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Chapter 7 

Varying Probability Sampling 

 

The simple random sampling scheme provides a random sample where every unit in the population has 

an equal probability of selection. Under certain circumstances, more efficient estimators are obtained by 

assigning unequal probabilities of selection to the units in the population. This type of sampling is known 

as varying probability sampling scheme. 

 

If Y is the variable under study and X is an auxiliary variable related to Y, then in the most commonly 

used varying probability scheme, the units are selected with probability proportional to the value of X, 

called as size. This is termed as probability proportional to a given measure of size (pps) sampling. If the 

sampling units vary considerably in size, then SRS does not takes into account the possible importance of 

the larger units in the population. A large unit, i.e., a unit with a large value of Y contributes more to the 

population total than the units with smaller values, so it is natural to expect that a selection scheme which 

assigns more probability of inclusion in a sample to the larger units than to the smaller units would 

provide more efficient estimators than the estimators which provide equal probability to all the units. This 

is accomplished through pps sampling.  

  

Note that the “size” considered is the value of auxiliary variable X and not the value of study variable Y. 

For example, in an agriculture survey, the yield depends on the area under cultivation. So bigger areas are 

likely to have a larger population, and they will contribute more towards the population total, so the value 

of the area can be considered as the size of the auxiliary variable. Also, the cultivated area for a previous 

period can also be taken as the size while estimating the yield of the crop. Similarly, in an industrial 

survey, the number of workers in a factory can be considered as the measure of size when studying the 

industrial output from the respective factory. 

 
Difference between the methods of SRS and varying probability scheme: 

In SRS, the probability of drawing a specified unit at any given draw is the same. In varying probability 

scheme, the probability of drawing a specified unit differs from draw to draw. 

It appears in pps sampling that such procedure would give biased estimators as the larger units are over-

represented and the smaller units are under-represented in the sample. This will happen in the case of the 

sample mean as an estimator of the population mean where all the units are given equal weight. Instead of 

giving equal weights to all the units, if the sample observations are suitably weighted at the estimation 

stage by taking the probabilities of selection into account, then it is possible to obtain unbiased 

estimators. 
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In pps sampling, there are two possibilities to draw the sample, i.e., with replacement and without 

replacement. 

 

Selection of units with replacement: 

The probability of selection of a unit will not change, and the probability of selecting a specified unit is 

the same at any stage. There is no redistribution of the probabilities after a draw. 

 

Selection of units without replacement: 

The probability of selection of a unit will change at any stage, and the probabilities are redistributed after 

each draw. 

 

PPS without replacement (WOR) is more complex than PPS with replacement (WR). We consider both 

the cases separately. 

 

 

PPS sampling with replacement (WR):  

First, we discuss the two methods to draw a sample with PPS and WR. 

 

1. Cumulative total method: 

The procedure of selecting a simple random sample of size n  consists of 

- associating the natural numbers from 1 to N  units in the population and 

- then selecting those n units whose serial numbers correspond to a set of n  numbers where each 

number is less than or equal to N  which is drawn from a random number table. 

 

In the selection of a sample with varying probabilities, the procedure is to associate with each unit a set of 

consecutive natural numbers, the size of the set being proportional to the desired probability. 

 

If 1 2, ,..., NX X X  are the positive integers proportional to the probabilities assigned to the N  units in the 

population, then a possible way to associate the cumulative totals of the units. Then the units are selected 

based on the values of cumulative totals. This is illustrated in the following table: 
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Units Size Cumulative Total  
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table. 
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In this case, the probability of selection of ith unit is 
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Note that NT  is the population total which remains constant. 

 

Drawback: This procedure involves writing down the successive cumulative totals. This is time-

consuming and tedious if the number of units in the population is large. 

 

This problem is overcome in Lahiri’s method. 

 

Lahiri’s method: 

Let 
1,2,...,

,i
i N

M Max X


  i.e., maximum of the sizes of N  units in the population or some convenient number 

greater than M . 

The sampling procedure has the following steps: 

1. Select a pair of the random number (i, j) such that 1 , 1 .i N j M     

2. If ,ij X  then ith unit is selected otherwise rejected and another pair of random number is 

chosen. 

3. To get a sample of size n , this procedure is repeated till n  units are selected. 

Now we see how this method ensures that the probabilities of selection of units are varying and are 

proportional to size. 
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Probability of selection of ith unit at a trial depends on two possible outcomes 

– either it is selected at the first draw  

– or it is selected in the subsequent draws preceded by ineffective draws. Such probability is given by 

*

(1 ) (1 | )

1
. , say.i

i

P i N P j M i

X
P

N M

   

 
 

1

1
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1
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The probability that unit i  is selected (all other previous draws result in the non selection of unit i) 
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P QP Q P

P

Q

X NM X X
X
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Thus the probability of selection of unit i  is proportional to the size iX . So this method generates a pps 

sample. 

 

Advantage:  

1. It does not require writing down all cumulative totals for each unit. 

2. Sizes of all the units need not be known beforehand. We need only some number greater than the 

maximum size and the sizes of those units which are selected by the choice of the first set of 

random numbers 1 to N  for drawing sample under this scheme. 

 

Disadvantage: It results in the wastage of time and efforts if units get rejected. 

A draw is ineffective if one of the ineffective random numbers is selected.  

The probability of rejection of a drawn number, i.e., probability that no unit is selected at a trial 

1

1 1
. 1 . 1 .

N
i

i

X NX X
N

N M N M M

         
   

  

The expected numbers of draws required to draw one unit 
M

X
 . 

This number is large if M  is much larger than .X  
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Example: Consider the following data set of 10 number of workers in the factory and its output. We 
illustrate the selection of units using the cumulative total method.  
 

Factory no. Number of workers 

(X) (in thousands) 

Industrial production 

(in metric tons) (Y) 

Cumulative total of sizes 

1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
8 
 
9 
 

10 

2 
 
5 
 

10 
 
4 
 
7 
 
2 
 
3 
 

14 
 

11 
 
6 

30 
 

60 
 

12 
 
6 
 
8 
 

13 
 
4 
 

17 
 

13 
 
8 

1 2T   

 

2 2 5 7T     

 

3 2 5 10 17T      

 

4 17 4 21T     

 

5 21 7 28T     

 

6 28 2 30T     

 

7 30 3 33T     

 

8 33 14 47T     

 

9 47 11 58T     

 

10 58 6 64T     

 

Selection of sample using cumulative total method: 

 

1. First draw: - Draw a random number between 1 and 64. 

 - Suppose it is 23 

 - 4 523T T   

 - 5Unit is selected and 8 enters in the sampleY Y  .  

 

2. Second draw: 

- Draw a random number between 1 and 64 

- Suppose it is 38 

- 7 838T T   

- Unit 8 is selected and 8 17Y   enters the sample  

-  and so on.  

- This procedure is repeated until the sample of required size is obtained. 
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Selection of sample using Lahiri’s Method 

In this case 

 
1,2,...,10

14i
i

M Max X


   

So we need to select a pair of random number ( , )i j  such that 1 10, 1 14i j    . 

Following table shows the sample obtained by Lahiri’s scheme: 

Random no  Random no  Observation  Selection of unit 

1 10i    1 14j         

 3    7   37 10j X    trial accepted 3( )y  

  
 8    13   813 14j X    trial accepted 8( )y  

 
 4    7   47 4j X    trial rejected 

 
 2    9   29 5j X     trial rejected 

 
 9    2   92 11j X    trial accepted 9( )y  

  

and so on. Here 3 8 9( , , )y y y  are selected into the sample. 

 
Varying probability scheme with replacement: Estimation of population mean 

Let 

:iY  Value of study variable for the ith unit of the population, i = 1, 2,…,N. 

:iX  Known value of an auxiliary variable (size) for the ith unit of the population. 

:iP  Probability of selection of ith unit in the population at any given draw and is proportional to size .iX  

1, 2 ., , ,i
i

i

Y
Z i N

NP
    

 

Consider the varying probability scheme and with replacement for a sample of size n. Let ry  be the value 

of rth observation on study variable in the sample and rp  be its initial probability of selection. Define  

 , 1,2,..., ,r
r

r

y
z r n

Np
   

then
1

1 n

i
r

z z
n 

  is an unbiased estimator of the population mean Y , variance of z  is 
2
z

n


 where 

2

2

1

N
i

z i
i i

Y
P Y

NP




 
  

 
  and an unbiased estimate of variance of z  is 

2
2

1

1
( )

1

n
z

r
r

s
z z

n n 

 
  . 
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Proof: 

Note that rz  can take any one of the N values out of 1 2, ,..., NZ Z Z  with corresponding initial probabilities 

1 2, ,..., ,NP P P  respectively. So 

1

1

( )

.

N

r i i
i

N
i

i
i i

E z Z P

Y
P

NP

Y













  

Thus 

1

1

1
( ) ( )

1

.

n

r
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n

i

E z E z
n

Y
n

Y













  

So z is an unbiased estimator of the population mean Y . 
 

The variance of z  is 

2
1

'
2

1

are independent in WR case

1
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1
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n
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r r
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To show that 
2
zs

n
 is an unbiased estimator of the variance of z , consider 
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which is the same as in the case of SRSWR. 
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Estimation of population total: 

An estimate of population total is 

 
1
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Taking expectation, we get 
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Thus t̂otY  is an unbiased estimator of population total. Its variance is 
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An estimate of the variance 

 
2

2ˆ( ) .z
tot

s
Var Y N

n
  

 

Varying probability scheme without replacement  

 In varying probability scheme without replacement, when the initial probabilities of selection are 

unequal, then the probability of drawing a specified unit of the population at a given draw changes with 

the draw. Generally, the sampling WOR provides a more efficient estimator than sampling WR. The 

estimators for population mean and variance are more complicated. So this scheme is not commonly used 

in practice, especially in large scale sample surveys with small sampling fractions. 
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Let :iU  thi  unit,  

 :iP Probability of selection of iU  at the first draw, i 1, 2,..., N   

 
1

1
N

i
i

P


  

 ( ) :i rP  Probability of selecting atiU  the thr  draw  

 (1) .i iP P  

Consider 

(2)iP   Probability of selection of iU  at 2nd draw. 

Such an event can occur in the following possible ways: 
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1
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(2) (1)i iP P  for all i  unless 
1

.iP
N

  

(2)iP  will, in general, be different for each i = 1,2,…, N . So i

i

y
E

p

 
 
 

 will change with successive draws. 

This makes the varying probability scheme WOR more complex. Only 1

1

y

Np
 will provide an unbiased 

estimator of Y . In general, ( 1)i

i

y
i

Np
  will not provide an unbiased estimator of Y . 
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Ordered estimates 

To overcome the difficulty of changing expectation with each draw, associate a new variate with each 

draw such that its expectation is equal to the population value of the variate under study. Such estimators 

take into account the order of the draw. They are called the ordered estimates. The order of the value 

obtained at previous draw will affect the unbiasedness of population mean. 

 

We consider the ordered estimators proposed by Des Raj, first for the case of two draws and then 

generalize the result. 

 

Des Raj ordered estimator 

Case 1: Case of two draws: 

Let 1 2andy y  denote the values of units (1) (2)andi iU U  drawn at the first and second draws respectively. 

Note that anyone out of the N units can be the first unit or second unit, so we use the notations 

(1) (2)andi iU U instead of 1 2andU U . Also note that 1 2andy y are not the values of the first two units in 

the population. Further, let 1 2andp p  denote the initial probabilities of selection of Ui(1) and Ui(2), 

respectively. 

 

Consider the estimators 

1
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(1 )1

.
2

y
z

Np

y
z y

N p p

p
y y

N p

z z
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Note that 2

11

p

p
 is the probability (2) (1)( | ).i iP U U  

Estimation of Population Mean: 

First, we show that z  is an unbiased estimator of Y . 

 ( )E z Y . 

Note that 
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i
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Consider 
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Note that can take any one of out of the values        
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Using

 

where E2 is the conditional expectation after fixing the unit (1)iU  selected in the first draw.  

Since 2

2

y

p
 can take any one of the (N – 1) values (except the value selected in the first draw) j

j

Y

P
 with 

probability 
1

,
1

jP

P
 so 

 
*1 2

2 2 (1) 1 2 (1) 1
2 2 1
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1
j j

i i j
j

Y PP y
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 . 

where the summation is taken over all the values of Y except the value y1 which is selected at the first 

draw. So 
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2 2 (1) 1
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Substituting it in 2( ), we haveE z  
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1
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Variance: 

The variance of z  for the case of two draws is given as 

2 2

2 2
2 2

1 1 1

1 1 1
( ) 1

2 2 4

N N N
i i

i i tot i tot
i i ii i

Y Y
Var z P P Y P Y
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Proof: Before starting the proof, we note the following property 
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which is used in the proof. 
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Using the property 

1 1 1
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1 1 1 1

1

4

1 1 1
   

2 4 4

N N
i i

i tot i tot
i ii i

N N N N
i i i

i i tot i tot
i i i ii i i

Y Y
P Y P Y

P N P

Y Y Y
P Y P Y P Y

NP N P N P

 

   

   
     

    

     
          

     

 

   
`   

 

2 2 2

2 2
2 2

1 1 1 1

1 1 1
( )

2 4 4

variance of WR reduction of variance

case for 2 in WR with varying

probability

   

     
          

     
 



   
N N N N

i i i
i i tot i tot

i i i ii i i

Y Y Y
Var z P Y P Y P Y

NP N P N P

n
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Estimation of ( )Var z   

 



2 2

2 2

1 2 1 2 1

1

1

2

2 2
1 2 1 2

2 2

2
1 2

     ( ) ( ) ( ( ))

        ( )

Since

      ( ) ( | )

   

 ( )

  .

Consider

        ( ) ( )

       ( )

         ( )

( ) is an unbiased e

Var z E z E z

E z Y

E z z E z E z u

E z Y

YE z

Y

E z z z E z E z z

E z Y

Var z

Var z z z z

 

 



   




    
 


   stimator of ( )Var z

 

 

Alternative form 

 2
1 2

2

1 2
1 2

2
1 2

2

1 1 2 1

1 2

2

1 2 1
12

1 2

22
1 1 2
2

1 2

( )

2

( )

4

11

4

(1 )1
(1 )

4

(1 )
.

4

Var z z z z

z z
z z

z z

y y y p

Np N N p

y y p
p

N p p

p y y

N p p

 

   
 




 
   

 

 
   

 

 
  

 

 

 

Case 2: General Case 

Let (1) (2) ( ) ( )( , ,..., ,..., )i i i r i nU U U U  be the units selected in the order in which they are drawn in n draws 

where ( )i rU  denotes that the ith unit is drawn at the rth draw. Let 1 2( , ,.., ,..., )r ny y y y  and 

1 2( , ,..., ,..., )r np p p p  be the values of study variable and corresponding initial probabilities of selection, 

respectively. Further, let (1) (2) ( ) ( ), ,..., ,...,i i i r i nP P P P  be the initial probabilities of (1) (2) ( ) ( ), ,..., ,..., ,i i i r i nU U U U  

respectively.  
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Further, let 

1
1

1

1 2 1 1 1

1

for

Consider as an estimator of population mean  .

            

1
            ... (1 ... ) 2,3,..., .

1
   

r
r r r

r

n

r
r

y
z

Np

y
z y y y p p r n

N p

z z Y
n

 





 
         

 

 

 

We already have shown in case 1 that 1( )E z Y .   

Now we consider ( ), 2,3,..., .rE z r n  We can write 

1 2 (1) (2) ( 1)

1
( ) , ,...,r r i i i rE z E E z U U U

N 
     

where E2 is the conditional expectation after fixing the units (1) (2) ( 1), ,...,i i i rU U U   drawn in the first (r - 1) 

draws.  

Consider            

          (1 ... ) (1 ... ) , ,...,1 1 1 2 1 1 (1) (2) ( 1)

                                            (1 ... ) ,1 (1) (2) ( 1) 2 (1)

   
   
      

        

    

y yr rE p p E E p p U U Ur r i i i rp pr r

yrE P P P E U Ui i i r i ipr
,..., .(2) ( 1)

Since conditionally can take any one of the - ( -1) values , 1,2,...,   with probabilities 

,  so
1 ...(1) (2) ( 1)

  
  
  

  




   

Ui r

Yy jr N r j N
p Pr j

Pj
P P Pi i i r

 

*          (1 ... ) (1 ... ) .1 1 1 (1) (2) ( 1) (1 ... )1 (1) (2) ( 1)

*                                              1
1

*where    deno
1

Y Py N j jrE p p E P P Pr i i i rp P P P Pjr j i i i r

N
E Y j

j

N

j

  
  
      

 
 
 
 

            

 





tes that the summation is taken over all the values of   except the  values selected in the first (  -1) draws  

like as  , i.e., except  the values  , ,...,  which 1 2 1
1( (1), (2),..., ( 1))

y y r

N
y y yr

j i i i r
   

are selected in the first ( -1) draws.  r
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1 2 1 2 1 1 1

*
1 (1) (2) ( 1)

1

1 (1) (2) (

Thus now we can express

1
            ( ) ... (1 ... )

1
                     ...

1
                     ...

r
r r r

r

N

ji i i r
j

i i i r

y
E z E E y y y p p

N p

E Y Y Y Y
N

E Y Y Y
N

 






 
 
 

 
 
  

       

    

   



  

1)
1( (1), (2),..., ( 1))

1 (1) (2) ( 1) (1) (2) ( 1)

1

1
                     ... ...

1
                     

                     

              

N

j
j i i i r

toti i i r i i i r

tot

tot

Y

E Y Y Y Y Y Y Y
N

E Y
N

Y
N

  

 

 
 
  

 
  

  



        







for all               1,2,..., .Y r n   

 

Then 

 

   
1

1

1

1
        

        .

n

r
r

n

r

E z E z
n

Y
n

Y













  

Thus z  is an unbiased estimator of population mean Y . 

The expression for variance of z  in general case is complex but its estimate is simple.  

 

Estimate of variance: 
2 2( ) ( )Var z E z Y  . 

Consider for ,r s  

 1 2 1

2

( ) ( | , ,..., )

( )

r s r s s

r

r

E z z E z E z U U U

E z Y

YE z

Y



   





 

because for , rr s z  will not contribute 

and similarly for , ss r z  will not contribute in the expectation. 
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Further, for ,s r  

 1 2 1

2

( ) ( | , ,..., )

( )

.

r s s r r

s

s

E z z E z E z U U U

E z Y

YE z

Y



   





 

Consider 

( ) 1 1 ( ) 1 1

2

2

1 1
( )

( 1) ( 1)

1
                                      ( 1)

( 1)

                                      .

n n n n

r s r s
r s s r s s

E z z E z z
n n n n

n n Y
n n

Y

     

 
   

 




   

 

Substituting 2 in ( ), we getY Var z  

 



2 2

2

( ) 1 1

2

( ) 1 1

( ) ( )

1
          ( )

( 1)

1
( )

( 1)

  

  

 

 
    

  


 

 

n n

r s
r s s

n n

r s
r s s

Var z E z Y

E z E z z
n n

Var z z z z
n n

 

2

2

1 1 ( ) 1 1

2 2 2

( ) 1 1 1

Using

         ,

n n n n

r r r s
r r r s s

n n n

r s r
r s s r

z z z z

z z n z z

    

   

    
 

  

   

  
 

 

The expression of ( )Var z can be further simplified as  

 2 2 2 2

1

2 2

1

2

1

1
( )

( 1)

1

( 1)

1
( ) .

( 1)

n

r
r

n

r
r

n

r
r

Var z z n z z
n n

z nz
n n

z z
n n
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Unordered estimator: 

In ordered estimator, the order in which the units are drawn is considered. Corresponding to any ordered 

estimator, there exist an unordered estimator which does not depend on the order in which the units are 

drawn and has smaller variance than the ordered estimator. 

In case of sampling WOR from a population of size N , there are 
N

n

 
 
 

 unordered sample(s) of size n . 

Corresponding to any unordered sample(s) of size n  units, there are !n  ordered samples. 
For example, for 2n   if the units are 1 2andu u , then 

- there are 2! ordered samples - 1 2 2 1( , ) and ( , )u u u u  

- there is one unordered sample 1 2( , )u u . 

 
Moreover, 

1 2 1 2 2 1

Probability of unordered Probability of ordered Probability of ordered

sample ( , ) sample ( , ) sample ( , )u u u u u u

     
      

     
 

For 3,n   there are three units 1 2 3, ,u u u  and 

-there are following 3! = 6 ordered samples: 

 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , )u u u u u u u u u u u u u u u u u u  

- there is one unordered sample 1 2 3( , , ).u u u  

 

Moreover, 

 

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

Probability of unordered sample   

= Sum of probability of ordered sample, i.e.

   ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ),P u u u P u u u P u u u P u u u P u u u P u u u    
  

 

Let , 1,2,.., , 1, 2,..., !( )si

N
z s i n M

n

 
   

 
 be an estimator of population parameter   based on ordered 

sample is . Consider a scheme of selection in which the probability of selecting the ordered sample ( )is  is 

sip . The probability of getting the unordered sample(s) is the sum of the probabilities, i.e., 

 
1

.
M

s si
i

p p
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For a population of size N  with units denoted as 1, 2,…, N , the samples of size n  are n  tuples. In the 

nth draw, the sample space will consist of ( 1)...( 1)N N N n    unordered sample points. 

 

 

 

1
selection of any ordered sample

( 1)...( 1)

selection of any!
selection of any unordered sample !

ordered sample( 1)...( 1)

sio

siu

p P
N N N n

n
p P n P

N N N n

 
  

 
        

 

then 
( !)

1

!( )! 1
.

!

M n

s sio
i

n N n
p p

NN

n






  

 
 
 

  

 

0
1

ˆ ˆ: If , 1,2,..., ; 1, 2,..., ( !) and


       
 

Theorem
M

si u si si
i

N
z s i M n z p

n
   are the ordered and unordered 

estimators of   repectively, then 

(i) 0
ˆ ˆ( ) ( )uE E   

(ii) 0
ˆ ˆ( ) ( )uVar Var   

where 
isz  is a function of th

is  ordered sample (hence a random variable) and 
isp  is the probability of 

selection of th
is  ordered sample and   si

si
s

p
p

p
. 

Proof: Total number of ordered sample = !
N

n
n

 
 
 

 

 

0
1 1

1 1

0

ˆ( ) ( )

ˆ( )

ˆ( )

 
 
 

 

 
 
 

 



   
 
 

  
 







 

 



N

n M

si si
s i

N

n M

u si si s
s i

si
si s

s i s

si si
s i

i E z p

E z p p

p
z p

p

z p

E







 

(ii) Since 0̂ ,siz   so 2 2
0̂ siz   with probability , 1,2,..., , 1, 2,...,si

N
p i M s

n

 
   

 
. 

Similarly, 
2

2

1 1

ˆ ˆ, so
 

     
 

 
M M

u si si u si si
i i

z p z p   with probability sp  
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Consider 

2
2

0 0 0

2
2

0

2
2

2
2

0

ˆ ˆ ˆ( ) ( ) ( )

ˆ            ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ            ( )

    

    

    

        



 

si si
s i

u u u

si si s
s i

Var E E

z p E

Var E E

z p p E

  



  



 

2

2
0

2

2

2

2

ˆ ˆ( ) ( )

2

2

     
 

    
 

      
  

                  
        

  

  

  

    

u si si si si s
s i s i

si si si si s
s i s i

si si si si s
s i i

si si si si si si si si si s
s i i i i i

Var Var z p z p p

z p z p p

z p z p p

z p z p p z p z p p

 

2

2

2

0

0

2

( ) 0

ˆ ˆ( ) ( ) 0

ˆ ˆor ( ) ( )

              
       
     

  





   

 

si si si si si si si si si
s i i i

si si si si
s i i

u

u

z p z p p z p z p

z z p p

Var Var

Var Var

 

 

 

Estimate of Var ˆ( )u  

Since 

  

 

2
0

2
0

2
0

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ( ) ( ) .

     
     

    

 

 

  

u si si si si
s i i

u si si si si
s i i

si si si si si
i i i

Var Var z z p p

Var Var z z p p

p Var p z z p

 

 



 

Based on this result, now we use the ordered estimators to construct an unordered estimator. It follows 

from this theorem that the unordered estimator will be more efficient than the corresponding ordered 

estimators. 
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Murthy’s unordered estimator corresponding to Des Raj’s ordered estimator for the 

sample size 2 

Suppose andi jy y  are the values of units andi jU U  selected in the first and second draws respectively 

with varying probability and WOR in a sample of size 2 and let andi jp p  be the corresponding initial 

probabilities of selection. So now we have two ordered estimates corresponding to the ordered samples 

* *
1 2and s s  as follows 

 
*
1

*
2

( , ) with ( , )

( , ) with ( , )

i j i j

j i j i

s y y U U

s y y U U




 

which are given as 

 *
1

1
( ) (1 ) (1 )

2
ji

i i
i j

yy
z s p p

N p p

 
    

  
 

where the corresponding Des Raj estimator is given by 

 
(1 )1

2
j ii

i
i j

y py
y

N p p

 
  

  
 

and 

*
2

1
( ) (1 ) (1 )

2
j i

j j
j i

y y
z s p p

N p p

 
    

  
 

where the corresponding Des Raj estimator is given by 

(1 )1
.

2
j i j

j
j i

y y p
y

N p p

 
  

  
 

The probabilities corresponding to *
1( )z s and *

2( )z s  are 

*
1

*
2

* *
1 2

( )
1

( )
1

( ) ( ) ( )

(2 )

(1 )(1 )

i j

i

j i

j

i j i j

i j

p p
p s

p

p p
p s

p

p s p s p s

p p p p

p p







 

 


 

 

 

*
1

*
2

1
'( )

2

1
'( ) .

2

j

i j

i

i j

p
p s

p p

p
p s

p p
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Murthy’s unordered estimate ( )z u  corresponding to the Des Raj’s ordered estimate is given as 

* *
1 1 2 2

* * * *
1 1 2 2

* *
1 2

( ) ( ) '( ) ( ) '( )

( ) ( ) ( ) ( )

( ) ( )

1 1
(1 ) (1 ) (1 ) (1 )

2 1 2 1

1 1

j i j j j ii i
i i j j

i j i j i j

i j j i

i

z u z s p s z s p s

z s p s z s p s

p s p s

y p p y p py y
p p p p

N p p p N p p p

p p p p

p

 






                                          


 

   

1
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

2

(1 ) (1 )

1
(1 ) (1 ) (1 ) (1 ) (1 ) (1

2

2

(1 ) (1 )

.
(2 )

j

j ji i
i i j j j i

i j i i

j i

ji
j i i i j j

i j

i j

ji
j i

i j

i j

p

y yy y
p p p p p p

N p p p p

p p

yy
p p p p p p

N p p

p p

yy
p p

p p

N p p

                 
      

  

 
         

  
 

  


 

 

 

Unbiasedness: 

Note that andi iy p  can take any one of the values out of 1 2, ,..., NY Y Y  and 1 2, ,..., ,NP P P  respectively. Then 

andj jy p  can take any one of the remaining values out of 1 2, ,..., NY Y Y  and 1 2, ,..., ,NP P P  respectively, i.e., 

all the values except the values taken at the first draw. Now 



 

	Sampling	Theory| Chapter 7 | Varying Probability Sampling | Shalabh, IIT Kanpur 
Page 24

 
(1 ) (1 )

1 11
( )

2

(1 ) (1 )
1 11

2
2 2

(1
1

2

j i j i ji
j i

i j i j

i j i j

j i j j ii
j i

i j i j

i j i j

Y PP PPY
P P

P P P P
E z u

N P P

Y PP P PY
P P

P P P P

N P P

N





                       
 

                       
 









        

         

         

) (1 )
1 1

2

1
(1 ) (1 )

2 (1 )(1 )

1

2 1 1

j i j j ii
j i

i j i j

i j i j

j i ji
j i

i j i j i j

i j j i

i j i j

Y PP P PY
P P

P P P P

P P

Y PPY
P P

N P P P P

Y P Y P

N P P







                      
 

                  

 
  

   







         

         
 

 

Using result 
1 1 1

,
N N N

i j i j i
i j i j

a b a b b
   

 
  

 
    we have 

 

 
1 1 1 1

1 1

1 1

1
( ) ( ) ( )

2 1 1

1
(1 ) (1 )

2 1 1

1

2

2

N N N N
ji

j i i j
i j j ii j

N N
ji

i j
i ji j

N N

i j
i j

YY
E z u P P P P

N P P

YY
P P

N P P

Y Y
N

Y Y

   

 

 

                   

  
         

 
  

 




   

 

 

        

        

        

        

     .Y   
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Variance: The variance of ( )z u can be found as 

 
2

2
1

2

2
1

(1 )(1 )(1 ) (2 )1
( )

2 (2 ) (1 )(1 )

(1 )1

2 (2 )

N
i j i j j i j i ji

i j i j i j i j

N
i j i j ji

i j i j i j

P P P P Y PP P PY
Var z u

N P P P P P P

PP P P YY

N P P P P

 

 

      
       

  
      




 

Using the theorem that 0
ˆ ˆ( ) ( )uVar Var   we get 

 
 

 

*
1

*
2

( ) ( )

and ( ) ( )

Var z u Var z s

Var z u Var z s

   
   

 

 
Unbiased estimator of  ( )V z u  

An unbiased estimator of  |Var z u  is 

  
2

2 2

(1 )(1 )(1 )
( ) .

(2 )
i j i j ji

i j i j

p p p p yy
Var z u

N p p p p

    
      

 

 
Horvitz Thompson (HT) estimate 

The unordered estimates have limited applicability as they lack simplicity and the expressions for the 

estimators and their variance becomes unmanageable when sample size is even moderately large. The HT 

estimate is simpler than other estimators. Let N  be the population size and , ( 1, 2,..., )iy i N  be the 

value of characteristic understudy and a sample of size n  is drawn by WOR using arbitrary probability of 

selection at each draw. 

 

Thus prior to each succeeding draw, there is defined a new probability distribution for the units available 

at that draw. The probability distribution at each draw may or may not depend upon the initial probability 

at the first draw. 

 

Define a random variable ( 1,2,.., )i i N   as 

1 if is included  in a sample ' '  of size

0 otherwise.

i

i

Y s n


 


 

Let assuming for all, 1... ( ) 0  
( )

i
i i

i

ny
z i N E i

NE



    

where 

 
( ) 1. ( ) 0. ( )

        
i i i

i

E P Y s P Y s


   


  

is the probability of including the unit i in the sample and is called as inclusion probability.  
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The HT estimator of Y  based on 1 2, ,..., ny y y  is 

1

1

1ˆ

1
.

n

n HT i
i

N

i i
i

z Y z
n

z
n







 






 

 

Unbiasedness 

1

1

1

1

1ˆ( ) ( )

1
( )

1
( )

( )

1

N

HT i i
i

N

i i
i

N
i

i
i i

N
i

i

E Y E z
n

z E
n

ny
E

n NE

ny
Y

n N






















 









 

which shows that HT estimator is an unbiased estimator of the population mean. 

 

Variance 

 22

2 2

ˆ( ) ( )

( ) ( )

( ) .

HT n

n n

n

V Y V z

E z E z

E z Y



 

 

 

2

2
2

1

2 2
2

1 ( ) 1 1

2 2
2

1 ( ) 1 1

Consider

1
( )

1

1
( ) ( ) .

N

n i i
i

N N N

i i i j i j
i i j j

N N N

i i i j i j
i i j j

E z E z
n

E z z z
n

z E z z E
n



  

  



   

   

    
 

  
 

 
  

 



  

  

 

If  S s  is the set of all possible samples and i  is probability of selection of ith unit in the sample s 

then 

2 2 2

( ) 1 ( ) 0. ( )

1. 0.(1 )

( ) 1 . ( ) 0 . ( )

.

i i i

i i i

i i i

i

E P y s P y s

E P y s P y s
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So  

 

2

2 2
2

1 (# ) 1

( ) ( )

1
( )

i i

N N N

n i i ij i j
i i j i

E E

E z z z z
n

 

 
 



 
   
  
 

 

where ij  is the probability of inclusion of ith and jth unit in the sample. This is called as second-order 

inclusion probability. 

Now 

 

 

22

2

2
1

22
2

1 ( ) 1 1

2 2
2

1 ( ) 1 1

( )

1

1
( ) ( ) ( )

1
.

n

N

i i
i

N N N

i i i j i j
i i j j

N N N

i i i j i j
i i j j

Y E z

E z
n

z E z z E E
n

z z z
n



  

  



   

   



     
  

    

 
  

 



  

  

 

 

Thus 

2
2

1 ( ) 1 1

2 2
2

1 ( ) 1 1

2
2

1 ( ) 1 1

22 2

2 2 2
( ) 1 1

1ˆ( )

1

1
(1 ) ( )

1
(1 ) ( )

N N N

HT i i ij i j
i i j j

N N N

i i i j i j
i i j j

N N N

i i i ij i i i j
i i j j

N N
i

i i ij i i
i j ji

Var Y z z z
n

z z z
n

z z z
n

n yn y
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Estimate of variance 
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i i j ji i j i j

y yy
V Var Y
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This is an unbiased estimator of variance. 

 

Drawback: It does not reduces to zero when all i

i

y


 are same, i.e., when .i iy   

Consequently, this may assume negative values for some samples. 
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A more elegant expression for the variance of ˆ
HTy  has been obtained by Yates and Grundy. 

 

Yates and Grundy form of variance 
 
Since there are exactly n  values of i  which are 1 and ( )N n  values which are zero, so 
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Taking expectation on both sides 
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Similarly 
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We had earlier derived the variance of HT estimator as  

2
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Using (1) and (2) in this expression, we get 
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The expression for andi ij   can be written for any given sample size. 

 
For example, for 2n  , assume that at the second draw, the probability of selecting a unit from the units 

available is proportional to the probability of selecting it at the first draw. Since 

 

( )iE    Probability of selecting iY  in a sample of two 

 1 2i iP P   

where irP  is the probability of selecting iY  at thr  draw ( 1,2). If ir P  is the probability of selecting the ith 

unit at first draw ( 1,2,..., )i N  then we had earlier derived that 
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Again 

         

1 2| 1 2|

( ) Probability of including both and in a sample of size two
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Estimate of Variance 

The estimate of variance is given by 
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Midzuno system of sampling: 

Under this system of selection of probabilities, the unit in the first draw is selected with unequal 

probabilities of selection (i.e., pps) and remaining all the units are selected with SRSWOR at all 

subsequent draws.  
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Similarly, 

Probability that both the units and are in the sample

Probability that   is selected at the first draw and 
 

 is selected at any of   the subsequent  draws ( 1)  draws  
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Similarly, 

( ) Probability of including  , and  in the sample
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                 ( ) .
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n n N n n
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By an extension of this argument, if , ,...,i j rU U U  are the r  units in the sample of size ( ),n r n  the 

probability of including these r  units in the sample is  

 ...
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( 1)( 2)...( 1)i j r ij r i j r

n n n r N n n r
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Similarly, if 1 2, ,..., qU U U  be the n  units, the probability of including these units in the sample is  
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1
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1

1

i j q ij q i j q

i j q

n n
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N
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which is obtained by substituting r n . 

 

Thus if 'iP s  are proportional to some measure of size of units in the population then the probability of 

selecting a specified sample is proportional to the total measure of the size of units included in the 

sample. 
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Substituting these , ,i ij ijk    etc. in the HT estimator, we can obtain the estimator of population’s mean 

and variance. In particular, an unbiased estimate of variance of HT estimator given by 
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where 
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The main advantage of this method of sampling is that it is possible to compute a set of revised 

probabilities of selection such that the inclusion probabilities resulting from the revised probabilities are 

proportional to the initial probabilities of selection. It is desirable to do so since the initial probabilities 

can be chosen proportional to some measure of size. 

 


