Chapter 7
Varying Probability Sampling

The simple random sampling scheme provides a random sample where every unit in the population has
an equal probability of selection. Under certain circumstances, more efficient estimators are obtained by
assigning unequal probabilities of selection to the units in the population. This type of sampling is known

as varying probability sampling scheme.

If Y is the variable under study and X is an auxiliary variable related to Y, then in the most commonly
used varying probability scheme, the units are selected with probability proportional to the value of X,
called as size. This is termed as probability proportional to a given measure of size (pps) sampling. If the
sampling units vary considerably in size, then SRS does not takes into account the possible importance of
the larger units in the population. A large unit, i.e., a unit with a large value of Y contributes more to the
population total than the units with smaller values, so it is natural to expect that a selection scheme which
assigns more probability of inclusion in a sample to the larger units than to the smaller units would
provide more efficient estimators than the estimators which provide equal probability to all the units. This

is accomplished through pps sampling.

Note that the “size” considered is the value of auxiliary variable X and not the value of study variable Y.
For example, in an agriculture survey, the yield depends on the area under cultivation. So bigger areas are
likely to have a larger population, and they will contribute more towards the population total, so the value
of the area can be considered as the size of the auxiliary variable. Also, the cultivated area for a previous
period can also be taken as the size while estimating the yield of the crop. Similarly, in an industrial
survey, the number of workers in a factory can be considered as the measure of size when studying the

industrial output from the respective factory.

Difference between the methods of SRS and varying probability scheme:

In SRS, the probability of drawing a specified unit at any given draw is the same. In varying probability
scheme, the probability of drawing a specified unit differs from draw to draw.

It appears in pps sampling that such procedure would give biased estimators as the larger units are over-
represented and the smaller units are under-represented in the sample. This will happen in the case of the
sample mean as an estimator of the population mean where all the units are given equal weight. Instead of
giving equal weights to all the units, if the sample observations are suitably weighted at the estimation
stage by taking the probabilities of selection into account, then it is possible to obtain unbiased

estimators.
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In pps sampling, there are two possibilities to draw the sample, i.e., with replacement and without

replacement.

Selection of units with replacement:
The probability of selection of a unit will not change, and the probability of selecting a specified unit is

the same at any stage. There is no redistribution of the probabilities after a draw.

Selection of units without replacement:
The probability of selection of a unit will change at any stage, and the probabilities are redistributed after

each draw.

PPS without replacement (WOR) is more complex than PPS with replacement (WR). We consider both

the cases separately.

PPS sampling with replacement (WR):

First, we discuss the two methods to draw a sample with PPS and WR.

1. Cumulative total method:
The procedure of selecting a simple random sample of size n consists of
- associating the natural numbers from 1 to N units in the population and
- then selecting those n units whose serial numbers correspond to a set of N numbers where each

number is less than or equal to N which is drawn from a random number table.

In the selection of a sample with varying probabilities, the procedure is to associate with each unit a set of

consecutive natural numbers, the size of the set being proportional to the desired probability.

If X,,X,,..., X, are the positive integers proportional to the probabilities assigned to the N units in the

population, then a possible way to associate the cumulative totals of the units. Then the units are selected

based on the values of cumulative totals. This is illustrated in the following table:
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Units Size Cumulative Total

1 X1 T1 = Xl
2
X, T,=X,+X,
: : Select a random
number R
i1 N T - i X between 1 and
-t -1 = j Ty by using the
_ random number
i X T=YX. table.

N
N | X=X TszN:xj

j=1

If T, <R<T, then

i-1 —

i" unit is selected

with probability ﬁ,
TN

i=12,..,N.

Repeat the procedure
n times to get a
sample of size n.

In this case, the probability of selection of it unit is
o LT X
I TN TN
=P «X,.

Note that T is the population total which remains constant.

Drawback: This procedure involves writing down the successive cumulative totals. This is time-

consuming and tedious if the number of units in the population is large.

This problem is overcome in Lahiri’s method.

Lahiri’s method:

Let M = Max X,, i.e., maximum of the sizes of N units in the population or some convenient number

i=1,2,..,N
greater than M .

The sampling procedure has the following steps:

1. Select a pair of the random number (i, j) such that I<i< N, 1< j<M.

2. If j<X,, then i unit is selected otherwise rejected and another pair of random number is
chosen.

3. To get a sample of size n, this procedure is repeated till n units are selected.

Now we see how this method ensures that the probabilities of selection of units are varying and are

proportional to size.
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Probability of selection of i" unit at a trial depends on two possible outcomes

— either it 1s selected at the first draw

or it is selected in the subsequent draws preceded by ineffective draws. Such probability is given by
PA<i<N)PA<j<M i)

1 X .
=—.—=P, sa
N'M y
o . . 1< X,
Probability that no unit is selected at a trial = —Z I_VI
i=1
L VIS
N M
X
=1-—=0Q, say.
VI
The probability that unit i is selected (all other previous draws result in the non selection of unit i)
=P +QP +Q’P" +...
_R
1-Q
_X{/NM X, X

i =—1L=_"1 «X.
X/M NX X !

total

Thus the probability of selection of unit i is proportional to the size X,. So this method generates a pps

sample.

Advantage:

1. It does not require writing down all cumulative totals for each unit.
2. Sizes of all the units need not be known beforehand. We need only some number greater than the

maximum size and the sizes of those units which are selected by the choice of the first set of

random numbers 1 to N for drawing sample under this scheme.

Disadvantage: It results in the wastage of time and efforts if units get rejected.
A draw is ineffective if one of the ineffective random numbers is selected.

The probability of rejection of a drawn number, i.e., probability that no unit is selected at a trial
[l_ﬁjzl_ N_NX X
- M N M M

The expected numbers of draws required to draw one unit =

><|| <

This number is large if M is much larger than X.
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Example: Consider the following data set of 10 number of workers in the factory and its output. We
illustrate the selection of units using the cumulative total method.

Factory no. | Number of workers | Industrial production | Cumulative total of sizes
(X) (in thousands) (in metric tons) (Y)
1 2 30 T,=2
2 5 60 T,=2+5=7
3 10 12 T,=2+5+10=17
4 4 6 T,=17+4=21
5 7 8 T,=21+7=28
6 2 13 T,=28+2=30
7 3 4 T,=30+3=33
8 14 17 T, =33+14=47
9 11 13 T,=47+11=58
10 6 8 T,=58+6=64

Selection of sample using cumulative total method:

1. First draw: - Draw a random number between 1 and 64.

- Suppose it is 23

-T, <23 < T;

-Unit Y is selected and Y, =8 enters in the sample.

2. Second draw:

- Draw a random number between 1 and 64

- Suppose it is 38
- T, <38<Ty

- Unit 8 is selected and Y, =17 enters the sample

- and so on.

- This procedure is repeated until the sample of required size is obtained.
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Selection of sample using Lahiri’s Method

In this case
M= Max X, =14
i=1,2,...,10

So we need to select a pair of random number (i, j) such that 1<i<10,1< j<14.

Following table shows the sample obtained by Lahiri’s scheme:

Random no Random no Observation Selection of unit
1<i<10 1<j<14

3 7 1=7<X,=10 trial accepted (Y,)
8 13 j=13< X, =14 trial accepted (Y,)
4 7 j=7>X,=4 trial rejected

2 9 j=9>X,=5 trial rejected

9 2 j=2<X,=11 trial accepted (Y,)

and so on. Here (Y;,Y,,Y,) are selected into the sample.

Varying probability scheme with replacement: Estimation of population mean
Let

Y, : Value of study variable for the i unit of the population, i =1, 2,...,N.

X, : Known value of an auxiliary variable (size) for the i unit of the population.

P : Probability of selection of i unit in the population at any given draw and is proportional to size X;.

Z = i— 12N
NP

Consider the varying probability scheme and with replacement for a sample of size n. Let y, be the value

of r'" observation on study variable in the sample and p, be its initial probability of selection. Define

z, :L, r=12,..,n,

Np,

1 - o’
thenfz—z Z,is an unbiased estimator of the population mean Y , variance of Z is —- where
n4s n
s X (Y oY . . . R A
o, = Z P N_;D_ and an unbiased estimate of variance of Z is - =——) (7, -7)" .

- ) n -
i=1 i

r=1
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Proof:
Note that z, can take any one of the N values out of Z,,Z,,...,Z, with corresponding initial probabilities

P,P,...,P,, respectively. So

E(z,)= izi
i=1
N YI
2R "
=Y.
Thus

ED) =%§E(zr)

QL
_H;Y
=Y.

So 7 is an unbiased estimator of the population mean Y .

The variance of 7 is

Var(z) = —Var (Z z j

r=1

1< ,
= —ZZVar(Zr) (Z, s are independent in WR case).

Now
Var(z,)=E[z, - E(Zr)]2

=E[z —\7]2

=0, (say)
Thus
var(z)=— Yo,
n r=1
_o;
-
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2
S, . . . _ .
To show that —% 1is an unbiased estimator of the variance of 7, consider

(Nn—DE(s}) = E{Z(zr -7)2}

E {Zn: 2’ - nfz}
r=1

{ E(zf)-nE(rZ)}

>

Zn:[Var(z )+{E(z, )}} n[Var(7)+{E(7)}2}

r=1

r=1 i=1 i

(0'2+Y_2)—n(‘7—12+Y_2) using Var(z )=ZN: L—Y_ 2P =0’
z n r NP 1 z

- (=10
E(s))=0;
2 2
or E(S—ZJzaz =Var(7)
n n
2 1 n y 2
—Var(7)=2z = r | —nz?|.
@ n n(n—l)[;[NpJ ]
1 - _
Note: If P =N,then Z=Y,
2
114 Y | o)
Var(Z)=——>» | ——-Y | =2~
) nNg‘ Ni n
N

which is the same as in the case of SRSWR.
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Estimation of population total:

An estimate of population total is
Y, =lzn: YNz
tot n< p,
Taking expectation, we get

E(Y,,) =%Z[ﬁﬂ +Lp +...+L—N PN}

Thus Y, is an unbiased estimator of population total. Its variance is

Var(Y,,) = N*Var(z)

ot

An estimate of the variance

y=N S

Var(Y,
n

ot

Varying probability scheme without replacement

In varying probability scheme without replacement, when the initial probabilities of selection are
unequal, then the probability of drawing a specified unit of the population at a given draw changes with
the draw. Generally, the sampling WOR provides a more efficient estimator than sampling WR. The
estimators for population mean and variance are more complicated. So this scheme is not commonly used

in practice, especially in large scale sample surveys with small sampling fractions.

Sampling Theory| Chapter 7 | Varying Probability Sampling | Shalabh, IIT Kanpur
Page 9



Let U, : i" unit,

P, : Probability of selection of U, at the first draw, i=1,2,...,N
N
>R

i=1

: Probability of selecting U, at the r" draw

(r)

Pi(l) = P|
Consider
P.,, = Probability of selection of U; at 2" draw.

i(2)

Such an event can occur in the following possible ways:

U, is selected at 2" draw when

- U, is selected at 1" draw and U, is selected at 2™ draw

- U, is selected at 1" draw and U, is selected at 2" draw

- U, is selected at 1* draw and U, is selected at 2™ draw

- U, is selected at 1" draw and U, is selected at 2™ draw

i+l

- U,, is selected at 1% draw and U, is selected at 2" draw

So B, can be expressed as

i(z):P1 —+P,——+..+PR, i +R, i +..+ Ry i
1 Pl 2 _Pi—l 1"'Pi+1 _PN
N
P
- Z e
i 1=F
N
_ Z P Pl +P| Pl -P Pl
"-p " '1-P '1-P

; 1
Pi(z) * Pi(]) for all I unless P, ZW'

will, in general, be different for each i=1,2,...,N. So E [L) will change with successive draws.

P
P

i(2)

This makes the varying probability scheme WOR more complex. Only I\i/_l will provide an unbiased

1

estimator of Y . In general, L(i # 1) will not provide an unbiased estimator of Y .
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Ordered estimates

To overcome the difficulty of changing expectation with each draw, associate a new variate with each
draw such that its expectation is equal to the population value of the variate under study. Such estimators
take into account the order of the draw. They are called the ordered estimates. The order of the value

obtained at previous draw will affect the unbiasedness of population mean.

We consider the ordered estimators proposed by Des Raj, first for the case of two draws and then

generalize the result.

Des Raj ordered estimator
Case 1: Case of two draws:
Let y, and y, denote the values of units U, and U, ,, drawn at the first and second draws respectively.

Note that anyone out of the N units can be the first unit or second unit, so we use the notations

U,,, and U, instead of U, and U, . Also note that y, and Yy, are not the values of the first two units in

i(1) i(2)
the population. Further, let p, and p, denote the initial probabilities of selection of Uiu) and Uie),

respectively.

Consider the estimators

LY
1 Npl

1 Y, }
Z,=—|y +—2—
’ N|:l pz/(l_p1)

Note that — 2 is the probability P, |U;,).

M
Estimation of Population Mean:
First, we show that Z is an unbiased estimator of Y .

E(Z)=Y .

N
Note that ) P =1.
=1
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Consider

1
E(z) = N E (L] [Note that L can take any one of out of the N values

Py

1

2

=LLP, Y2P+ +Y Py
NP ' P P,

Ea)——E[m+n( “q

2

1 (1-P)
—N[E(YIHE]{ [YZ 0,

<

where E: is the conditional expectation after fixing the unit U,

2

Ui(l) ]}] (Using E(Y)=E,[E, (Y| X)].

selected in the first draw.

Y.
Since Yy can take any one of the (N — 1) values (except the value selected in the first draw) P with

P,

- N

E{%@
p

2

.m} (- F’)ELO2

'“J - P)Z{P :P}

where the summation is taken over all the values of Y except the value yi which is selected at the first

draw. So

2

1-P, *
{yz( P )‘Ui(l):|:Zij:Ytot_yl'

Substituting it in E(z,), we have

E(2) =< [EG)+E (Y~ 1)
=ﬁwwm£um vl
1 Ytot _V
N E(Ytot) _W =Y.
Thus
(o) E@+E@)
2
_7+7
)
v
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Variance:

The variance of Z for the case of two draws is given as

13 _1
var(z)=|1-=)Y P’
@-(-350 o

Ny & (Y ’
z P| —-= Ytot - 2 Pu = Ytot
=l aN* & (R

Proof: Before starting the proof, we note the following property

i=j=1

which is used in the proof.

The variance of 7 is

Var(z)=E(z*)-[E@)]

N N[N
> ab, :Zl:ai Z‘bj
i= L i=

N

yz(l_ pl)

2
e gt
2N | p, P,

TaN?

2
1 E|:yl(1+ p1)+ y,(1- p1)} v
P,

pl

\2 \A
nature of nature of
variable variable
depends depends
only on upon 1* and
1¥ draw 2" draw

1 i{Yi(l+Pi)+Yj(l—Pi) PP | o

L +2YY.(1+P
1-P "( )

i j i

1 i{Yiz(l‘FPi)z P +Yj2(1_Pi)2 P }_Y—z'
1
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Using the property

N

ZN: ab, =Z {Zb -b, }, we can write

ij=1 i=1

DA e O AR S

i=1

ZN:YiZ (1+P? +2R)+ZN:R(1—R){ZN:Y§—§} 22 Y+ P)(ZY Y)}

N
Y2 +2Y2 +2Yt0tZYiPi:|—
1

N
'l\|42
B
.F|42
MZ

N N
ZFI)_ Ytot +Ytot] |112 |:ZY2 2Yt§t totZ:Y R +ANZY?
i i i=1

i=l

R B A AV N z
- (-age o Ea(g v | - be-ag e
i=1 i i i=l

2N i=1
18 1
+1-=> P? Yo
( 2; i ijz tot
& Y1 & (Y LY .
= I_EZPi 2szpi F_ tot _4 Z tO‘ZYP+2tOt 2Yt°t+zp o)
i=1 i=1 i i=
e R R N :
:(l_azpi ijz ZPI FI_Ytot _4N2 Z(Y 2Yt0tY'P+PYt°‘)
i=1 i=1 i i=1
L N DI IR . Se |
AN 2g T )& R ) ANt g T (R

reduction of variance
in WR with varying
probability

variance of WR

case for n=2
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Estimation of Var(7)
Var(z) =E(z°) - (E(7))’
=E(Z%)-Y*
Since
E(z2,)=E[zE(z,|u)]
=E[2Y]

:Y_E(Z1)
=Y.
Consider
E[7°-22, |=E(Z")-E(z2,)
=E(Z*)-Y’
=Var(7)

=Var(Z) =17’ -2z, is an unbiased estimator of Var(Z)

Alternative form

—~
Var(z)=7"-z,z,

2
Z+1
=| =] 2%
2

2
1 Y _Y.d-p)
_ 1—p)2_ 2V P

4N2|:( 1) pl p2 j|

2 2
_(-p) (L_LJ _
4N* (p, P

Case 2: General Case

Let (U;;),U;5)5-Uiq)»-Uj,)) be the units selected in the order in which they are drawn in n draws

where U,,, denotes that the i unit is drawn at the r™ draw. Let (y,Y,,..Y,,...Y,) and

(P> Pyseees Pyseees P,) be the values of study variable and corresponding initial probabilities of selection,

respectively. Further, let B, ,B,,.... B B, be the initial probabilities of U, ,U;,..;U; 50Uy

respectively.
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Further, let

N
Np,

Z =

| Yttty +%(1_ Py == Ppy) | for r=2,3,....n

A . : va
Consider 7 = —z Z, asan estimator of population mean Y.

r=1
We already have shown in case 1 that E(z,) =Y.

Now we consider E(z,),r =2,3,...,n. We can write

E(z, )_ EE[ 2 Ui YigyrUis |

where Ez is the conditional expectation after fixing the units U, ,U;,,...,U; ., drawn in the first (r - 1)

draws.

Consider

y Y,
E[p_r(l‘pl"" P 1)} 12[pr( Py~ “‘_pr—1)‘Ui(l)’ui(2)"”’ui(r—1)]

r

Y,
{(1 i~ Fiy " Fier - 1))E[ ‘l(l) |(2)""’Ui(r1)ﬂ'

Y.
y . ) .
Since conditionally I can take any one of the N - (r -1) values P—J, J=12,...,N with probabilities
P.
J
T TP R O

y
E[pr(l— P = pr_l)]

r

, SO

Yj Pj
1- P .
=Ro =R fe-1). 21 e Py

R~ R
s Ty
[J—l ‘}

N
where * denotes that the summation is taken over all the values of y except the y values selected in the first (r -1) draws
j=1

N
like as > , 1.e., except the values Y Yo Y

j=1=i1),i(2),...,i(r-1))

r—1 which are selected in the first (r -1) draws.
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Thus now we can express

1
E(Zr):WElEz YitY, ...t +%(1_ P = pr—l):|

1 N,
= WEl Yi(1)+Yi(2)+...+Yi(r1)+jZ_; YJ}

1 i N
= WE1 Yigy + i) oot Yy + E Y,
J=1((1,i(2),..i(r-1))

1T
=N E, _Yi(l) +Yio) + iy +{Ytot —(Yi(l) +Yi2 +...+Yi(r1))}}

1

= W El I:Ytot ]

Yo
N

=Y forall r=12,..,n.

Thus Z is an unbiased estimator of population mean Y .

The expression for variance of Z in general case is complex but its estimate is simple.

Estimate of variance:
Var(z)=E(z*)-Y".
Consider for r <,
E(z,z,) =E[z,E(z,|U,.U,,...,U, )]

=E[zY]

=YE(z,)

=Y?
because for r <s, z, will not contribute

and similarly for s<r,z, will not contribute in the expectation.
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Further, for s<r,

E(z,2,) = E[2.E(z |U,,U,,...U, )]

=E[2Y]

=Y_E(Zs)
=Y*.
Consider
| i n 2,2, |= 1 z ZE(zrzS)
N(N=1) 15505 Cn(n-1), 544
__ ! n(n-1)Y?
n(n—1)

=Y*.

Substituting Y * in Var(Z), we get

Var(zZ)=E(Z*)-Y"*

1 n n
=E(Z°)-E z,1,
|:n(n _1) r(g)::l s=1 i|

> Sa

n(n 1) r(#s)=1 s=1

n 2 n n n
Using (erj =sz+ > Dz,

r(#s)=1 s=1

> Y Yz -nr er,

r(#s)=l1 s=l

—Var(z)=7>-

The expression of \ﬁa\r(f) can be further simplified as

Var(z)=7>- n(nl_ 5 [nzf2 —Zn: zf}
n(n 1){ZZ }
n(n 1)2(
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Unordered estimator:
In ordered estimator, the order in which the units are drawn is considered. Corresponding to any ordered
estimator, there exist an unordered estimator which does not depend on the order in which the units are

drawn and has smaller variance than the ordered estimator.

N
In case of sampling WOR from a population of size N, there are [ j unordered sample(s) of size n.
n

Corresponding to any unordered sample(s) of size n units, there are n! ordered samples.
For example, for n =2 if the units are u, and u,, then

- there are 2! ordered samples - (u,,U,) and (u,,U,)

- there is one unordered sample (u,,U,).

Moreover,

[Probability of unorderedj [Probability of orderedj (Probability of ordered)
= +

sample (u,,u,) sample (u,,U,) sample (U,,U,)
For n=3, there are three units u,,u,,U, and

-there are following 3! = 6 ordered samples:
(U;,u,,U3), (U, U, U,), (Uy, Uy, Uy ), (U, Us, Uy ), (U, Uy, U ), (U, Uy, Uy)

- there is one unordered sample (u,,u,,U,).

Moreover,

Probability of unordered sample
= Sum of probability of ordered sample, i.e.
P(U,,U,,U) + P(U;, Uy, Uy) + P (U, Uy, Uy ) + P (UL, U Uy ) + P (UL UL Uy ) + P(US, Uy, Uy,

N
Let z4, 5= 1,2,..,( j, i=1,2,..,nl(=M) be an estimator of population parameter & based on ordered
n

sample s, . Consider a scheme of selection in which the probability of selecting the ordered sample (s,) is

P,; - The probability of getting the unordered sample(s) is the sum of the probabilities, i.e.,

M
ps = Z psi'
i=1
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For a population of size N with units denoted as 1, 2,..., N, the samples of size n are n— tuples. In the

n" draw, the sample space will consist of N(N —1)...(N —n+1) unordered sample points.

1
N(N=1)..(N=n+1)

Py, = P[selection of any ordered sample| =

. n! selection of any
Py = P[selectlon of any unordered sample] = P

=N
N(N =1)...(N—=n+1) ordered sample

MM p(N-n)! T

then ps: z psio_ N' [Nj

i=1

n

n NY) . A~ M
Theorem: If 6 =z, s= 1,2,...,( " J; 1=12,..,M(=n!)and 6, = Z z,,p;; are the ordered and unordered

i=1
estimators of @ repectively, then
(i) E(,)=E(@6,)
(i) Var(d,) <Var(,)

where z_ is a function of Sith ordered sample (hence a random variable) and p; is the probability of

Si

P

selection of s" ordered sample and p., =
S

N
Proof: Total number of ordered sample = n !( . j

(4]
(i) E(G)=>.> 24,

s=1 i=l

L
E(Hu)=Z(__ Z p;jps

s=1

D

Ps
= Zs: ZI: Zsi psi

=E(9,)

(ii) Since 6, = z,;,

A . N
SO 6’02 = Zfi with probability pg,1=1,2,...,M,s :1,2,...,( nJ.

R M R M 2
Similarly, 6, =Y z,py, so 6; :(Z Z, p;ij with probability p,
i=l i=l
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Consider
Var(8,) =E@)-[E@) |
=¥z p-[EG) |

Var(d,) = E@)-[E@)]
-3(zunnfea]
Var(@) ~Var(@)= £.¥.2 p, - X L. j 3
2D
R UL
-g{zanc(zen](ze)o (2w zae)e
2fpfenpen nfpunen]
ZT|e-grain o

—Var(g,)-Var(d,) > 0
or Var(d,) < Var(é,)

Estimate of VVar (4,)

Since

Var(6,)-Var(6,) = 22[@ PR p}

\ﬁa?(éu)=\ﬁaﬁ(éo)—zslzi:[(ma}
SHATLORD AT AR

Based on this result, now we use the ordered estimators to construct an unordered estimator. It follows
from this theorem that the unordered estimator will be more efficient than the corresponding ordered

estimators.
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Murthy’s unordered estimator corresponding to Des Raj’s ordered estimator for the
sample size 2

Suppose Y; and y; are the values of units U; and U; selected in the first and second draws respectively
with varying probability and WOR in a sample of size 2 and let p, and p; be the corresponding initial
probabilities of selection. So now we have two ordered estimates corresponding to the ordered samples
s, and s, as follows

s, =(¥;»Y;) with (U;,U))

s, =(y;, ;) with (U;,U;))
which are given as

Z(S)— {ﬂ+—p)pl+(ﬁ-p)—7}

where the corresponding Des Raj estimator is given by

1 Y. + yi yj(l_pi)
|y,

Zs) =5 {mp) (—p,—)ﬂ

and

where the corresponding Des Raj estimator is given by

Y+ — |
2N M P;

The probabilities corresponding to Z(s;) and Z(s,) are

pP(s) = p(s;)+ P(s,)
_ pi pj(z_ P — pj)
(I=p)(d=p;)

p'(s)=——""—
1 2_pi_pj
Pi

Ps =P
—Pi— B
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Murthy’s unordered estimate Z(U) corresponding to the Des Raj’s ordered estimate is given as
Z(U)=Z(s))p'(s) +Z(s,)P'(s,)

_Z()P(S) +Z(5,) P(S,)
p(s;)+ p(s;)

{a+p) +-py }(“pj-+ {a+p) r(1-pph }[pgj
p,[LI-p, P, 1-p; )

PiP; P;B;
74_7
l_pi l_pj
1{(Hp) +(1-p) L }a—pw{a+p>'+a p»”}a—g)
2N P P, P, P
(-p)+(-p,)
1_a—p»”{a+py+a—p»+a—p>y%a—po+a+p}
_2N_ ) p; ! i i P, i i
- 2_pi_pj
Yj
1- 1-
:< p) Rt
N@—n—m) '
Unbiasedness:

Note that y; and p, can take any one of the values out of V,,Y,,...,Yy and P,P,,..., B, respectively. Then
y; and p; can take any one of the remaining values out of Y,,Y,,...,Y, and B,P,,.... B, respectively, i.e.,

all the values except the values taken at the first draw. Now
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Y Yil|) BR . RPR

R = 1 lir "o,

- 1 i i I
E[zw]=1 X 5

2-P-

i<j

1P Ry
| (—j)ﬁ+(—i)€ Py
=——2
PJ

IN 5 2-P-P,

1-P)Yira-p %
| (1=P) o +( };

TANE& 2-P-

- _1 P, TR L
NG ( ).+(_ P [|a-P)1-P)

TONE|1-P 1-P

U %r—/
|
/—/%x

_'U
_'U —'U
| 9
_0|-T
|—

N N N
Using result z ab; = Zai {Z b, —b, }, we have

i#j=1 i=1

E[z(u)] =

= \ -
f_H
M=
—_—
|‘5
)

-
M=
_9g

|
fnv)
~
;\f—/
+
—
M=
—_—
|
5t

—~
M=

)
o

~

—
| |
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Variance: The variance of Z(u)can be found as

N (1—Pi—P,-)(l—Pi)(l—Pj)(ﬁ_LJzPiP,-(2—Pi—P,-)

7] =L
VarlzWl=3 2 o r-p)  |R B) (-RNI-B)

2
_ L FRAZR-PIY Y
2i¢j:lN2(2_Pi_Pj) R P

Using the theorem that Var(éu) < Var(éo) we get
Var[Z(u)] < Var [7(sl* )}

and Var [7(u)] < Var[ Z(s;) ]

Unbiased estimator of V [Z(u)]

An unbiased estimator of Var (7 | u) is

@[T(u)]:a—pi—pjxl—pi)(l—p,-)(i_ﬁ] |

N’(2-p —p;)’ PP

Horvitz Thompson (HT) estimate
The unordered estimates have limited applicability as they lack simplicity and the expressions for the
estimators and their variance becomes unmanageable when sample size is even moderately large. The HT

estimate is simpler than other estimators. Let N be the population size and Yy, (i=12,...,N) be the

value of characteristic understudy and a sample of size n is drawn by WOR using arbitrary probability of

selection at each draw.

Thus prior to each succeeding draw, there is defined a new probability distribution for the units available
at that draw. The probability distribution at each draw may or may not depend upon the initial probability
at the first draw.

Define a random variable ¢;(i=1,2,..,N) as

{1 if Y; is included in a sample 's' of size n
a =

0 otherwise.
ny, . , .
Let 7, = —, 1=1...N assuming E(¢;) > 0 for all |
NE(a)
where
E(e;)=1.P(Y, €5)+0.P(Y, ¢5)
:ﬂ'i

is the probability of including the unit i in the sample and is called as inclusion probability.

Sampling Theory| Chapter 7 | Varying Probability Sampling | Shalabh, IIT Kanpur
Page 25



The HT estimator of Y based on y,,Y,,..., Y, is
__ZZ
N
1 N
_HZ‘

Unbiasedness
S 1
E(Vyr) = Hz E(zi)
i=l

:%iZiE(ai)
1 N
__Z NE( )

n
N
212%:\7
nis' N

which shows that HT estimator is an unbiased estimator of the population mean.

Variance

V() =V(Z,)
=EZ)-[EE,)]
=E(Z ) \%8

Consider

)
:%E[iafzf Z ia.%z.zj}

i=1 i(=))=1 j=1
1 N
=—| > ZE(a})+ Z Zz E(aa
n i=1 i())=1 j=1

If S= {s} is the set of all possible samples and 7, is probability of selection of i unit in the sample s

then
E(o;)=1P(y, €s)+0.P(y; ¢5)
=1z, +0.(1-7) =,
E(a’)=1°.P(y, €s)+0°.P(y, &5)

=7,
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So
E(a)= E(ai2)

ZZMZZ% 7

i#j) i=l

where 7; is the probability of inclusion of i and j" unit in the sample. This is called as second-order

inclusion probability.

Now

V2 =[E@,)]

o]

:Lz ZZf[E(a ) } > > 72,E(e)E(a))

i(#i)=1 j=1

l—N ) N N
=— ZZ‘ T+ Z_Z;zinjzizj .

:LZ iﬂi (1_”i)zi2+ Z Z(”ij_ﬂ'iﬂi)zizjj|

L= i(<D)=1 i1

N N

:Lz Zﬁ(l )y LT ol T y'y’}
7T

n F o i

ke b,

i=1 i(=j)=1 j=1 |

Estimate of variance

-Gty = ] S0, $ 8 momm ]
T " -

i=1 i i(zj)=1 j=1
This is an unbiased estimator of variance.

| Y
TT.

Drawback: It does not reduces to zero when al are same, i.e., when Y, o 7,.

Consequently, this may assume negative values for some samples.
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A more elegant expression for the variance of ?HT has been obtained by Yates and Grundy.

Yates and Grundy form of variance

Since there are exactly n values of ¢; which are 1 and (N —n) values which are zero, so

N
> a; =n.
i=1

Taking expectation on both sides
N
Y E(a)=n.
i=1

Also

=2 E(@)+ > D E(aa))

i=1 i(=j)=1 j=I

) E(e;)+ i iE(aiaJ) (using E(a;) = E(;))

i=1 i(=))=1 j=1

n*=n+ i iE(aiaJ)

i=j)=1 j=I

i i E(aa;) =n(n—1)

i(=j)=1 j=1

(24)
5

E(n)2 =

Thus E(aa;) =P(a; =1,a; =1)
=P(a; =D)P(q; =1|; =1)
= E(a)E(a;|a; =1)

Therefore

> (B @)~ E(@)E(a)]

j(#i)=1

= Y [E@)E(e;|e =1)-E(a)E(a))]
j(i)=1

“E@) Y [E@ @ -)-E@,)]

j(h=1

= E(a)[(n-1)—(n-E(a)]

= _E(ai)[l— E(ai)]

=-—n,(1-1m,) @1

Similarly

N

Y [E@a)-E@)E(@)]=-7(1-7). (2

i(%j)=1
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We had earlier derived the variance of HT estimator as

var(v )= [Zna 7)2: + Z Z(;r,, 772 }

i(=))=1 j=I
Using (1) and (2) in this expression, we get

Zﬂ'(l )z} +Z7r (1- 7Z')Z —ZZZ(ﬂ'Iﬂ'J )2z,

Var<ﬁT)— {
i#j=1 j=1

|: i{ i E(O‘ioﬁ)—E(ai)E(ozj)}zi2

i1 (=01

{ N E(Oliaj)—E(ai)E(Olj)}Z?—Z ZN: ZH:{E(ai)E(aj)_E(aiaj)}zizj}
i(#

Mz

D=1 i(=))=1 j=1

Il
—_

j

i(=j)=1 j=I

H z Z(—ﬂ' + 7,7, )Zi2+ i i(—ﬂ' +7z7r)2 +2 Z Z(ﬁ” 7Z'i7Z'i)ZiZj:|
i(#j)=1 j=I

" on’

i(=))=1 j=1

[ > Z(ﬂ' -z} + 7] - 27,2, )}

i(=))=1 j=1

The expression for 7z; and 7; can be written for any given sample size

For example, for n =2, assume that at the second draw, the probability of selecting a unit from the units

available is proportional to the probability of selecting it at the first draw. Since

E(e;) = Probability of selecting Y; in a sample of two

=R +R,
where P, is the probability of selecting Y, at r" draw (r =1,2). If P is the probability of selecting the i

unit at first draw (i =1,2,...,N) then we had earlier derived that

y; is not selected} P{yi is selected at 2™ draw|

at 1* draw y, is not selected at 1 draw

s 'i
2-211—Pj

So
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Again
E(aa;) = Probability of including both y; and y; in a sample of size two

=P, Py, + PPy,

i1’ 2l

Estimate of Variance
The estimate of variance is given by

o~ A 1 n ﬂ'i.
Var(Yy;) ZF z Z—J(Zi _Zj)z'

i(#)) j=1 7

Midzuno system of sampling:
Under this system of selection of probabilities, the unit in the first draw is selected with unequal
probabilities of selection (i.e., pps) and remaining all the units are selected with SRSWOR at all

subsequent draws.

Under this system
E(e;) =7 =P (unit i (U,) is included in thesample)

=P (U, is included in 1 draw) +P(U, is included in any other draw)

{ Probability that U, is not selected at the first draw and
P+

is selected at any of subsequent (n-1) draws

n-1
—P+(1-P)———~
+(1-R)T—
:N_nF)i+n__1
N -1 N -1
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Similarly,

E(a;a;) = Probability that both the units U, and U; are in the sample

Probability that U, is selected at the first draw and
U, is selected at any of the subsequent draws (n—1) draws

Probability that U is selected at the first draw and J

U, is selected at any of the subsequent (n—1) draws

Probability that neither U; nor U is selected at the first draw but J

both of them are selected during the subsequent (n—1) draws

:Pin__1+ Pjn—_1+(l_|:)i _pj) (n-H(n-2)
N-1 N-1 (N -1)(N -2)

:M{M(mpﬂﬂ_—z}

(N—1)| N—2 N-2
7ri-=n—_1[N_n(F’i+P.)+n_2}.
ITNCI N2 TN

Similarly,

E(aa;a,) = 7y, = Probability of including U;,U; and U, in the sample

_ (n=-DH(n-2) [N_n(F’i+P.+Pk)+ n—3}
(N-1)(N-2)| N-3 j N-3

By an extension of this argument, if U,,U j,...,Ur are the r units in the sample of size n(r <n), the

probability of including these r units in the sample is

_ (n=D)(n=2)..(n—r+1)
TN =1)(N=2)..(N=r+1)

[N_n(F’i+Pj+...+R)+ ”_r}
;

E(qa...a)=r,
(alaj ar) ﬂ-u N — N—r

Similarly, if U,,U,,...,U, be the n units, the probability of including these units in the sample is

B B (n—-1)(n-2)...1
E(aa;..a)=m; ,= (N=1)(N-2)(N—n+D) (BR+P+..+P)
=;(Pi +P +..+PF)

N -1
n—1
which is obtained by substituting r =n.

Thus if P's are proportional to some measure of size of units in the population then the probability of

selecting a specified sample is proportional to the total measure of the size of units included in the

sample.
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Substituting these 7;,7;, 7z etc. in the HT estimator, we can obtain the estimator of population’s mean

ij°

and variance. In particular, an unbiased estimate of variance of HT estimator given by

Var(Y_HT)_ Zz PR (g, - z;)’
i=j=1 j=1 U
where
-z = {(N N)PP, +~— 1(1—3—&)}.
(N-1)? N-2

The main advantage of this method of sampling is that it is possible to compute a set of revised
probabilities of selection such that the inclusion probabilities resulting from the revised probabilities are
proportional to the initial probabilities of selection. It is desirable to do so since the initial probabilities

can be chosen proportional to some measure of size.
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