13]

Table 3. Symbols for linear continuums.

which we shall call the Me estimator. The mean attribute
density, f..1p, is unbiasedly estimated by lip = p(xs ) •

ple random sampling is called crude Monte Carlo. In
unreplicated crude Monte Carlo. a single sample point,
s Eel', is selected uniformly at random at Xs with probability
density fi.xs) = IlL. Heuristically, a probability of 1 is
stretched uniformly across .1.'. giving each point x E cL' a
probability density (probability per unit length) of IlL. Con
sequently, .r, = ul: where u obtains from Uniformlfl.I}. The
total attribute in £ is unbiasedly estimated by

[]
---. p(xs )

15 T p = f(x
s

) = Lp(xJ

Definition

Probability density at x E J..: for unrestricted selection
Probability density at x E -1'r/> for restricted selection
Interval between measurement points
Length of the linear continuum ,.,['
Linear continuum in [0. L]
Subdomain of ,.,[' in [x4J, x4J + fj
Number measurement points in ,1's
Sample point at Xs

Systematic sample comprising a set of measurement
points anchored by s

Uniform [0.1] random number
Mean attribute density along ,,['
Attribute density at x E ,,['
Average attribute density in .1.\'
Total attribute distributed over ,,['
Sum of attribute densities in Y s

Symbol

U

J.ip
p(x)

p(x.I, )

Tp

</>(X,I')

f{x)

f4J(x)
f
L
-1'
,.,['4>

n(x s)

s
Ys

[8] and [11] are not Hansen-Hurwitz estimators and [9] and
[12] are not Horvitz-Thompson estimators when applied in
situations for which they are biased.

Overall, the message is clear. If one knows N at the outset
of sampling, then unrestricted selection is most likely the
best choice (compare rows I and 6 in Table 2). If N be
comes known only after sampling with restricted selection,
then precision is gained through the use of the ratio estima
tor, though this gain is attended by a small bias.

A circular systematic sampling design also prescribes un
restricted selection of one of the N elements from [Pit (e.g.,
Gregoire and Valentine 2008, Chap. 3). Selection of the
other elements proceeds in a circular fashion, so when the
end of the frame (liN) is reached, the remainder of the sam
pling interval to the next element in the sample continues
from the start of the frame CUI). This "circular protocol"
provides for a systematic sample with a fixed number ele
ments, n. but it does not define a mutually exclusive sets,
unless a = Nln. Accordingly, none of our estimators are un
biased for circular selection when a # Nln: however, all of
our estimators are unbiased when a =Nln.

Systematic sampling of a linear continuum
A linear continuum, ,L'. of any length, L, comprises a set

of infinitely many points. For convenience, we specify that
£ is contained in [0, L]. Of prime interest is the total
amount of some attribute, i p' that is distributed along the
continuum. Let x denote the location of a point in [0, L],
and let p(x) be the attribute density (the amount of attribute
per unit length) at x. Then,

i p = l p(x) dr
..1.:

The mean attribute density (average amount of attribute per
unit length) in 4' is

A list of symbols for this section is provided in Table 3.
To put the linear continuum in a context familiar to fores

ters, let 4' be the straight central axis of a tree bole of length
L. Let p(x) be the volume per unit length (cross-sectional
area) at x on the central axis; then i p is the volume of the
bole. Another forestry example is represented by the tradi
tional strip cruise, where cruise lines (transects) are equally
spaced and perpendicular to a continuous baseline, J', with
length L that spans a tract of interest. Each transect yields a
measurement of the attribute of interest, but dividing this
measurement by the width of the search interval (i.e., the
strip width) provides the attribute per unit length, p(x), for
the point x E ,.[ from which the cruise line emanates. Thus,
the total amount of attribute. i p' distributed alone £ is

• b

equivalent to the total amount of attribute distributed over
the tract of interest. In an ecophysiological context, cL' may
be a continuous stream of time, and p(x). the net exchange
of carbon per unit time between an ecosystem and the at
mosphere. in which case i p is the amount of carbon seques
tered by the ecosystem in the time interval [0, L].

Our objective is the estimation of i p by a continuous ver
sion of systematic sampling. The continuous version of sim-

[14]
i

u. = Jl..
p L

Restricted selection
In the continuous version of systematic sampling, the lo

cation of a sample point, xs' and a measurement interval. t.
determine a unique set of measurement points, .'1s , evenly
spaced across J', The measurement interval is a design pa
rameter. If L is not an integer multiple of t, the number of
measurement points in :T.~ depends on xs, so let n(xs ) be the
number of points in the set '3",\' determined by Xs and e.
Hence, the systematic sample comprises the n(xs) measure
ment points in Y,I"

To perform systematic sampling under restricted selec
tion, we do not have to know L. We restrict the location of
the sample point, s, to a subdomain 4'rp C cL' that spans an
interval [xrp. xrp + fl. Ordinarily, we use Xrp = 0, so the sam
ple point is selected in [0, f]. In either case, the probability
density function, f¢(x), is defined for the subdomain, such
that frp(x) = 1/£ for all x E cL'1" Consequently, the sample
point is selected at X,I = xep + ue with probability density
f1'(xs ) = lit'. Measurement points in .1.' at Xs +.if and
X,I' - .if, .i = 1, 2,..., complete the systematic sample, n(x5)

points in total.
For estimation. we define a function ¢(x) for the subdo

main 01'1" Each x E .1.'rp belongs to the unique set of n(x)
points in J.' determined by x and t. Let ¢(x) be the sum of
the attribute densities for the set of points in .1.' to which x E
",Cep belongs, i.e., for all x E cL'rp,
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The ratio estimator is biased, however, because f(x) = 1/£
for all x E 01'<1>, but there exist x E 01'", for which
n(x)/L =I lIf.

Definition

Horizontal area of areal continuum ]{
Areal continuum with horizontal area A
Subdomain of jl with shape and horizontal area

of a grid cell
Horizontal area of a grid cell
Probability density at (x, z) E .7l for unrestricted

selection
Probability density at (x, z) E .Il", for restricted

selection
Systematic sample comprising a set of grid points

anchored by s
Design parameters for grid point spacing
Number of grid points in rJ"
Apothem and circumradius of a regular hexagon
Sample point at (x" zs )

Mean attribute density in ./1
Attribute density at (r, Z)

Average attribute density in rJs

Total amount of attribute in jl

Sum of attribute densities in rJ,

Symbol

A
.J[

Jlri>

h, E
n(x",z,,)
r, R
s

ILl'

p(x, z)
p(x.s, z.. )
Tp

¢(x.., zs )

c
ft», z)

fri>(x, z)

~ p(Xs ) L-(')[21] i p. us = f(x
s

) = p Xs

where p(x,) is the average of the n(x,) attribute densities in
:T,," The mean attribute density, Ill" is unbiasedly estimated
by lip. us = p(xs ) .

If L is an integer multiple of e, then n(x) = n for all
x E 01'. in which case [18], [19], and [21] are equivalent un
biased estimators. and J-t p is unbiasedly estimated by p(x.,).

Table 4. Symbols for areal continuums.

Systematic sampling of an areal continuum
We consider an areal continuum, Jr, with a closed boun

dary and horizontal area A (see Table 4). We allow .J{ to
comprise a region of interest surrounded by a buffer region
with a closed boundary, in which case A is the area of the
region of interest plus the area of the buffer. The areal con
tinuum comprises infinitely many location points, with each
location point identified by its coordinates (r, z). Of interest
is the amount of some attribute, iI" that is distributed across
Jr. Let p(x, z) be the attribute density (the amount of attri
bute per unit horizontal area) at (x, z), then

[22] i p = !i>(x, z) dx dz

The mean attribute density across Jr is J-tp = r/A.
The systematic sampling of jl involves the selection of a

sample point, s, at (xs' z,,). The sample point anchors ~ sys
tematic grid of measurement points that span Jr. The mter
valts) between the grid points and their systematic spatial
pattern depend on design parameters. Square, rectangular,
and equilateral triangular grid patterns are popular choices.
The number of grid points in Jr may change with the loca
tion of the sample point, though the set of points in any grid
is fixed by the location of the sample point and the design
parameters. Each point in .J{ belongs to one and only one
set of grid points.

Systematic grids are used widely to sample tracts of land,

I: p(x + if) + I: p(x - jl)
x-;-jfE4."" x-jfEL'"
j=ll... j=I.1 ...

<{J(x) = p(x)

+

Tp,rat = _(L) <{J(xs ) = Lp(x,)
n Xs

where .i:<p is the complement of oft/> C E, Hence,

L"<{J(x) dx = l/(X) dx + L,/(X) dx

= j' p(x) dx
of'

[16]

[17]

[20]

Unrestricted selection
Unrestricted systematic selection is easiest if we know L

at the outset. A sample point at x, is selected in of with
probability density j(.'(,) = 1IL, so .r, = uL. Additional points
in J', at Xs + if and Xs - iI!, j = 1, 2,..., fill out the systematic
sample, .'Ts . Because the selection of any point in a set se
lects the set as the systematic sample, the unrestricted uni
form selection of a sample point from 01' is, in effect, a
continuous analog of selecting a set with probability propor
tional to set size. Unrestricted selection also can be accom
plished, even though L is unknown, by employing von
Neumann's acceptance-rejection method: Imagine a contin
uum 01" of length L* that is sure to include all of .1.'. We
select x' = ul.*, which becomes the sample point, Xs , if x*
occurs in J: Otherwise, we reject x* as the sample point
and repeat the procedure with a new random value of u.

For estimation, we define a function, p(x), for all x E 01"
where p(x) is the average attribute density for the unique set
of fl(X) points to which each x belongs. Hence.
i p = j~,p(x) dx, and therefore, an unbiased estimate of i p,

under unrestricted selection, is provided by the MC estima
tor,

and. therefore, J~, <{J(x) dr = i p • Consequently, under sys
tematic sampling -With restricted selection, the target param
eter, i p' is unbiasedly estimated with a MC estimator, i.e.,

~ <{J(xs ) a ( )
[18] ip,rs = f<l>(x,) = r<{J xs

where <{J(xs ) is the sum of the attribute densities in the sys
tematic sample, :l.,. The mean attribute density in 01' is un
biasedly estimated by lip, rs = Tp, rs/L. If L is known at the
outset, we can fix n and calculate f = LIn, in which case,
.t;p(xs ) = lie = niL for all x E £<1>' Then i p is unbiasedly es
timated by

[19] Tp,rs =!:. <{J(x,,) =Lp(xs)
n

where p(xs ) is the average of the n attribute densities in .'7,.
Moreover, J.tp is unbiasedly estimated by p(x.\,). If f =I LIn,
we can use a ratio estimator,
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/ '
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/
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j/
,/ , , ;'

..-,-. --.--.------.- 0··--·-··---- •.-_.---.--.

b)

c)

[24]

Fig. 1. (a) Triangular grid anchored by a sample point (0); (b)
hexagon, with circum radius R and apothem r. circumscribed with a
t x h rectangle: (e) the design parameters and the location of the
sample point (0) within the hexagonal subdomain, J{</>, determine a
unique set of triangular grid points in .Il,

a) 10;1.. j/
\, /... ---.. _.-

where ¢(xs. zs) is the sum of the attribute densities across
the fl(X" zs) grid points in the set r:Js' An unbiased estimator
of tt p is {ip, rs = c¢(x,. zs)IA.

If A is the attribute of interest, i.e., Tp ;:::; A, then p(x, z) = I
(unit of area per unit area) for all (x, z) E A, so A is unbias-

edly estimated by A= anix; z.). If A is known. we can esti
mate Tp with a ratio estimator

The sample point is selected with probability density
h(xs• Z,) = 1/e, where c = 3.eh14 = 3rR is the area of the
hexagon (Fig. l c), The resultant systematic grid, r:J", an
chored by the sample point, s, at (x,I> z.), contains n(x", zs)
measurement points in Jf..

The unbiased MC estimator of Tp is the two-dimensional
analog of [18]. Each location point (x, z) E ./l", belongs to a
unique set of n(x, z) grid points in A, so we define ¢(x. z) in
A¢ to be the sum of the attribute densities for the set of grid
points in .Il to which (x, z) E .Il", belongs. Consequently,
.fJ:){p(x. z) dx dz = JL.~¢(x, z) dr dz = T p' which is unbias

edly estimated by

~ ¢(x" z,,) ( )
r p, rs = t. ( _) = e¢ x" zs

,'" X S ' "-s

and tt p is unbiasedly estimated by Mp = p(xs, z.).

ranging in scale from small fields or wood lots to landscapes
to entire countries. Grid points, for example, may serve a"
points from which Bitterlich or perpendicular distance sam
pling is conducted. They may serve as center or corner
points for plots or plot clusters, or as center points or end
points of transects for line intersect or line intersect distance
sampling. Most of the specialized sampling methods that are
applied on tracts of land, including those just mentioned and
many others, provide attribute densities (amount of attribute
per unit land area) for discrete element" of interest at any
grid point (see Gregoire and Valentine (2008), Chap. 10, or
Mandallaz (2008), Chap. 4). Consequently, the simple esti
mators that we provide below for areal continuums have
wide applicability, regardless of whether Tp is an attribute
of a continuous entity or the sum of the attributes for a pop
ulation of discrete elements that occurs within the contin
uum. How we select the sample point that anchors the grid
determines which estimators are unbiased.

To sample ]( by unrepIicated crude Monte Carlo, we se
lect a single sample point at (x s, z,) uniformly at random
with probability density (probability per unit area) j(xs' z,,) ;:::;
1/A. This selection is most easily accomplished by the
acceptance-rejection method. Imagine a rectangle, with di
mensions X x Z, which is large enough to include all of A.
Draw u, and u, from Uniform [0, 1] and test whether (xs =
u.X, z" = uzZ) occurs in A. If so, accept (r; z.): if not, draw
new random numbers and repeat. The target parameter, Tp , is
unbiasedly estimated by

[23] ~ p(xs, zs) (
T p =f(· -) = Apxs,zs)xs, -'..s

Restricted selection
For systematic sampling with restricted selection, we need

not know A, but we use the design parameters that define
the shape and spacing of the systematic grid.

For illustrative purposes, we let £ and h, respectively, be
the intervals between the x coordinates and z coordinates of
points in a rectangular (e =I h) or square (£ = II) grid, The
corresponding grid cell is a £ x h rectangle, and the location
of the sample point is restricted to a subdomain, jl", C A,
of this shape and area. For an equilateral triangular grid
(Fig. lzz), ~Il", is a regular hexagon, so R may be the distance
between grid points (i.e., .e = 2r, where r is the apothem of
a hexagon), and h may be twice the circumradius of the hex
agon (i.e., h ;:::; 2R, where R is the circumradius), in which
case the hexagon can be circumscribed by a f x h rectangle
(Fig. lb).

The subdomain At/> may occur anywhere in ,J(. For exam
ple, we may arbitrarily select any convenient location point
(x¢. Z¢) in J£ that can serve as a vertex of a £ x h rectangle.
The subdomain ,Il", is either coincident with, or circum
scribed by, this rectangle. In the former case, the sample
point for a rectangular grid is selected at (xs = x", + uxf, zs =
z", + uzh) with probability density f¢(xs• z.) = lie, where
e= Eh,

For an equilateral triangular grid, the acceptance-rejection
method selects the sample point at (xs, Z,,') within the hexag
onal subdomain, A"" circumscribed by the fi. x h rectangle.
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Table 5. Summary table of estimators for systematic sampling.
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Discrete elements Linear continuum Areal continuum

Restricted selection
Ty, rs = utj r p, rs = f:¢(xs )

T.v, rat = NYj 'rp. rot = Lp (x,)

Unrestricted selection
Ty,us = Nj'j rp, us = LjJ(x,,)

Components

tj = 2:Yk
IIk E" j

rv=:.L
. I lIj

[25]?p, rat = Ap (Xs, zs)

where p(x", z,) is the average of the n(x", zs) attribute densi
ties. The ratio estimator is unbiased if n(x. z)/A= lie for all
(x,z) E ell",. Or, to put it another way, the ratio estimator is
unbiased if ell is conterminous with the union of the grid
cells,

Unrestricted selection
For unrestricted selection, we have no need of ell",. The

acceptance-rejection method selects the sample point, s,
anywhere in ell with probability density fix", z,,) = l/A. The
sample point anchors the grid r:J" with n(x.\., z,,) measurement
points in ell. By analogy to [21], the target parameter, 1:p, is
unbiasedly estimated with

[] ~ p(xs,zs) _( )
26 .p.us = f(' • ) = Ap x"'zs.

, Xs• zs

Moreover, Il,p is unbiasedly estimated by Tip,us = p(x".z.).
The three estimators. [24]. [25], and [26]. coincide if e.1l

tessellates completely into n grid cells, each with area c.
By this point, the extension of our results to sampling a

three-dimensional container should be obvious. If not, Bad
deley and Jensen (2005) cover systematic sampling in three
dimensions with restricted selection.

Discussion
A systematic sample ordinarily comprises a single set of

elements or measurement points drawn from a population of
sets. In discrete populations and linear continuums, some
sets may contain one more element or point than the other
sets. In an areal continuum, the variation in the number of
points among potential grids may be much greater, depend
ing on the shape of the areal continuum and the shape and
size of grid cells. Whether this variation in set size leads to
bias in an estimator depends on the restrictions on random
ization for the sample selection. To wit, the estimators that
are unbiased for restricted selection are biased for unre
stricted selection, and the estimators that are unbiased for
unrestricted selection are biased for restricted selection. The
magnitude of the estimation bias, however, will be small in
relation to the variance for most natural populations. Un
biasedness, nonetheless, retains a certain appeal in natural
resource surveys, particularly those conducted and defended
by public agencies. That the bias in systematic designs can

'Tp, rs = c¢(x.,. z,,)
Tp . rat = AjJ(x\., z,)

¢(xs.z,,) = 2: p(x.z)
(x.z)E(i,

_ . ¢(XSJzs)
p(x.I • z.) = n(xs.z,,)

be eliminated by pairing either sample selection method
with a suitable estimator therefore remains noteworthy.

It is evident from Table 5 that the collection of estimators
derived above resolve into two basic forms. Horvitz
Thompson theory and ratio estimation for discrete popula
tions produce distinct estimators when randomization is re
stricted. but these two strategies lead to the same basic rule
when no restrictions are imposed. There are also obvious
discrete-population analogs for each of the MC estimators,
the latter being generalizations recognizing the continuity of
the population and sampling interval. For example, in a dis
crete population, the sampling intensity is one element per
sequential set of a elements, and in linear and areal continu
urns, the intensities, respectively, are one point per interval
of length e and one point per grid cell with area c. More
over, the Me estimators for both randomization strategies
can bederived with a continuous analog of Horvitz-Thompson
theory (Cordy 1993).

The availability of an array of selection methods and esti
mators raises the question of which should be adopted in
any given application. Unrestricted randomization selects
systematic samples with probability proportional to the num
ber of elements or measurement points in the sample; in
principle this suggests improved precision. This selection
strategy also allows one to use the sample mean without in
curring a design bias. Where restricted randomization is
used, perhaps because population size is not known in ad
vance, the ratio estimator, though biased, is likely to have
lower variance, as it corrects for realized number of meas
ured elements or points. However, the area of an areal con
tinuum may remain unknown even after the completion of a
systematic sampling. precluding ratio estimation. In this
case, restricted randomization provides for unbiased estima
tion of the total amount of attribute that is distributed over
the continuum of unknown extent.
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