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ABSTRACT
We show that uniform random sampling is not as effective as PPS

(probability proportional to size) sampling in many estimation tasks.

In the setting of (graph) size estimation, this paper demonstrates

that random edge sampling outperforms random node sampling,

with a performance ratio proportional to the normalized graph

degree variance. This result is particularly important in the era

of big data, when data are typically large and scale-free, resulting

in large degree variance. We derive the result by first giving the

variances of random node and random edge estimators. A simpler

and more intuitive result is obtained by assuming that the data is

large and degree distribution follows a power law.
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1 INTRODUCTION
Size estimation is a classic problem that has many applications,

ranging from the war time problem of finding out the number of

German tanks [7], to the more recent challenge of gauging the size

of the Web and search engines [1, 3, 12, 20] and online social net-

works [8, 11]. The direct calculation of data size is often not possible

or desirable for several reasons. Quite often, data are hidden behind

some searchable interfaces and programmable web APIs, such as

online social networks and deep web data sources. The access is

limited, and the data in its entirety are not available [11, 19]. The

data can be distributed, and there is no central data repository such

as in the case of peer-to-peer networks [17] or the Web [12]. Even

when the data are available in one place, there are requirements

for fast just-in-time analysis of the data [10]. Regardless of a large

variety of application scenarios, a common approach to solving

these problems is to use samples to have a fast estimation of the

data size, instead of slow and direct counting of the data.

Many datasets can be viewed as graphs, especially the ones ex-

tracted from the Web and online social networks such as Twitter

and Facebook. These graphs are large, often distributed and hid-

den behind searchable interfaces. The sampling process requires

sending queries that occupy network traffic. In addition, most data

sources impose daily quotas. In such cases, the sample size has to be
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far less than the data size, and it is paramount to choose an efficient

sampling and estimation method.

For ease of discussion, sampling is modelled in the context of a

graph, where uniform sampling corresponds to uniform random

node (RN) sampling, PPS (probability proportional to size) sampling

corresponds to random edge (RE) sampling. In this setting, we

define the size as the number of nodes in the graph. Random walk

(RW) sampling approximates PPS sampling in that the sampling

probability is proportional to its degree asymptotically.

The norm of size estimation is to use uniform random sam-

ples whenever possible. Real data sources seldom provide uniform

random samples directly. Therefore, there have been tremendous

efforts to obtain uniform random samples from the Web [9], search

engine indexes [1], and online social networks [6], to name a few.

These uniform random samples are costly, in that each valid sample

may be accompanied by many invalid ones that are thrown away.

Recently, it was empirically observed that, instead of obtaining

those costly uniform random samples, RW sampling is actually bet-

ter than RN sampling for size [11] and average degree estimation

[14][5] on some datasets.
This paper shows that the sampling methods for very large

graphs should be different from the ones traditionally preferred.

Instead of RW, we show that it is RE that is better than RN when

the graph is very large. We demonstrate our conclusion not only

empirically on 18 datasets and simulated data, but also analytically

by showing that its variance is smaller in our setting. In addition,

we delineated the details as for

• When is RE better than RN? RE is better than RN only when

the graph is very large, and consequently, the sample size

n has to be much smaller than the data size N . This is the

scenario we assume, with application background such as

estimating online social networks with a limited number of

web-based queries.

• How much better is RE over RN? We demonstrate that there

is an upper bound for the performance improvement, which

is quantified byγ 2+1. Hereγ is the coefficient of variation of

node degrees. The upper bound is derived analytically, and

confirmed empirically on 18 large data sets. The derivation

uses the assumption that the data is very large.

• What can approximate RE sampling? When RE sampling is

not available in practice, we need to resort to other methods

to approximate RE (or PPS) sampling. RW is an option, but

the performance varies widely from data to data. We find

that RW can approximate the performance of RE for online

social networks, but not for Web graphs.

This result is particularly important in the age of big data when

large and scale-free networks are ubiquitous [2] [18]. These net-

works can have very large degree variance. In theory, γ 2 can be
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infinitely large when the slope of the scale-free network falls under

certain range. In practice, we observe γ 2 as large as 1300 for the
Twitter network in 2009 [15], meaning that potentially RE sampling

can be better in three orders of magnitude in terms of variance.

Such huge difference between the sampling methods will not only

change the landscape of sampling practice, but also shift the re-

search focus. In the past, people strive for uniform random samples

[1]. Nowadays for very large data, we should take PPS samples, or

develop sampling methods that can approximate PPS sampling.

2 SAMPLING METHODS AND THEIR
ESTIMATORS

Given an undirected graph G (V ,E), where V is the set of nodes,

and E the set of edges. Let N = |V |, the parameter we want to

estimate. Nodes are labeled as 1, 2, . . . ,N , and their corresponding

degrees are d1,d2, . . . ,dN . The volume of the graph is τ =
∑N
i=1 di ,

the average degree is ⟨d⟩ = 1

N
∑N
i=1 di = τ/N . The variance σ 2

of the degrees in the graph is defined as σ 2 = ⟨d2⟩ − ⟨d⟩2, where
⟨d2⟩ =

∑N
i=1 d

2

i /N is the second moment, i.e., the arithmetic mean

of the square of the degrees. The coefficient of variation (denoted

as γ ) is defined as the standard deviation, or the square root of the

variance, normalized by the mean of the degrees:

γ 2 =
σ 2

⟨d⟩2
=
⟨d2⟩

⟨d⟩2
− 1. (1)

Let Γ = γ 2 + 1.
Suppose that a sample of n nodes (dx1 , . . . ,dxn ) is taken from

the graph, where xi ∈ {1, 2, . . . ,N } for i = 1, 2, . . . ,n. Among

them, there are fj nodes that are sampled exactly j times. Then,

sample size n =
∑
j fj . Let C denote the number of collisions in the

sample, i.e., C =
∑ (j

2

)
fj . Note that C is larger than the number of

duplicates that is often used in capture-recapture methods [4]. Our

task is to estimate N using the sample. Table ?? summarizes the

notations used in this paper.

This paper focuses on three basic sampling methods, i.e., RN

(random node), RE (random edge), and RW (random walk). In RN

sampling, each node is sampled uniformly at random with replace-

ment. In RE sampling, edges are selected with equal probability

and two nodes incident to a random edge are collected. Thus, RE

sampling is a kind of PPS (probability proportional to size) sam-

pling in that each node is sampled with probability proportional

to its degree. RW sampling selects the next node in the current

neighbourhood uniformly at random. Its node selection probability

is proportional to the degree asymptotically.

2.1 RN Sampling
Different sampling methods require different estimators. When

nodes are sampled uniformly at random, each node is sampled with

equal probability, i.e.,

pi =
1

N
, for i = 1, 2, . . . ,N . (2)

When two nodes are chosen, the probability that a collision (the

same node being selected twice) happens is

p =
N∑
i=1

p2i =
1

N 2

N∑
i=1

1 =
1

N
. (3)

Since there are

(n
2

)
pairs, the expected number of collisions is

E(C ) =

(
n

2

) N∑
i=1

p2i =

(
n

2

)
1

N
. (4)

Thus, the RN estimator for N is

N̂N =

(
n

2

)
1

C
. (5)

2.2 RE Sampling
When nodes are chosen with probability proportional to their sizes,

the probability of choosing node i is pi = di/τ , where
∑
pi = 1.

When two nodes are chosen independently at random with proba-

bility proportional to sizedi , the probability that a collision happens
is

p =
N∑
i=1

p2i =
1

τ 2

N∑
i=1

d2i =
Γ

N
. (6)

The expected number of collisions C is

E(C ) =

(
n

2

) N∑
i=1

p2i =

(
n

2

)
Γ

N
. (7)

Thus, the RE estimator for N is

N̂E =

(
n

2

)
Γ

C
. (8)

Thereby, we derived the RE estimator using Γ. The introduction
of Γ in the estimator is important–it reveals the difference between

the RE and RN estimators, consequently we can compare them.

The same estimator in very different forms are used in [4, 11]. Our

derivation is different, so that we can compare these two estimators

for uniform and PPS samples. Comparing the estimators in equa-

tions 5 and 8, the only difference is that RE sampling produces Γ
times more collisions using the same sample size. Consequently,

the estimate is adjusted by a factor of Γ. When more collisions are

observed, the accuracy of the estimation is also improved. Intu-

itively, RE method can outperform RN sampling by a factor of Γ.
In reality, the performance improvement is upper-bounded by Γ as

we will show in this paper.

The second issue is whether Γ is large enough to result in sig-

nificant performance improvement for RE sampling. Our first ob-

servation is that when the graph being studied is regular, Γ = 1

and the RE estimator is reduced to the RN estimator. However,

many networks are large and scale-free, inducing very large Γ. For
instance, Γ ≈ 1300 for the Twitter user network in the year of 2009

[15]. This large Γ makes the RE sampling the obvious choice.

The third issue is that Γ itself needs to be estimated. Γ is the ratio
of the average degree of the sampled nodes and the average degree

of the original graph, and can be estimated using the following
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formula [15]:

Γ̂ =
⟨̂dx ⟩

⟨̂d⟩
=

∑n
i=1 dxi
n

1

⟨̂d⟩
. (9)

In turn, the average degree can be estimated by the harmonic

mean with high accuracy [16]:

⟨̂d⟩ =
n∑n

i=1 1/dxi
. (10)

3 VARIANCES OF THE ESTIMATORS
Estimators are normally evaluated in terms of bias, variance (

var (N̂ ) ), and the combination of them, i.e., mean squared error

(MSE). In [15], we discussed the bias problem, which is rather small

in general. This paper focuses on the variances of the two estimators.

We do not use Chebyshev’s inequality for evaluation as some other

papers do, because Chebyshev’s inequality gives an upper bound

that is valid for any data distribution. Consequently, experimental

results can not be explained well using Chebyshev’s inequality. We

observed that the estimates are of normal distribution [21], thus

there is a much tighter bounds. For instance, when relative stan-

dard error RSE

(
=

√
var (N̂ )/N

)
is 0.1, the 95% confidence interval

is roughly N̂ ± 0.2N̂ . This is the why in our experiments the RSE

values are around 0.1.

3.1 Variance of RN Sampling
We derive the variances using the classic Delta method. The key

difference is the approximations we make due to the big data as-

sumption. Otherwise, the Taylor expansion has a sequence of long

terms, and loses the intuitive understanding. Let C , the number of

collisions, be the random variable. The Taylor expansion of 1/C
around E(C ) is:

1

C
=

1

E(C )
−
C − E(C )

E(C )2
+

2

E(C )3
(C − E(C ))2

2!

. . . (11)

By applying var on Eq. 5, and taking the first two terms in the

Taylor expansion, we have

var (N̂N ) ≈
n4

4

var
(
1

C

)
=

n4

4E(C )4
var (C ). (12)

When selecting two nodes randomly from a set of N nodes, the

probability of having a collision is p = 1/N . When n number of

sample nodes are selected, there are

(n
2

)
pairs. The number of colli-

sions follows the binomial distribution B (n(n − 1)/2, 1/N ) whose
variance is

var (C ) =

(
n

2

)
p (1 − p) = E(C ) (1 − 1/N ) (13)

When N is large, var (C ) ≈ E(C ). Substitute this into Eq. 12, and

note that n2/(2E(C )) = N , we derive the following:

Lemma 1 (Variance of N̂N ). The estimated variance of RN esti-
mator N̂N is

v̂ar (N̂N ) ≈
N 2

E(C )
≈

2N 3

n2
. (14)

Reformulating the above result using RSE, we see that the accu-

racy of the estimation depends solely on the expected number of

collisions:

RSE (N̂N ) =

√
v̂ar (N̂N )

N
≈

1√
E(C )

. (15)

Since the derivation employs several approximations, we con-

duct a simulation study to verify our result and understand its

limitation. The simulation study is depicted in Fig. ??. The data

size N = 10
6
. Sample sizes range between 4472 and 14142, so that

the expected collisions range between 10 and 100. For each sample

size, estimations are repeated 1000 times to obtain the observed

collisions and RSEs.

First, the simulation study shows that random variable C does

follow the binomial distribution B (n(n − 1)/2,p) as depicted in pan-

els (A) and (B) of Fig. ??. Both plots are histograms of the collisions,

along with the corresponding binomial distributions. Panel (A) plots

the histogram when E(C ) = 10, panel (B) is when E(C ) = 100.

Second, the observed variance of C fits the estimated variance

very well over various sample sizes, as illustrated by panel (C). I.e.,

v̂ar (C ) ≈ E(C ). Third, the observed RSE (or equivalently variance)

fits the estimated RSE when sample size is not very small. From

panel (D) we can see that RSE of N̂N is about 1/
√
E(C ) whenE(C ) >

20. When E(C ) = 10, there is a gap between the estimated and

observed RSEs, introduced by the Taylor expansion approximation.

When E(C ) is as small as 10, the third term in Eq.11 can be no

longer omitted.

3.2 Variance of RE Sampling
The variance of RE estimator involves three variables, the collisions

C , the estimated average degree ⟨̂d⟩ of the original graph, and the

average degree of the sampled nodes ⟨̂dx ⟩. The variance of N̂E is too

complicated to compare with that of N̂N without some assumptions.

We assume that N is very large, and C ≈ 100. Consequently n =
√
2NC/Γ. We can see that C ≪ n ≪ N . We restrict the collisions

around 100 so that the corresponding N̂N estimator has RSE 0.1, or,

the 95% confidence interval is N ± 0.2N . Under such assumption,

we can approximate the variance of N̂E as follows:

Lemma 2. The variance of N̂E is

var (N̂E ) ≈
N 2

E(C )

(
1 +

2n⟨d3⟩

N Γ⟨d⟩3

)
(16)

Comparing the variances for RN and RE samplings in Lemma 1

and Lemma 2, we have the following:

Theorem 1. Given the same sample size n. The variance ratio
between RN and RE sampling is:

var (N̂N )

var (N̂E )
≈ Γ

(
1 +

2n⟨d3⟩

N Γ⟨d⟩3

)−1
(17)

We highlight two points regarding this result. First, when sam-

ple size n ≪ N , the second term in Eq. 17 is small enough to be

negligible. In this case, RE sampling outperforms RN sampling up

to Γ folds in terms of variance, and

√
Γ in terms of sample size.
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Second, the second term grows with sample size n, indicating
eventually RN will become better. The tipping point is

n = N Γ2⟨d⟩3/(2⟨d3⟩). (18)

When sampling large graphs, in general RE is better than RN, or

n < N Γ2⟨d⟩3/(2⟨d3⟩), as we will show in our simulation studies

and in 18 real networks. This is due to two reasons: 1) n is in the

order of

√
2N /Γ to generate enough collisions, or gain sufficient

estimation precision. The ratio n/N is in the order ofO (1/
√
N Γ). 2)

Although in theory we can let n approach or even surpass N , the

essence of sampling is to use a very small portion of the data to

predicate the properties.

4 EXPERIMENTS ON REAL NETWORKS
We demonstrate our results on 18 datasets.Most of them are from

the Stanford SNAP graph collection [13]. Due to space limitation,

for some network categories only one graph is reported if they

have similar behaviour. For instance, citation graphs have similar

degree distribution, similar coefficient of variation, and similar error

ratios between RN, RE, and RW sampling. For these networks, we

choose only one representative network for each category. In the

category of the Web graph datasets, RW sampling deviates greatly

from RE sampling. So we include several Web graphs, including the

Web graph on the domains of Notre Dame, Stanford, and Berkley-

Stanford, to investigate the cause for such deviation. Complete data

description and programs can be found at http://cs.uwindsor.ca/

~jlu/size,

We compare the sample sizes needed to obtain the same RSE for

all the datasets. We show that there is a strong correlation between
√
Γ and RN /RE ratio. Fig. 1 plots the sample size ratio against

√
Γ

for the 18 datasets when RSE = 0.2 (panel A) and RSE = 0.1 (panel

B).

The plot shows that 1) RE is better than RN consistently for all

the datasets, as all the RN/RE ratio values are greater than one; 2)

The ratio has a strong linear correlation with

√
Γ as can be seen

visually from the plot, and from the Pearson’s correlation coefficient

(0.98 when RSE=0.2 and 0.95 when RSE =0.1); 3) The improvement

ratio is bounded from above by

√
Γ, as all the ratio values are below

the line.

To summarize, albeit the great varieties of the datasets, RE sam-

pling always outperforms RN sampling, and the ratio has a strong

positive relation to

√
Γ with very high correlation coefficient.

5 DISCUSSIONS AND CONCLUSIONS
The state of art in size estimation is to use uniform random samples

whenever possible. We show that on the contrary to this common

practice, PPS sampling outperforms uniform random sampling by

a factor up to

√
Γ for large data in terms of sample size.

In retrospect, this phenomenon was not observed in the past

probably due to several reasons: 1) In traditional size estimation

studies, Γ is typically small (between one and two), thus the differ-

ence is hardly discernible. Our result shows that the improvement

ratio is up-bounded by Γ. Thus, when Γ is small, RE could be worse

than RN. Even in scale-free networks, Γ in real networks may not

be large due to the cut-off for the maximal values. For instance,

Facebook has an up-limit of the number of followers, resulting
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Figure 1: RN/RE ratio of sample sizes is bounded from above
by
√
Γ for 18 networks. Panel (A) displays the ratio of sam-

ple sizes needed to achieve 0.2 RSE; panel (B) the ratios to
achieve 0.1 RSE. RSE is obtained over 500 repetitions.

small Γ value around two. Only recently we see large scale-free

networks whose Γ value can be as high as 1000, such as Twitter

and WikiTalk; 2) RE sampling is hardly studied in the past. Random

walk sampling is often used, but it is only an approximation to PPS

sampling. The comparison between RW and RN samplings often

has a mixed results, failing to reveal a definite answer. In particular,

RW on the Web graph is always worse than RN; 3) The result is

true only for big data. In the synthetic data that assumes a power

law distribution, we show that the improvement ratio grows almost

linearly with the data size. When the data size is very small, RN

can be better than RE even if the network is scale-free.
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