
1 Sampling Distributions

Remember in inferential statistics sample data is used to learn about a population.

In this chapter we present how statistics (quantities computed from sample data like x̄) can be
used to LEARN about unknown parameters characterizing a population (e.g.: mean income of
Canadians, mean tuition fee per course at MacEwan, mean lifetime of a car, etc.). In particular
statistics will be used to estimate those unknown parameters. In order to evaluate how close
we can expect the estimate to be to the true value we need to study the distribution of the
statistic.

In practical situations the investigator might be able to choose a distribution to use as a model
for the population (e.g. mean age at retirement is normally distributed), but the values of the
parameters, mean and standard deviation, which specify the distribution are unknown.

1.1 Statistics and Sampling Distributions

When you select a random sample the descriptive measures you calculate are called statistics.
These statistics vary or change for each different random sample you select; they are random
variables.

Any quantity computed from values in a sample is called a statistic.

The value of a statistic varies from sample to sample this is called sampling variability. Since
the sampling is done randomly, the value of a statistic is random.
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In conclusion: Statistics are random variables.

Since statistics are random variables, they have a distribution, which gives the possible values
and their probability.

Wording:
The distribution of a statistic is called a sampling distribution.

It provides the following information:

• What values of the statistic can occur.

• What is the probability of each value to occur.

Example:
The population is all students in this section of Stat 151. Let µ be the population mean of the
height in this population.

Select a random sample of size 5 and observe the height.

For every random sample the sample mean x̄ is different, this is called the sample variability.

Now suppose you look at every possible random sample of 5 students from this class and the
corresponding sample mean. From these numbers you can create the sampling distribution.

You will find that

1. The value of x̄ differs from one random sample to another (sample variability).

2. Some samples produced x̄ values larger than µ, whereas other produce x̄ smaller than µ.

3. They can be fairly close to the mean µ, or also quite far off the population mean µ.

The sampling distribution of x̄ provides important information about the behavior of the statis-
tic x̄ and how it relates to the population mean µ.

Considering how many different samples of size five (for 60 students it’s C60
5 ) there are in this

class this process is very cumbersome. Fortunately, there are mathematical theorems that help
us to obtain information about the sampling distributions.

1.2 The Sampling Distribution of a Sample Mean

x̄ based on a large sample tends to be closer to µ than does x̄ based on a small n. This can be
explained by the following theoretical results.

Lemma: Suppose X1, . . . , Xn are random variables with the same distribution with mean µ
and population standard deviation σ.

Now look at the random variable X̄.

1. The population mean of X̄, denoted µX̄ , is equal to µ.
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2. The population standard deviation of X̄, denoted σX̄ , is

σX̄ =
σ√
n

This means that the sampling distribution of x̄ is always centered at µ and the second statement
gives the rate the spread of the sampling distribution (sampling variability) decreases as n
increases.

Definition:
The standard deviation of a statistic is called the standard error of the statistic (abbreviated
SE).

The standard error gives the precision of statistic for estimating a population parameter. The
smaller the standard error, the higher the precision.

The standard error of the mean X̄ is SE(X̄) = σ/
√
n.

Now that we learned about the mean and the standard deviation of the sampling distribution of
the sample mean, we might ask, if there is anything we can tell about the shape of the density
curve of this distribution.

1.3 Central Limit Theorem

This section explains why the normal distribution is so important in statistics.
The result is surprising. The Central Limit Theorem states, that under rather general con-
ditions, means of random samples drawn from one population tend to have an approximately
normal distribution. We find that it does not matter which kind of distribution we find in
the population. It even can be discrete or extremely skewed. But if n is large enough the
distribution of the mean is approximately normal distributed.
That is under all the possible distributions we find one family of distributions, that describes
approximately the distribution of a sample mean, if only n is large enough.

Central Limit Theorem
If random samples of n observations are drawn from any population with finite mean µ and
standard deviation σ, then, when n is large, the sampling distribution of the mean X̄ is ap-
proximately normal distributed, with mean µ and standard deviation σ/

√
n.

Remarks:

• If the population itself is normal X̄ is normal distributed for all n, so that n does not
have to be large.

• When the sampled population has a symmetric distribution, the sampling distribution of
X̄ becomes quickly normal. Compare the example below for n = 3.

• If the distribution is skewed, usually for n = 30 the sampling distribution is already close
to a normal distribution.
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Example:
Consider tossing n unbiased dice and recording the average number of the upper faces.
The graphs display the sampling distribution for X̄ for n = 1, 2, 3, 4.

Looking at only n = 4 dice leads to a distributions that is very close to a normal distribution.

Summary: Assume that the measurements in a population follow all the same distribution
with finite mean µ and standard deviation σ. Then

• The mean of the sampling distribution of the mean X̄ of n observations holds

µx̄ = µ

• The standard deviation of the sampling distribution of the mean X̄ of n observations
holds

σX̄ =
σ√
n

• The sampling distribution of the mean X̄ of n observations is approximately normal
distributed, if n is large enough.

Example: According to Stats Canada in 2011 the average commuting time in Canada was 25.4
minutes with a standard deviation of 13 minutes (I made up the standard deviation). (Does
the use of the mean make sense here? Let’s pretend it does!)
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What is the probability that the commuting time of a randomly chosen person is greater than
35 minutes?

P (X > 35) = P
(
X − µ
σ

>
35− µ
σ

)
standardize

= P
(
Z >

35− 25.4

13

)
= P (Z > 0.74)

= 1− 0.7704 = 0.2296 Table

What is the probability that the average commuting time of 5 people is greater 35 minutes?

P (X̄ > 35) = P

(
X̄ − µX̄

σx̄
>

35− µX̄

σx̄

)
standardize

= P

(
Z >

35− 25.4

13/
√

5

)

= P (z > 1.65)

= 1− 0.9505 = 0.0495 Table
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