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ABSTRACT
This paper incorporates an unequal probability inverse sampling with adaptive

cluster sampling. Unbiased estimators of the population total and its variance are given.
The proposed sampling design is compared with the inverse adaptive cluster sampling
design using simulation study. The results indicate that the proposed sampling design
can be more efficient than inverse adaptive cluster sampling design. In particular, when
an auxiliary variable is highly correlated to the study variable, the estimator under the
proposed sampling design produces large efficiency.
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1. INTRODUCTION
A rare population is a population in

which only a few units exhibit the
characteristics of interest. A problem
encountered from a fixed sample size
sampling for the population is that the
sample might yield a zero estimate for the
population mean or total. In some surveys,
population units can be partitioned into
two classes. Assume that the class in which
a unit belongs is not known until the unit
is observed. Inverse sampling is an efficient
sampling design for estimating the
parameters of these populations.

In inverse sampling, units are drawn
until the fixed number of units with
characteristics of interest is obtained.
Usually, the purpose of the sample survey
is to estimate the proportion of units of
interest or to estimate the parameters of

the whole population. Haldane [1]
considered an inverse sampling with equal
probability with replacement. An unbiased
estimator of the proportion of units of
interest and its variance were derived.
However, an unbiased estimator of the
variance was not given. Finney [2] proposed
an unbiased estimator of the variance.
Chistman and Lan [3] considered inverse
sampling with and without replacement
when the selection of units is with equal
probability in each draw. An unbiased
estimator of the population total and its
variance were provided but an unbiased
estimator of the variance was not given.
Salehi and Seber [4] proved that Murthy’s
estimator can be applied to sequential
sampling design. Using this approach, they
obtained an unbiased estimator of the
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variance for the estimator given by [3].
Greco and Naddeo [5] considered an
unequal probability inverse sampling
with replacement. They provided an
unbiased estimator of the population total
and the corresponding unbiased variance
estimator.

One way for sampling a rare
population is by adaptive cluster sampling.
Thompson [6] proposed adaptive cluster
sampling design which has been shown that
to be useful application for rare and
clustered population. However, an initial
sample for adaptive cluster sampling is
commonly drawn by a classical fixed
sample size design so that a final sample
may not consist of a unit of interest.
Chistman and Lan [3] considered inverse
adaptive cluster sampling when the initial
sample is selected by inverse sampling with
equal probability. Salehi and Seber [7]
proposed general inverse adaptive cluster
sampling.

Commonly, if the probability of
selection units is highly correlated to
the study variable, unequal probability
sampling design can be higher efficient than
equal probability sampling design. This
paper combines the unequal probability
inverse sampling with adaptive cluster
sampling. The parameter to be estimated
is the population total. An unbiased
estimator of the parameter and an unbiased
variance estimator are derived. A comparison
of the proposed sampling design to the
inverse adaptive cluster sampling design is
performed using simulation study.

2. PROPOSED SAMPLING
A finite population consists of N

distinct units labeled 1,2,...,N with their
associated study values y1, y2,...,yN. Let yi
be an initial selection probability of the
i-th unit. The parameter of interest is the

population total,

.

Assume that population units are
divided into two classes according to
whether the study values satisfy a condition.
A common form of the condition is {y : y>c}
where c is a given constant. The class of
units in which study values satisfy the
condition is defined to be the class C. The
notation C is the class of the remaining
units. Each unit in the population is defined
to have a neighborhood, a set of other units
associated with that unit.

In the proposed sampling, an initial
sample is drawn by unequal probability
inverse sampling with replacement. The
units are selected with unequal probability
(zi) with replacement until the initial sample
consists of m units from the class C. For
the sample units in class C, their
neighborhoods are added to be sampled
and observed. The procedure continues
until no more units in the class C  are found.
Since the sampling begins with unequal
probability inverse sampling and
incorporates to adaptive cluster sampling,
this sampling scheme is called unequal
probability inverse adaptive cluster
sampling. The final sample consists of the
initial sample and all adaptively sample
units. The initial sample s can be partitioned
into two parts: parts sC and sC are the set
of sample units from the class C and C ,
respectively.

The set of units that is adaptively
sampled as a result of the unit i-th being
sampled and that is also the member of class
C is called the network to which the i-th
unit belongs. The units that are adaptively
sampled but are in the class C are called
edge units. By this way, if any unit in the
i-th network is selected in the initial sample,
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all units in the network are sampled. From
definition of network, the population can
be divided into K mutually exclusive
networks.

3. PARAMETER ESTIMATION
Let n0 denote the initial sample size and

n be the final sample size. So the initial
sample consists of m units from the class C
and n0 m units from class C. Let k

denote the set of units in the k-th network
and mk denote a number of units in the
network. The total value of the study

variable in the network k  is  and
the probability of selection of that network
is  . The parameter to be estimated

can be written as   . Since the

probability of any edge unit is included in
the final sample is not known, some
estimators included edge units will be biased
[6]. So the edge units in the final sample
are excluded from the estimation stage. The
proposed unbiased estimator for the
population total uses the sample units in
the class C only when they are drawn to be
the initial sample. The estimator is formed
by modifying the unbiased estimator given
by Greco and Naddeo [5].

Theorem 1  Under the proposed sampling
design, an unbiased estimator of the
population total is

̂ , (1)

where ,    and

.

Proof: Let wi represent the new value of a
study variable of the i-th unit in the k-th

network, given by wi = . The population

total is

      

Note that

̂  

The expectation of ̂ is

        

The notation E2 refers to the conditional
expectation given the initial sample size n0
and E1 is the unconditional expectation
taken under all possible initial samples.
Under the initial sample, Greco and
Naddeo [5] showed that for given the
initial sample size n0, the selection with the
inverse sampling is exactly the same as
the selection procedure with stratified
sampling. The sample from two strata are
independent and the selection probability
for the i-th unit in the classes C and C are

 and , respectively. We have

and . We obtain that
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Theorem 2 The variance of the estimator
̂  for the parameter  is

(2)

where 

 and V(P^ ) is

the variance of P^  for the parameter zC.

Proof: The variance of ̂  is equal to

 

The symbols E2 and V2 denote the
conditional expectation and variance given
the initial sample size n0, respectively. The
notations E1 and V1 represent the
unconditional expectation and variance
taking over n0, respectively. When the
initial sample size n0 is given, we have

 and

. Therefore,

In addition, , so we obtain

the result.

Theorem 3 An unbiased estimator of the
variance V(̂ ) is

(3)

where ,

,

 and .

Proof: Consider

.
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Conditioning on the initial sample size,
we have

and .

Moreover,  and

We obtain that

Note that the variance of the estimator
will be small when the value of yi

*/zi
* is closed

to C for units in class C and value of yi
*/zi

*

is closed to C for units in class C. If the
selection probabilities are equal for every
unit, the proposed sampling design is the
inverse adaptive cluster sampling given by
Christman and Lan [3]. In addition, the
unbiased estimator of the parameter is
equivalent to the expression given by [3].

4. SIMULATION STUDY
The ring-necked ducks data given by

Smith et al [8] was used as the study
population. The population consists of
N=200 units. The number of ring-necked
ducks is used as the study variable (y).
Auxiliary variables (x’s) correlated to the
study variable are created with the
coefficients of correlation equal to 0.1,
0.2, 0.5, 0.6, 0.8 and 0.9. For unequal
probability inverse adaptive cluster
sampling, the population units are selected
by probabilities proportional to the
auxiliary variable. Simulations of sampling
from the population were carried out to
study the properties of the unequal
probability inverse adaptive cluster
sampling (UIACS) compared to the inverse
adaptive cluster sampling (IACS) given by
Christman and Lan [3]. We chose the
condition {y:y>0} for dividing the units
into class C or C . The numbers of initial
sample units satisfying the condition  m
in the initial sample are 2, 4, 6 and 8.  The
neighborhood of a unit is defined as the
set of the four adjacent units. The
simulation consists of 50,000 replications.
The population total () was estimated for
each sample. In each sampling design, the
values of the estimates (̂ ), and the final
sample size (n) were averaged.  The averages
were interpreted as expected values, i.e.,

and

The estimate of the variance is

,

where . The estimate of standard
error is equal to the squared root of the
estimated variance.
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In the Table 1, the averaged values of
the estimates are close to the true value of
the population total (=23,333). This result
complies with Theory 1.

In Table 2, the results indicate that the
averaged values of the final sample size
under UIACS are smaller than the values
under IACS and their values increase as m
increase. Under UIACS with given the
number m, when the coefficients of

correlation increase, the averaged values of
the final sample sizes decrease. Table 3
shows that the unequal probability
inverse adaptive cluster sampling design
outperforms the inverse adaptive cluster
sampling design. With given the number
m, the estimates of standard errors of the
estimators under UIACS decrease when the
coefficients of correlation increase.

UIACS
= 0.1 = 0.2 = 0.5 = 0.6 = 0.8 = 0.9

2 23,396.31 23,444.59 23,516.31 23,612.57 23,661.67 23,354.22 23,427.58
4 23,491.37 23,239.50 23,222.15 23,092.35 23,206.13 23,220.56 23,271.66
6 23,449.78 23,280.25 23,404.85 23,333.90 23,255.43 23,176.89 23,225.47
8 23,299.32 23,194.47 23,243.25 23,213.96 23,242.99 23,290.70 23,334.18

Table 1. The averages of estimates with vary numbers of initial sample units in class C.

m IACS

UIACS
= 0.1 = 0.2 = 0.5 = 0.6 = 0.8 = 0.9

2 35.47 35.27 34.98 34.00 33.62 32.17 30.90
4 70.88 70.52 70.01 68.17 67.40 64.67 62.02
6 106.44 105.51 104.73 101.81 100.70 96.72 92.58
8 142.03 140.86 139.82 136.06 134.62 129.09 123.62

Table 2. The averages of final sample sizes with vary numbers of initial sample units in
class .

m IACS

UIACS
= 0.1 = 0.2 = 0.5 = 0.6 = 0.8 = 0.9

2 72,379.44 66,081.23 61,370.73 52,641.63 50,491.04 42,286.85 37,434.59
4 38,304.30 35,458.89 33,619.88 28,277.31 26,957.17 23,037.24 20,876.93
6 29,412.98 26,789.38 25,788.74 21,787.25 20,549.86 17,653.88 15,669.58
8 24,374.67 22,484.54 21,414.35 18,247.97 17,274.90 14,871.70 13,355.46

Table 3. The estimates of standard error of the estimators with vary numbers of initial
sample units in class C.

m IACS
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5. CONCLUSION
An adaptive cluster sampling is an

efficient sampling design for rare and
clustered population. However, an initial
sample in adaptive cluster sampling is
commonly selected by fixed sample size
design. This paper proposed an unequal
probability inverse sampling to draw the
initial sample from the population. The
neighborhoods of sample units in the class
of interest are added as in the adaptive
cluster sampling. An unbiased estimator
of the population total and an unbiased
estimate of its variance are given. The
simulation study showed that the efficiency
of the proposed sampling design depends
on the coefficient of correlation between
the study variable and the auxiliary variable.
When the auxiliary variable is highly
correlated with the study variable, the
unequal probability inverse adaptive
cluster sampling design is more efficient
than the inverse adaptive cluster sampling
design. However, when the auxiliary
variable is not appropriate for the study
variable, an estimator of parameter by
using the unequal probability inverse
adaptive cluster sampling design may not
always increase the efficiency.
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