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Abstract

We consider a probability model where the design-based approach to inference under simple
random sampling of a %nite population encompasses a simple random permutation super-population
model. The model consists of an expanded set of random variables following a random permu-
tation probability distribution that keeps track of both the units’ labels and positions in the
permutation. In particular, since we keep track of the labels, the model allows us to attack the
problem of estimation of a unit’s parameter. While some linear combinations of the expanded
set of random variables correspond to linear combinations of the unit parameters, other linear
combinations correspond to random variables known as random e:ects. Using a prediction tech-
nique similar to that employed under the model-based approach, we develop optimum estimators
of the linear combinations of the unit parameters and optimum predictors of the random e:ects.
The unbiased minimum variance estimator of the population mean is the sample mean and of

a unit parameter is the Horvitz–Thompson estimator if the unit is included in the sample, and
zero otherwise. The predictor of the random variable at a given position in the permutation is the
realized unit’s parameter for positions in the sample, and the sample mean for other positions.
For other linear functions, unique minimum variance unbiased estimators may not exist.
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1. Introduction

We propose a probability model induced by a simple random sample design for a %-
nite population that encompasses a simple random permutation super-population model.
Model-based prediction tools are used to optimally estimate linear combinations of ran-
dom variables in the model. Appropriate linear combinations of the random variables
may be constructed to represent %nite population parameters, including the parameter
for an individual unit. Other linear combinations correspond to random variables that
are analogous to random e:ects. The model provides a common context for comparing
results on prediction and estimation. Since the parameters can be estimated and the
random variables can be predicted in a common manner, the results lead to interesting
interpretations.
The probability model we propose was motivated by the desire to construct infer-

ence for a unit parameter in simple random sampling. While this problem is not of
compelling interest, it is closely related to a similar common problem in two stage
sampling where there is interest in predicting the parameter for a realized unit (or
cluster). The investigation of that more complicated problem led us to focus on this
simpler setting which still retains some essential aspects of the two stage problem. We
explore the simpler setting here, deferring further comments on the two stage setting
to the discussion.
Inference about a parameter for an individual labeled unit is not possible under the

classical design-based approach since individual labeled units are not identi%able in
the probability models generally used to link the sample to the population. In fact,
the probability models used for such purposes are typically based on the distributions
of exchangeable random variables which ignore labels. We overcome this problem by
introducing a discrete probability model where parameters correspond to the values of
the labeled units. The model is based on indicator random variables generated by a
random permutation of units, as would occur in a simple random sampling design.
These random variables keep track of both the unit’s label and the unit’s position in
the permutation. Rather than characterizing a permuted %nite population by N random
variables, the expanded framework includes N 2 random variables.
The model we propose does not rely on the concept of a super-population consid-

ered under the model-based approach. However, estimators/predictors of linear com-
binations of random variables are constructed using the prediction approach common
in model-based inference. Furthermore, linear combinations of the random variables
reproduce the simple random permutation super-population model.
The problem we consider is particularly simple, and hence is related to a broad

literature. The general modeling framework for survey sampling is given by Cassel et
al. (1977), with design-based and model-based inference widely discussed (Bolfarine
and Zacks, 1992; Hedayat and Sinha, 1991; Mukhopadhyay, 2001; SHarndal et al., 1992;
Thompson, 1997; Valliant et al., 2000). Recent reviews of inference in survey sam-
pling are given by Rao (1997, 1999a). Brewer et al. (1988) and Brewer (1999, 2002)
have discussed reconciling model-based and design-based inference. The random per-
mutation super-population model has been discussed by Rao and Bellhouse (1978),
Mukhopadhyay (1984) and Rao (1984), and in the context of two stage sampling, by



E.J. Stanek III et al. / Journal of Statistical Planning and Inference 121 (2004) 325–338 327

Padmawar and Mukhopadhyay (1985) and Bellhouse and Rao (1986). Model-based
approaches to the two-stage problem have been studied by Scott and Smith (1969) and
Fuller and Battese (1973), and recently reviewed in the context of small area estimation
by Rao (1999b).
Of particular relevance are the fundamental results of Godambe (1955)

and Godambe and Joshi (1965) that no uniform minimum variance unbiased linear
estimator of the population total exists if coeJcients are allowed to depend on the
sequence of labels in the sample. Royall (1969) countered this result with the obser-
vation that if random variables representing the sampling were reduced to their usual
representation, where one random variable is associated with each selected unit, optimal
estimators could be obtained. Other approaches to overcome the non-existence result
of Godambe have been suggested by Hartley and Rao (1968, 1969). Our approach is
in the same spirit as that of Royall’s 1969 result, where we reduce the most general
set of random variables de%ned by Godambe to a set of N 2 random variables.
De%nitions and notation are developed in Section 2 and the expanded model is fully

de%ned in Section 3. Interest is focused on linear combinations of the random variables
de%ned in the expanded model. Certain linear combinations simplify to non-stochastic
%nite population parameters; other linear combinations are random variables. Since
both parameters and random variables can be de%ned by the linear combinations, the
methods we develop in Section 4 are appropriate for both estimators (of parameters)
and predictors (of random variables). For simplicity, we use the term ‘estimator’ in
reference to general linear combinations of random variables.
The expanded model enables estimation of the population mean, as well as param-

eters for labeled units. The sample mean is the best linear unbiased estimate of the
population mean. For a single unit, the best linear unbiased estimator is unique and
of the Horvitz–Thompson (1952) type if the unit is included in the sample, and zero
otherwise. Simultaneous estimation of all unit parameters in the population does not
in general lead to unique estimators. However, with di:erent additional restrictions,
di:erent unique estimators arise. The predictor of the random variable corresponding
to the ith position in an ordered permutation, while not of any obvious interest, turns
out to be analogous to the widely used predictor of a realized random e:ect in a mixed
model. These results are discussed further in Section 5.

2. De�nitions and notation

We consider the problem of estimating certain characteristics of a %nite population
of units under simple random without replacement sampling. We de%ne a %nite popu-
lation as a collection of a known number, N , of identi%able units labeled j=1; : : : ; N .
Associated with unit j is a parameter yj. We summarize the set of parameters in the
vector y = (y1; : : : ; yN )′ and assume that when unit j is observed, the parameter yj is
known without error. Typically, there is interest in a p×1 vector of parameters of the
form �=Gy where G is a matrix of known constants. For example, if G= IN , with IN
denoting the N -dimensional identity matrix, then � is the set of individual parameters.
If G= e′

j, where ej denotes an N -dimensional column vector with null elements in all
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positions except for the jth position for which the value 1 is assigned, the parameter �
corresponds to the value yj associated with the unit labeled j in the population. When
G=N−11′

N , where 1N denotes an N -vector with all elements equal to 1; � corresponds
to the population mean, 	.
We de%ne a probability model that links the population parameters to an expanded

vector of random variables which is essentially induced by a simple random sampling
design, and develop estimators of linear functions of these random variables. The pro-
posed estimators are linear functions of the random variables that de%ne a sample.
We use the prediction approach that is common in model-based inference to develop
the estimators. Before introducing the expanded model, we %rst review the prediction
approach used in the context of super-population models.
The prediction approach is based on an underlying probability model for a vec-

tor of random variables Y∗ = (Y1; : : : ; YN )′ that characterizes a super-population. The
population under study, y = (y1; : : : ; yN )′, is considered to be a realization of these
super-population random variables. The vector of random variables is partitioned into
a subset which we call the sample, Y∗

S=(Y1; : : : ; Yn)
′ and the remainder, Y∗

R=(Yn+1; : : : ;
YN )′, such that Y∗=(Y∗

S
′;Y∗

R
′)′. Inference is solely based on linear models of the form

Y∗ = X∗�∗ + E∗; (2.1)

where X∗ is a known non-stochastic matrix, �∗ is a p-dimensional vector of super-
population parameters and E∗ is an N -dimensional vector of random errors governed
by the probability model under which E�(E∗) = 0, where � denotes expectation with
respect to the super-population. Although the super-population parameters appear in the
model, they are not of primary interest. Instead, the parameters of interest are linear
combinations �=Gy of a realization of Y∗. The population mean and the population
total are typical examples of �.
Assuming that Y∗

S is realized, the estimator of � is based on the predictor of Y∗
R or

some functions of it, in such a way that it satis%es some optimality criteria (see Royall
(1976) or Bolfarine and Zacks (1992), for example). More speci%cally, Valliant et al.
(2000, pp. 29–30) point out that the target parameters may be written as �= �S + �R,
where �S denotes the part of the linear combination observed in the sample and �R
denotes the part associated with the non-sampled units. After selecting the sample, the
problem of estimating � is equivalent to predicting �R and the best linear unbiased
estimate (BLUE) of � is obtained by adding the optimal predictor of �R to �S . The
prediction process relies on the probability model for the super-population and does
not necessarily depend on the physical process used to select the sample.

3. The expanded model

Our main objective is to express an expanded set of random variables induced by the
design-based approach in the form of model (2.1). We show that this model allows the
construction of estimators of linear combinations of the corresponding random variables
based on the same optimality criteria considered under the prediction approach. Some
of these linear combinations correspond to population parameters, while others are
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random variables. We restrict ourselves to the case where the sample is selected by
simple random sampling without replacement. We %rst describe the typical design-based
random permutation model, and then introduce the expanded model. An advantage of
the expanded model is the ability to identify a parameter associated with a labeled unit.
Assuming simple random without replacement sampling, the typical random per-

mutation probability model assigns equal probability to all permutations of the %nite
population units. We index each unit’s position in the permutation by i=1; : : : ; N . The
value in position i for a randomly selected permutation is de%ned by the realization
of the random variable Ỹ i =

∑N
j=1 Uijyj where Uij = 1 if unit j is in position i and

Uij = 0 otherwise. The random vector Ỹ = (Ỹ 1 Ỹ 2 · · · Ỹ N )′ is the random permuta-
tion super-population (Cassel et al., 1977), and the random variables Ỹ i; i = 1; : : : ; n,
correspond to a sample. This representation of random variables does not allow units
to be identi%ed and hence does not permit inference about unit parameters.
The expanded model is based on representing the random variables in the sum∑N
j=1 Uijyj as individual random variables of the form Yij=Uijyj, which we summarize

in an N 2×1 vector Y=(Y′
1 Y′

2 · · · Y′
N )

′ where Yj=(Y1j Y2j · · · Y ′
Nj)

′. The vector of
random variables can be de%ned compactly as Y=(Dy ⊗ IN ) vec(U), where ⊗ denotes
the Kronecker product (Searle, 1982), Dy is a diagonal matrix with the elements of y
along the main diagonal, vec(U) is a vector representing the column expansion of U,
and

U =




U11 U12 : : : U1N

U21 U22 : : : U2N

...
...

. . .
...

UN1 UN2 · · · UNN



:

Given the random structure of U, the expected value and the variance of the ex-
panded random vector are respectively given by

E(Y) = Xy (3.1)

and

var(Y) = " ⊗ PN ; (3.2)

where X = IN ⊗ 1N =N , Pa = Ia − a−1Ja with Ja = 1a1′
a, and

"=
1

N − 1 DyPNDy: (3.3)

The selection of a simple random sample of size n from the population will result
in the realization of nN of the expanded random variables in the vector Y. We gather
these random variables for the sample in the vector YS = (⊕N

j=1(In | 0n×(N−n)))Y by
rearranging the elements in the vector Y; similarly, the remaining (N − n)N random
variables are de%ned by the vector YR = (⊕N

j=1(0(N−n)×n I(N−n)))Y, where ⊕N
j=1 Aj

denotes a block diagonal matrix, with blocks given by Aj (Searle, 1982). The variance
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of the rearranged expanded random vector is partitioned as

Var

(
YS

YR

)
=

(
VS VSR

VRS VR

)
;

where VS="⊗ (In−N−1Jn) and VSR="⊗ (−N−1Jn×(N−n)), with Jn×(N−n) =1n1′
N−n.

As an illustration, consider a %nite population with N=4 units from which we select
a simple random sample without replacement of size n=2. Letting y=(y1 y2 y3 y4)′ it
follows that Y=(y1(U11 U21 U31 U41) y2 (U12 U22 U32 U42) y3 (U13 U23 U33 U43) y4
(U14 U24 U34 U44))′, YS = (y1(U11 U21) y2(U12 U22) y3(U13 U23) y4(U14 U24))′ and
YR = (y1(U31 U41) y2(U32 U42) y3(U33 U43) y4(U34 U44))′. Supposing that the %rst
and second selected units in a sample are units 3 and 1, respectively, the realized value
of YS is (0 y1 | 0 0 | y3 0| 0 0)′.

4. Estimation

A characteristic of the proposed model is that the vector of parameters y may be
de%ned as linear combinations LY of the expanded random variables. For example,
setting

L= IN ⊗ 1′
N ; (4.1)

LY = y, while the value for unit j in the population, yj, is de%ned by setting

L= e′
j ⊗ 1′

N : (4.2)

The population mean 	 is de%ned by setting

L= N−11′
N 2 : (4.3)

More generally, we can de%ne other linear combinations of Y which are stochastic.
For example, a random variable corresponding to the value that will appear in the ith
position in a permutation is de%ned by setting

L= 1′
N ⊗ e′

i : (4.4)

In general, for linear combinations de%ned in terms of the expanded random vari-
ables, we can discuss estimating a parameter or predicting a random variable. The
speci%cation of L is necessary to determine whether LY is %xed or random. We can
encompass both the estimation and the prediction problems in the same framework. As
previously noted for simplicity, we use the term ‘estimation’ in reference to a general
linear combination of random variables.
It is not necessary to use the expanded random variables to develop estimators for

all linear combinations of Y. To see this, we evaluate the linear combination using the
expansion given by

Y =
(

1N
N

⊗ IN

)
Ỹ + (PN ⊗ IN )Y: (4.5)

For example, using (4.3), the linear combination de%ning the population mean simpli%es
to LY=(1=N )1′

N Ỹ. Similarly, using (4.4), the linear combination de%ning the random
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variable corresponding to the value that will appear in the ith position in a permutation
simpli%es to LY = e′

iỸ. For the linear combinations de%ned by (4.3) and (4.4), the
optimal estimator can be developed by solely considering the random variables Ỹ since
the %rst and second terms in (4.5) are orthogonal, and the second term has expected
value equal to zero (Rao and Bellhouse, 1978, Theorem 1.1).
Using the prediction approach, we develop the solution to the problem of estimating

LY based on a sample. First, we partition LY into a sample component, LSYS , and
a remaining component, LRYR. We require the predictors of LRYR to be linear in the
sample, and represent them by LRSYS De%ning C= LS + LRS , the class of estimators
of LY is given by

CE = {CYS : C is a p× Nn matrix of constants}:
We require the estimators to be unbiased (such that E(CYS − LY) = 0), and have
minimum generalized mean squared error given by

GMSE = Var[1′
p(CYS − LY)] (4.6)

(Bolfarine and Zacks, 1992). Using (3.1), we may write E(CYS) = CXSy, where

XS = N−1IN ⊗ 1n (4.7)

so that the unbiased condition reduces to CXSy = LXy for all y, or equivalently

CXS = LX: (4.8)

We solve (4.8) for C in terms of an arbitrary matrix, and then minimize the GMSE
with respect to that matrix. When LY is non-stochastic, the result is given by

Ĉ= L
(

IN ⊗ JN×n
n

)
+ PpT′

p×nN (IN ⊗ Pn); (4.9)

where T′ is an arbitrary matrix resulting from use of generalized inverses to obtain the
solution (see Appendix A).
Solutions to the problem of estimating a linear function of L̃Ỹ are developed in a

similar manner. We brieRy outline the solution that was %rst given by Royall (1976).
First, note that E(Ỹ) = X̃	, where X̃ = 1N , and Var(Ỹ) = �2PN , where �2 = (1=(N −
1))
∑N

j=1 (yj−	)2. Partitioning Ỹ into the sample, ỸS=(Ỹ 1; : : : ; Ỹ n)′, and the remainder,
ỸR = (Ỹ n+1; : : : ; Ỹ N )′, results in

Var

(
ỸS

ỸR

)
=

(
ṼS ṼSR

ṼRS ṼR

)
;

where ṼS = �2(In − N−1Jn) and ṼSR = −�2(N−1Jn×(N−n)). We partition X̃ and L̃
in a similar manner resulting in X̃S = 1n; X̃R = 1N−n and L̃Ỹ = L̃SỸS + L̃RỸR. We
require the predictor of L̃RỸR to be a linear function of the sample, L̃RSỸS , to be
unbiased, i.e. to satisfy E(L̃RSỸS)=E(L̃RỸR), and to have minimum GMSE (given by
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var[1′
p(C̃ỸS − L̃Ỹ)], where C̃= L̃S + L̃RS). The resulting estimator is
ˆ̃CỸS = L̃SỸS + L̃R[X̃R�̂+ Ṽ′

SRṼ−1
S (ỸS − X̃S �̂)]; (4.10)

where �̂= (X̃′
SṼ

−1
S X̃S)−1X̃′

SṼ
−1
S ỸS .

4.1. Estimating yj

We obtain the estimator of LY with L de%ned by (4.2) corresponding to a particular
value yj associated with the unit labeled j. Since p=1, Pp=0 and (4.9) simpli%es to

Ĉ=
N
n
(e′
j ⊗ 1′

n): (4.11)

This corresponds to (N=n)yj when unit j is included in the sample, and zero otherwise,
a Horvitz–Thompson type estimator of the unit’s value. For such an estimator, GMSE=
((N − n)=n)y2j .

4.2. Estimating y

We develop simultaneous unbiased estimators of all the individual parameters, y,
in a %nite population next. These parameters are de%ned by setting L equal to (4.1).
Since p= N , the solution given by (4.9) simpli%es to

Ĉ=
N
n
(IN ⊗ 1′

n) + PNT′
N×nN (IN ⊗ Pn); (4.12)

where T is an arbitrary matrix. In general, the second term in (4.12) is not zero, and
hence there are multiple solutions, each of which has GMSE = (N (N − n)=n)�2.
Unique estimators can be obtained by imposing restrictions on the structure of the

coeJcients, C. For example, if we assume that C = IN ⊗ v′
1×n, where v is a vector

of unknown constants, following the same strategy, we may show that the unique
estimator of y is

ĈYS =
N
n
(IN ⊗ 1n)YS : (4.13)

This restriction forces the coeJcients to be the same for di:erent parameters, but
allows the coeJcients to di:er with position. However, not all structures for C lead
to unbiased estimators. For example, there are no solutions for C= JN ⊗ v′

1×n.
A more general class of estimators can be considered if we replace the requirement of

unit unbiasedness by average unbiasedness, 1′
NE(CYS−LY)=0. With this requirement,

and proceeding in a manner similar to that used to obtain (4.12), the estimator of y
simpli%es to

ĈYS =
1
n

JN×nNYS + PNT′
N×nNYS : (4.14)

This estimator is not unique since T is arbitrary. If C = IN ⊗ v′
1×n, a unique solution

results and is given by (4.13). If C is restricted to be of the form C = JN ⊗ v′
1×n, it

follows that the unique solution is ĈYS = Sy1N , the sample mean for each element.
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We illustrate these results via a simple example. Let us assume that N = 4, n = 2,
y = (y1 y2 y3 y4)′ and that the realized value of YS is (0y1 | 0 0 |y3 0 | 0 0)′, i.e., the
third unit was selected in the %rst position and the %rst unit was selected in the second
position in the sample. If we require the estimator (4.12) to be linear and unbiased,
only the estimator for the unselected unit (and also for units j for which yj = 0) is
unique, and equal to zero. The estimate for unit j = 1 is ay1, while the estimate for
unit j = 3 is cy3 with a and c denoting functions of elements in the arbitrary matrix,
T. If we require the estimator to be linear and unbiased, and restrict the coeJcients to
be of the form C= IN ⊗ v′

1×n, then the unique estimates for units j = 1 and j = 3 are
given by the Horvitz–Thompson type estimate, 42yj. The estimates for unit j = 2 and
j = 4 are zero. Using the average unbiased constraint, and requiring estimators to be
linear in the sample with coeJcients of the form C= JN ⊗ v′

1×n, the unique estimate
for all units is given by the sample mean, Sy.

4.3. Estimating 	 and predicting random variable(s) in the ith position in a
permutation based on Ỹ

The linear combination LY with L given by (4.3) de%nes the population mean;
setting L equal to (4.4) de%nes the random variable that will appear in the ith position
in a permutation. Using (4.5), both linear combinations are equal to linear functions
of L̃Ỹ with L̃= 1′

N =N , and L̃= e′
i , respectively. Using the coeJcients that de%ne the

population mean, and noting that Ṽ−1
S =(1=�2)(In+Jn=(N −n)) and �̂=N Sy, estimator

(4.10) simpli%es to Sy, the sample mean.
We partition ei = (e′

iS e′
iR)

′ where eiS is a vector of dimension n × 1 to predict

the random variable in the ith position in a permutation. When i6 n, ˆ̃CỸS = e′
iSỸS

which will correspond to the value of the unit that is in the ith position in a realized
permutation, i.e.

∑N
j=1 uijyj (where uij represents the realized value of Uij). When

i¿n, L̃Ỹ = L̃RỸR, and
ˆ̃CỸS = e′

iR[X̃R�̂ + Ṽ′
SRṼ−1

S (ỸS − X̃S �̂)] which simpli%es to Sy.
The GMSE of the predictor is zero when i6 n, and equal to �2((n+1)=n) when i¿n.
Simultaneous predictors of the units realized in all N positions are de%ned by setting

L̃= IN and result in the same predictors as those obtained for the individual positions.
The predictors correspond to the realized unit’s values when i6 n, and to the sample
mean when i¿n. For the vector of predictors, GMSE=�2N (N −n)=n, which is equal
to the GMSE of the estimator of y in Section 4.2.

5. Discussion

Design-based and model-based methods are usually discussed as separate approaches
for estimation and inference in %nite population sampling. We have presented an ex-
panded probability model induced by the possible physical process of simple random
sampling. Since no super-population model is required and the probability model arises
solely from sampling, we consider the resulting estimators to be design-based. No
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additional assumptions or concepts are required for estimation, which is accomplished
by developing predictors of linear functions of the unobserved random variables. Lin-
ear functions of the expanded probability model lead to a set of random variables
referred to by others as a simple random permutation super-population model (Cassel
et al., 1977). Thus, the expanded model encompasses both design- and model-based
frameworks. Although we feel that the expanded model uni%es aspects of survey sam-
pling methodology for simple random sampling, it has not yet been extended to the
broad class of super-population models, including the more general random permutation
super-population models.
Others have investigated a random permutation model in the context of a super-

population framework, and concluded that the sample mean is the uniform minimum
variance unbiased estimator of the population mean (Rao and Bellhouse, 1978). In such
a framework, the likelihood is uninformative for unit parameters, and estimation has
focused on the mean. Inclusion probabilities for labeled units, as opposed to the basic
indicator random variables underlying unit selection are used. Although the indicator
random variables used to de%ne the expanded probability model are not new (see,
for example, (Neyman, 1934; Neyman et al., 1935; Kempthorne, 1952)), their use in
developing estimators of unit parameters appears to be novel.
The expanded model extends the typical permutation model to a broader set of

random variables, but falls short of the very general set of random variables envisioned
by Godambe (1955) which spans an (N−1)n dimensional space. The random variables
in a typical permutation model span an N−1 dimensional space. The random variables
in the expanded model span an (N−1)2 dimensional space. Higher dimensional random
variables may be postulated intermediate to Godambe’s general model that may lead
to new insights.
Our motivation in developing the expanded permutation model was to improve our

understanding of realized random e:ects in the context of a mixed model. In a mixed
model, a realized random e:ect is commonly de%ned as the di:erence between the
parameter for a realized unit, and the mean of a population. With this de%nition, the
expected value of a random e:ect is zero. To simplify the discussion, we de%ne a
realized random e:ect as the parameter for a labeled unit that is realized at a partic-
ular position in a permutation. Our de%nition is a re-parameterization of the de%nition
commonly used for mixed models.
If a unit is included in a simple random sample, the realized random e:ect is simply

the parameter for that unit. The value of the parameter (which is observed) is the best
linear unbiased predictor. Since the predictor is the parameter for the realized unit,
may we interpret the predictor as a predictor of the parameter for a speci%ed unit? The
expanded model provides the answer to this question since we can predict a random
e:ect and a speci%ed unit as separate linear combinations of random variables in the
same model. The linear combinations that de%ne these two quantities di:er, as do their
estimators. A clearer statement of the interpretation for what is commonly referred
to as “the predictor of a realized random e:ect” is the predictor of a position in a
permutation. In fact, since the expected value of the random variable at a position
is the population mean, the predictor of this parameter will almost never equal the
parameter being predicted.
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In an analogous manner, the predictor of a ‘realized random e:ect’ in a simple mixed
model will carry the interpretation as the predictor of the expected value of units that
can occur at a position in a permutation. Similar results based on an expanded model
for cluster sampling, while outside the scope of this paper, have been developed for
equal size clusters both with and without response error (Stanek and Singer, 2002a)
and in an unbalanced setting (Stanek and Singer, 2002b). The expanded framework
is particularly important to retain the nesting of secondary sampling units in primary
sampling units in an unbalanced two stage sampling context. Such results share the
basic awkward interpretation as predictors of positions, not identi%ed units, as illustrated
in the expanded simple random sampling model.
While the results presented here are for simple random sampling, extensions to

many other sample settings appear to be feasible. Such extensions include adding mea-
surement error to simple random sampling, strati%ed sampling, and unbalanced cluster
sampling settings. Strategies that account for covariates have been initially addressed
in dissertations by Lencina (2002) and Li (2003). Extensions also appear feasible for
experimental studies. There are also limitations. The two stage sample results are lim-
ited by the current lack of an optimal strategy for variance component estimation.
Strategies for handling a continuous covariate are not yet developed and may not be
feasible. Extensions to unequal probability sampling, may be possible but have not yet
been developed.
From a di:erent perspective, in the expanded model, linear combinations of ran-

dom variables that correspond to unit parameters can be de%ned, and have a clear
interpretation. The unbiased estimator of a unit’s parameter (which corresponds to the
Horvitz–Thompson estimator when the unit is included in the sample, or zero other-
wise) su:ers from the criticism of Basu’s (1971) elephant example. The estimator is
not intuitive, although it clearly satis%es the constraint for unbiasedness.
Many practitioners have used the predictor of a position in a permutation as an

estimate of the parameter for a unit in the population. Such an estimator corresponds
to the value for the unit if it is included in the sample or to the sample mean if it is
not in the sample and may be written as

ŷ s =
n∑
i=1




n∑
j=1

[I{j=s}Yij + (1− I{j=s})Yij=n]

 ;

where I{j=s} denotes an indicator function. This ad hoc estimator may be expressed
in terms of the elements of the expanded random vector Y but not in terms of the
collapsed random variables Ỹ i. However, it is a non-linear function of Y, suggesting
that beyond the need of keeping track of both labels and values attached to the units
in the population for which we want to draw inference, a broader class of estimators is
needed to obtain such a result. One way the non-linearity can be avoided is to de%ne
an extended set of random variables, beyond those proposed in this paper. Current
research is underway to investigate such expanded sets, and use them to develop linear
predictors of speci%c units.



336 E.J. Stanek III et al. / Journal of Statistical Planning and Inference 121 (2004) 325–338

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento CientXY%co
e TecnolXogico (CNPq), FundaZcão de Amparo [a Pesquisa do Estado de São Paulo
(FAPESP), FINEP (PRONEX), CoordenaZcão de AperfeiZcoamento de Pessoal de NXYvel
Superior (CAPES), Brazil and to the National Institutes of Health (NIH-PHS-R01-
HD36848), USA, for %nancial support. The authors also wish to thank Dalton Andrade,
Heleno Bolfarine, John Buonaccorsi, and Oscar Loureiro for helpful comments that lead
to improvements in the manuscript. The authors also gratefully acknowledge helpful
comments by referees that have lead to improvements in the paper.

Appendix A. Optimal estimators

We solve (4.8) for C′ and then minimize the GMSE with respect to that matrix.
First, note that (4.8) can be re-expressed as X′

SC
′=X′L′. In general for %xed matrices

A and B the set of solutions to AW=B is given by W=A−B+(I−A−A)Z where A−

is a speci%c g-inverse of A and Z is an arbitrary matrix (as de%ned by Graybill, 1983).
We make repeated use of this result in obtaining the solution. Setting X′−

S =IN⊗N1n=n,
all solutions that satisfy the constraint for unbiasedness are given by

C′ =
(

IN ⊗ Jn×N
n

)
L′ + (IN ⊗ Pn)Z; (A.1)

where ZnN×p is an arbitrary matrix. When LY is non-stochastic, (as in (4.1), (4.2)
and (4.3)), the GMSE in (4.6) simpli%es to

GMSE = 1′
pVar(CYS)1p = 1′

pCVSC′1p;

which is a function of Z. De%ning

c = Z1p (A.2)

and a = (IN ⊗ Jn×N =n)L′1p, the GMSE simpli%es to

GMSE = a′VSa + c′(" ⊗ Pn)c + 2c′(" ⊗ Pn)a: (A.3)

Di:erentiating (A.3) with respect to c and setting the resulting derivatives equal to
zero yields (" ⊗ Pn)ĉ =−(" ⊗ Pn)a. Since Pn is orthogonal to Jn×N , (" ⊗ Pn)a = 0
and the solutions are given as

ĉ = [InN − ("−" ⊗ P−
n Pn)]rnN×1; (A.4)

where r is an arbitrary vector.
We replace c by (A.4) in Eq. (A.2), and solving for Ẑ

′
, results in

Ẑ′
p×nN =

1
p

1pr′[InN − (""− ⊗ PnP−
n )] + PpT′

p×nN ; (A.5)
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where 1′−
p = 1p=p, and T′ is an arbitrary matrix. Substituting (A.5) into (A.1) and

simplifying,

Ĉ=L
(

IN ⊗ JN×n
n

)
+
1
p

1pr′
1×nN [(IN − ""−)⊗ Pn]

+PpT′
p×nN (IN ⊗ Pn); (A.6)

where both r′ and T′ are arbitrary, and "− is a g-inverse of (3.3).
To de%ne "−, we %rst let m be the number of values of yj; j = 1; : : : ; N that are

non-zero. Furthermore, let y− represent an N × 1 vector with elements equal to 1=yj
if yj 	= 0, and zero otherwise. Finally, let iy represent an N × 1 vector with elements
equal to one if yj 	= 0, and zero otherwise. With such de%nitions, we de%ne a g-inverse
of " as

"− = (N − 1)
[
Dy−Dy− +

1
N − m y−y−′

]
: (A.7)

Pre-multiplying this expression by " yields ""− =Diy . Substituting this expression
into (A.6),

Ĉ= L
(

IN ⊗ JN×n
n

)
+
1
p

1pr′
1×nN [Dy0 ⊗ Pn] + PpT′

p×nN (IN ⊗ Pn); (A.8)

where Dy0 = IN − Diy , a diagonal matrix with diagonal elements equal to zero for
diagonal elements with yj 	= 0, and one for diagonal elements with yj = 0.
The general result given by (A.8) can be simpli%ed by noting that for all YS ,

r′
1×nN [Dy0 ⊗ Pn]YS = 0. Noting that the GMSE will not change with di:erent choices
of the arbitrary vector r, eliminating the term that depends on r will not alter the
predictor nor the GMSE, and simpli%es the result. As a result, optimal estimators can
be constructed using

Ĉ= L
(

IN ⊗ JN×n
n

)
+ PpT′

p×nN (IN ⊗ Pn): (A.9)
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