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Abstract 

The bias of the sample standard deviation as an estimator of the population standard deviation, for a simple 

random sample of size N from a Normal population, is well documented. Exact and approximate bias corrections 

appear in the literature, but there has been less discussion of the downward bias of this estimator for non-Normal 

populations. The appropriate bias correction depends on the kurtosis of the population distribution. We derive 

and illustrate an approximation for this bias, to 𝑂(𝑁  −1), for several distributions.  

 

 

 

Keywords: Standard deviation, unbiased estimation, bias approximation 

Mathematics Subject Classifications: 62E15, 62F10 

Author contact: 58 Rock Lake Court, L’Amable, ON, CANADA, K0L 2L0 

   +1-613-332-6833 ; dgiles@uvic.ca  



2 
 

1. INTRODUCTION 

Let X follow a distribution, F, with integer moments that are finite, at least up to fourth order. Denote the 

population central moments by 𝜇𝑗 = 𝐸[(𝑋 − 𝜇1
′ )𝑗] , j = 1, 2, 3, …. ; where 𝜇1

′ = 𝐸(𝑋) and 𝑉𝑎𝑟. (𝑋) =

𝜇2 = 𝜎2, say; and the kurtosis coefficient is 𝜅 = (𝜇4/𝜇2
2). 

Based on a simple random sample of size N, the sample variance is 𝑠2 =
1

𝑁−1
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1  , where �̅� =

1

𝑛
∑ 𝑥𝑖

𝑁
𝑖=1 . For any F with finite first and second moments, 𝐸(𝑠2) = 𝜎2 and 𝐸(�̅�) = 𝜇1

′ . In the special case 

where F is Normal, the sampling distributions of both 𝑠2 and s itself are well known. For example, for the latter 

see Holtzman (1950). In particular, the bias of s as an estimator of σ, and various approximations to this bias, 

have been examined in detail for the Normal case – e.g., see Bolch (1968), Brugger (1969), Cureton (1968), 

D’Agostino (1970), Gurland and Tripathi (1971), Markowitz (1968) and Stuart (1969),   

However, if F is non-Normal, then although 𝑠2 is still an unbiased estimator of 𝜎2, s is a downward-biased 

estimator of σ in finite samples, by Jensen’s inequality. The magnitude of this bias has not been established, in 

general, and we explore this problem here. 

2. MAIN RESULT 

Under standard regularity conditions, both (�̅� − 𝜇1
′ ) and (𝑠2 − 𝜎2) are 𝑂𝑝(𝑁−1/2); and note that we can 

write 𝑠 = 𝜎[1 + (𝑠2 − 𝜎2)/𝜎2]1/2 . So, by the generalized binomial theorem (or using the Maclaurin 

expansion), we have: 

𝑠 = 𝜎 [1 +
1

2𝜎2
(𝑠2 − 𝜎2) −

1

8𝜎4
(𝑠2 − 𝜎2)2 +

1

16𝜎6
(𝑠2 − 𝜎2)3 −

5

128𝜎8
(𝑠2 − 𝜎2)4 + ⋯ ] .        (1) 

Convergence of the infinite series in (1) requires that |(𝑠2 − 𝜎2)/𝜎2| < 1, and this condition will be satisfied 

for large N as 𝑠2 is a consistent estimator of 𝜎2. However, convergence is not required for the approximation 

that follows. 

       Retaining terms in the expected value of (1) up to 𝑂(𝑁  −1), we have 

𝐸(𝑠) = 𝜎 [1 +
1

2𝜎2
𝐸(𝑠2 − 𝜎2) −

1

8𝜎4
𝐸[(𝑠2 − 𝜎2)]2] + 𝑂(𝑁 −3/2)  .           (2) 

Now, 𝐸(𝑠2 − 𝜎2) = 0, and from Angelova (2012, eq. (19)), 

𝐸[(𝑠2 − 𝜎2)]2 = [
(𝜇4−𝜇2

2)

𝑁
+

2𝜇2
2

𝑁(𝑁−1)
].                (3)
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This yields the approximation, 

𝐸(𝑠) ≃ 𝜎 [1 −
1

8
[

𝜅−1

𝑁
+

2

𝑁(𝑁−1)
]] = (𝜎/𝐶𝑁

∗ ) ,               (4) 

where                          

  𝐶𝑁
∗ = [8𝑁(𝑁 − 1)]/[8𝑁(𝑁 − 1) − (𝑁 − 1)(𝜅 − 3) − 2𝑁] .           (5) 

So, �̂� = 𝐶𝑁
∗ 𝑠 is an unbiased estimator of σ, to 𝑂(𝑁  −1). For a Normal population, the corresponding 

scale factor for �̂� to be exactly unbiased for s is known to be 

             𝐶𝑁 = 𝛤[(𝑁 − 1)/2]√(𝑁 − 1)/2 /𝛤[𝑁/2].                      (6) 

Using (4), and the fact that 𝐸(𝑠2) = 𝜎2, we see immediately that 𝑣𝑎𝑟(𝑠) ≃ 𝜎2 (𝐶𝑁
∗2 − 1) /𝐶𝑁

∗2
  and  

𝑣𝑎𝑟(�̂�) ≃ 𝜎2 (𝐶𝑁
∗2 − 1), each to 𝑂(𝑁  −1). 

3. DISCUSSION 

Some early tabulations for 𝐶𝑁 by various authors are discussed by Jarrett (1968). Also, see Holtzman 

(1950), Bolch (1968), and Gurland and Tripathi (1971). Table 1 compares values of 𝐶𝑁
∗  with 𝐶𝑁, and with two 

approximations to 𝐶𝑁 suggested by Gurland and Tripathi, for the Normal case. Values of 𝐶𝑁
∗ , for three other 

common population distributions, and various values of N, also appear in Table 1. An extended table can be 

downloaded as an Excel spreadsheet from https://github.com/DaveGiles1949/My-Documents. 

The accuracy of 𝐶𝑁
∗  relative to the exact 𝐶𝑁 is apparent in Table 1 – even for sample sizes as small as N = 

15. This lends credence to the accuracy of the 𝐶𝑁
∗  values for the other distributions, which show that this bias 

adjustment factor increases with the degree of kurtosis, but decreases (to 1) rapidly as N increases. 

In practice, the form of the population distribution, and hence the value of κ, may be unknown. In this case 

an estimate of κ – such as the fourth standardized central sample moment, b2 – can be used. Johnson and Lowe 

(1979) show that 𝑏2 ≤ 𝑁, so the corresponding estimate of 𝐶𝑁
∗  satisfies (

16

13
) ≤ 𝐶𝑁

∗̂ < (
8

7
) for 𝑁 ≥ 2. In 

particular, 𝐶𝑁
∗̂ > 1, as required, but the order of magnitude of our main unbiasedness result is then only 

approximate. 
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TABLE 1 

VALUES OF CN AND 𝐶𝑁
∗  FOR VARIOUS POPULATIONS1 

       N                  CN             𝐶𝑁
∗  

               Normal       Normal       Logistic       Laplace      Uniform   Exponential 

           Exact     GT(5)(6)         GT(7)     (κ = 3)        (κ = 4.2)        (κ = 6)       (κ = 1.8)          (κ = 9)

       

2 1.2533 1.2649 1.2500 1.3333 1.4815 1.7778 1.2121 2.6667 

3 1.1284 1.1314 1.1250 1.1429 1.2121 1.3333 1.0811 1.6000 

4 1.0854 1.0864 1.0833 1.0909 1.1374 1.2152 1.0480 1.3714 

5 1.0638 1.0643 1.0625 1.0667 1.1019 1.1594 1.0336 1.2698 

6 1.0509 1.0512 1.0500 1.0526 1.0811 1.1268 1.0256 1.2121 

7 1.0424 1.0425 1.0417 1.0435 1.0673 1.1053 1.0207 1.1748 

8 1.0362 1.0363 1.0357 1.0370 1.0576 1.0900 1.0173 1.1487 

9 1.0317 1.0317 1.0313 1.0323 1.0503 1.0787 1.0148 1.1294 

10 1.0281 1.0282 1.0278 1.0286 1.0447 1.0698 1.0129 1.1146 

11 1.0253 1.0253 1.0250 1.0256 1.0402 1.0628 1.0115 1.1028 

12 1.0230 1.0230 1.0227 1.0233 1.0365 1.0571 1.0103 1.0932 

13 1.0210 1.0210 1.0208 1.0213 1.0335 1.0523 1.0094 1.0852 

14 1.0194 1.0194 1.0192 1.0196 1.0309 1.0482 1.0086 1.0785 

15 1.0180 1.0180 1.0179 1.0182 1.0287 1.0448 1.0079 1.0728 

16 1.0168 1.0168 1.0167 1.0169 1.0267 1.0418 1.0073 1.0679 

17 1.0157 1.0157 1.0156 1.0159 1.0251 1.0392 1.0068 1.0635 

18 1.0148 1.0148 1.0147 1.0149 1.0236 1.0368 1.0064 1.0597 

19 1.0140 1.0140 1.0139 1.0141 1.0223 1.0348 1.0060 1.0564 

20 1.0132 1.0132 1.0132 1.0133 1.0211 1.0330 1.0057 1.0534 

21 1.0126 1.0126 1.0125 1.0127 1.0200 1.0313 1.0054 1.0507 

22 1.0120 1.0120 1.0119 1.0120 1.0191 1.0298 1.0051 1.0482 

23 1.0114 1.0114 1.0114 1.0115 1.0182 1.0285 1.0049 1.0460 

24 1.0109 1.0109 1.0109 1.0110 1.0174 1.0272 1.0046 1.0440 

25 1.0105 1.0105 1.0104 1.0105 1.0167 1.0261 1.0044 1.0421 

26 1.0100 1.0100 1.0100 1.0101 1.0160 1.0250 1.0042 1.0404 

27 1.0097 1.0097 1.0096 1.0097 1.0154 1.0241 1.0041 1.0388 

28 1.0093 1.0093 1.0093 1.0093 1.0148 1.0232 1.0039 1.0374 

29 1.0090 1.0090 1.0089 1.0090 1.0143 1.0223 1.0038 1.0360 

30 1.0087 1.0087 1.0086 1.0087 1.0138 1.0216 1.0036 1.0348 

         
 

 
 
 
 
 
  

1. 𝐶𝑁 = 𝛤[(𝑁 − 1)/2]√(𝑁 − 1)/2 /𝛤[𝑁/2] ;  𝐶𝑁
∗ = [8𝑁(𝑁 − 1)]/[8𝑁(𝑁 − 1) − (𝑁 − 1)(𝜅 − 3) − 2𝑁] ;  

GT(5)(6) and GT(7) refer to values imputed from equations (5) and (6), and equation (7) respectively in Gurland 

 and Tripathi (1971).
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