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Abstract

Researchers increasingly use meta-analysis to synthesize the results of several studies in order to 

estimate a common effect. When the outcome variable is continuous, standard meta-analytic 

approaches assume that the primary studies report the sample mean and standard deviation of the 

outcome. However, when the outcome is skewed, authors sometimes summarize the data by 

reporting the sample median and one or both of (i) the minimum and maximum values and (ii) the 

first and third quartiles, but do not report the mean or standard deviation. To include these studies 

in meta-analysis, several methods have been developed to estimate the sample mean and standard 

deviation from the reported summary data. A major limitation of these widely used methods is that 

they assume that the outcome distribution is normal, which is unlikely to be tenable for studies 

reporting medians. We propose two novel approaches to estimate the sample mean and standard 

deviation when data are suspected to be non-normal. Our simulation results and empirical 

assessments show that the proposed methods often perform better than the existing methods when 

applied to non-normal data.

Keywords

meta-analysis; median; first quartile; third quartile; minimum value; maximum value

Introduction

Meta-analysis is a statistical approach for pooling data from related studies that is widely 

used to provide evidence for medical research. To pool studies in an aggregate data meta-

analysis, each study must contribute an effect measure (e.g., the sample mean for one-group 

studies, the sample means for two-group studies) of the outcome and its variance. However, 

primary studies may differ in the effect measures reported. Although the sample mean is the 
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usual effect measure reported for continuous outcomes, authors often report the sample 

median when data are skewed and may not report the mean.1 This occurs commonly for 

time-based outcomes, such as time delays in the diagnosis and treatment of tuberculosis2, 3 

or colorectal cancer4 or length of hospital stay5–7. Other examples in medical research 

include muscle strength and mass8, molecular concentration levels9, tumor sizes10, motor 

impairment scores11, and intraoperative blood loss12. When primary studies report the 

sample median of an outcome, they typically report the sample size and one or both of (i) 

the sample minimum and maximum values and (ii) the first and third quartiles.

The same effect measure must be obtained from all primary studies in an aggregate data 

meta-analysis. In order to meta-analyze a collection of studies in which some report the 

sample mean and others report the sample median, Hozo et al.13, Bland14, Wan et al.15, 

Kwon and Reis16, and Luo et al.17 have recently published methods to estimate the sample 

mean and standard deviation from studies that report medians. These methods have been 

widely used to meta-analyze the means for one-group studies and the raw or standardized 

difference of means for two-group studies. Reflecting how commonly these methods are 

used, Google Scholar listed 3,315 articles citing Hozo et al.13 and 866 articles citing Wan et 

al.15 as of October 23, 2019.

Commonly used methods that have been proposed to estimate the sample mean and standard 

deviation in this context can be divided into formula-based methods and simulation-based 

methods. The methods developed by Luo et al.17 and Wan et al.15 are the best-performing 

formula-based methods for estimating the sample mean and standard deviation, respectively. 

A major limitation of these methods is that they assume the outcome variable is normally 

distributed, which may be unlikely because otherwise the authors would have reported the 

mean. Consequently, Kwon and Reis16 recently proposed a simulation-based method which 

is based on different parametric assumptions of the outcome variable. Although the Kwon 

and Reis16 sample mean estimator has not been compared to the formula-based method of 

Luo et al.17, their proposed standard deviation estimator performed better than the formula-

based method of Wan et al.15 for skewed data when the assumed parametric family is 

correct. Limitations of this simulation-based method are that (i) it is computationally 

expensive, (ii) requires users to write their own distribution-specific code, and (iii) its 

performance can be highly sensitive to several conceptual and computational decisions that 

one must make when implementing the method (see Discussion).

We propose two novel methods to estimate the sample mean and standard deviation for 

skewed data when the underlying distribution is unknown. The proposed methods overcome 

several limitations of the existing methods, and we demonstrate that the proposed 

approaches often perform better than the existing methods when applied to skewed data.

The objectives of this paper are to describe the existing and proposed methods for estimating 

the sample mean and standard deviation, systematically evaluate their performance in a 

simulation study, and empirically evaluate their performance on real-life data sets.

In the following section, we describe the existing and proposed methods. In ‘Results’, we 

report the results of a simulation investigating the performance of the methods. We illustrate 
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these methods on an example data set and evaluate their accuracy in ‘Example’. In 

‘Discussion’, we summarize our findings and provide recommendations for data analysts.

Methods

Throughout this paper, we use the following notation for sample summary statistics: 

minimum value (Qmin), first quartile (Q1), median (Q2), third quartile (Q3), maximum value 

(Qmax), mean (x), standard deviation (s), and sample size (n). Let x and s  denote estimates 

of the sample mean and standard deviation, respectively. As investigated in previous 

studies13–17, we consider the following sets of summary statistics that may be reported by a 

study, denoted by Scenario 1 (S1), Scenario 2 (S2), and Scenario 3 (S3):

S1 = Qmin, Q2, Qmax, n
S2 = Q1, Q2, Q3, n
S3 = Qmin, Q1, Q2, Q3, Qmax, n .

Comparator Methods

The sample mean estimator of Luo et al.17 and the sample standard deviation estimator of 

Wan et al.15 are formula-based methods that are derived from the assumption that the 

outcome variable is normally distributed.

Luo et al. developed the following sample mean estimators in scenarios S1, S2, and S3:

x = 4
4 + n0.75

Qmin + Qmax
2 + n0.75

4 + n0.75 Q2 inS1

x = 0.7 + 0.39
n

Q1 + Q3
2 + 0.3 − 0.39

n Q2 inS2

x = 2.2
2.2 + n0.75

Qmin + Qmax
2 + 0.7 − 0.72

n0.55
Q1 + Q3

2 + 0.3 + 0.72
n0.55 − 2.2

2.2 + n0.75 Q2 inS3

Building on the sample mean estimators of Hozo et al.13, Wan et al.15, and Bland14 in S1, 

S2, and S3, respectively, this method optimally weights the median (in S1, S2, and S3), the 

average of the minimum and maximum values (in S1 and S3), and the average of the first and 

third quartiles (in S2 and S3). The weights are set to minimize the mean squared error of the 

estimator. Numerical simulations have demonstrated that the method of Luo et al. has 

considerably lower relative mean squared error (RMSE) compared to the method of Bland in 

S3 and has comparable RMSE to the method Wan et al. in S2 under normal and skewed 

distributions.

Wan et al. proposed the following sample standard deviation estimators in scenarios S1, S2, 

and S3:
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s =
Qmax − Qmin

2Φ−1 n − 0.375
n + 0.25

inS1

s =
Q3 − Q1

2Φ−1 0.75n − 0.125
n + 0.25

inS2

s =
Qmax − Qmin

4Φ−1 n − 0.375
n + 0.25

+
Q3 − Q1

4Φ−1 0.75n − 0.125
n + 0.25

inS3

The standard deviation estimators of Wan et al. are derived using relationships between the 

distribution standard deviation and the expected values of order statistics for normally 

distributed data. The expected values of the minimum and maximum values and first and 

third quartiles are estimated by the respective sample values. The expected value of other 

order statistics are estimated using Blom’s method18.

Wan et al. were the first to propose a standard deviation estimator in S2. Wan et al. showed 

that their estimator in S1 and S3 outperformed the previously developed sample standard 

deviation estimators of Hozo et al.13 and Bland14, respectively, in regards to average relative 

error.

For the purpose of the analyses presented herein, we refer to the approach which uses the 

method of Luo et al. to estimate the sample mean and the method of Wan et al. to estimate 

the sample standard deviation as the Luo/Wan method.

Proposed Methods

The following two subsections describe the proposed methods for estimating the sample 

mean and standard deviation from S1, S2, andS3 summary measures. The R package 

‘estmeansd’ available on CRAN implements both of the proposed methods.19 Additionally, 

the webpage https://smcgrath.shinyapps.io/estmeansd/ provides a graphical user interface for 

using these methods. Although the first method we introduce was adapted from previous 

work in McGrath et al.20, no approaches in McGrath et al.21 could be adapted to estimate the 

sample mean or standard deviation in this context.

Quantile Estimation (QE) Method

The QE method was originally introduced in McGrath et al.20 for estimating the variance of 

the median when summary measures of S1, S2, or S3 are provided. Here, we describe how 

the QE method can be applied to estimate the sample mean and standard deviation in these 

contexts.

We pre-specify several candidate parametric families of distributions for the outcome 

variable, namely the normal, log-normal, gamma, beta, and Weibull. The parameters of each 
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candidate distribution are estimated by minimizing the distance between the observed and 

distribution quantiles. Let Fθ
−1 denote the quantile function of a given candidate distribution 

parameterized by θ. Then, the objective function corresponding to the distribution, denoted 

by S(θ), is given by

S θ = Fθ
−1 1/n − Qmin

2 + Fθ
−1 0.5 − Q2

2 + Fθ
−1 1 − 1/n − Qmax

2 inS1

S θ = Fθ
−1 0.25 − Q1

2 + Fθ
−1 0.5 − Q2

2 + Fθ
−1 0.75 − Q3

2 inS2

S θ = Fθ
−1 1/n − Qmin

2 + Fθ
−1 0.25 − Q1

2 + Fθ
−1 0.5 − Q2

2 + Fθ
−1 0.75 − Q3

2

+ Fθ
−1 1 − 1/n − Qmax

2 inS3

Details concerning the implementation of the optimization algorithm for minimizing S(θ) 

are provided in Appendix A.

The distribution with the best fit (i.e., yielding the smallest value of S θ  where θ  denotes the 

estimated parameters of the given distribution) is assumed to be the underlying distribution 

of the sample. The sample mean and standard deviation are estimated by the mean and 

standard deviation of the selected distribution.

Box-Cox (BC) Method

Luo et al.17 and Wan et al.15 assumed that a sample x of interest follows a normal 

distribution. To make this assumption more tenable for skewed data, we incorporate Box-

Cox transformations into the methods of Luo et al. and Wan et al. The proposed method, 

which we denote by BC, applies Box-Cox transformations to the quantiles of x and assumes 

that the underlying distribution of the transformed data is normal.

In brief, the BC method consists of the following four steps. First, an optimization 

algorithm, such as the algorithm of Brent22, optimizes the power parameter λ such that 

distribution of the transformed data is most likely to be normal. Letting fλ denote the Box-

Cox transformation, the quantiles of x are transformed into the quantiles of fλ(x). 

Afterwards, the methods of Luo et al. and Wan et al. are applied to estimate the mean and 

standard deviation of fλ(x), respectively. Finally, the mean and standard deviation of fλ(x) 

are inverse-transformed into the mean and standard deviation of x.

Box-Cox transformations fλ are defined as follows:

fλ xi = yi =
xiλ − 1

λ if λ ≠ 0

ln xi if λ = 0

McGrath et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equivalently, inverse Box-Cox transformations fλ
−1 are defined as follows:

fλ
−1 yi = xi = λ ⋅ yi + 1 1/λ if λ ≠ 0

exp yi if λ = 0

Box and Cox23 argued that Box-Cox transformations can transform a dataset into a more 

normally-distributed dataset. Moreover, for every value of λ, fλ is monotonically increasing. 

Therefore, any ith order statistic of an untransformed dataset, after transformation, is still the 

ith order statistic of the corresponding transformed dataset, and vice versa.

The optimization step for finding λ can be described as follows. In S1 and S2, λ is chosen so 

that the transformed minimum and maximum values (in S1) or first and third quartiles (in 

S2) are equidistant from the median, making the transformed data to be most likely 

symmetric and therefore most normally distributed. Specifically, the BC method finds a 

finite value of λ such that

fλ Qmax − fλ Q2 = fλ Q2 − fλ Qmin

in S1 and

fλ Q3 − fλ Q2 = fλ Q2 − fλ Q1

in S2. In S3, a value of λ cannot necessarily be found such that both the first and third 

quartiles as well as the minimum and maximum values are equidistant from the median. 

Therefore, λ is found by

argmin
λ

fλ Q3 − fλ Q2 − fλ Q2 − fλ Q1
2 + fλ Qmax − fλ Q2 − fλ Q2 − fλ Qmin

2

Appendix B describes the implementation of the optimization algorithm used to find λ.

Then, the BC method applies the Box-Cox transformations with this value of λ on the 

quantiles of x. That is, the BC method transforms {Qmin,Q2,Qmax} into 

{fλ(Qmin),fλ(Q2),fλ(Qmax)} in S1, {Q1,Q2,Q3}into {fλ(Q1),fλ(Q2),fλ(Q3)} in S2, and 

{Qmin,Q1,Q2,Q3,Qmax} into {fλ(Qmin),fλ(Q1),fλ(Q2),fλ(Q3),fλ(Qmax)}in S3.

Let N′(μ,σ2) ~ N(μ,σ2) conditional on N′(μ,σ2) ∈ [f(0),2μ − f(0)]. Equivalently, N′(μ,σ2) is 

the symmetrically truncated N(μ,σ2) bounded within the support [f(0),2μ − f(0)]. Then, the 

BC method assumes that fλ(x) ~N′(μ,σ2) for some μ and σ and uses the methods of Luo et 

al. and Wan et al. to calculate μ and σ, respectively. Finally, the assumption made by the BC 

method implies that x fλ
−1 N′ μ, σ2 . Therefore, the mean and standard deviation of 

fλ
−1 N′ μ, σ2  are approximately x and s.

McGrath et al. Page 8

Stat Methods Med Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mean and standard deviation of fλ
−1 N′ μ, σ2  are found as follows. Let ϕ and Φ be the 

probability density function and cumulative distribution function of the standard normal 

distribution, respectively. The following two equations describe the mean and variance of 

fλ
−1 N′ μ, σ2 , respectively:

E fλ
−1 N′ μ, σ2 = ∫

x = fλ 0

x = 2μ − fλ 0

ϕ x − μ
σ

fλ
−1 x

σ Φ μ − Φ −μ ∂x (1)

Var fλ
−1 N′ μ, σ2 = ∫

x = fλ 0

x = 2μ − fλ 0

ϕ x − μ
σ

fλ
−1 x − E fλ

−1 N′ μ, σ2 2

σ Φ μ − Φ −μ ∂x (2)

Numerical integration can solve the two above equations. Moreover, the following Monte-

Carlo simulation can compute the mean and standard deviation of fλ
−1 N′ μ, σ2 : first, 

generate an independent and identically distributed random sample R from N(μ,σ2); next, let 

the new R be {r ∈ R: r ∈ [f(0),2μ − f(0)]}, or equivalently, remove any value in R that is not 

within the range[f(0),2μ − f(0)]; then, calculate the sample mean and sample standard 

deviation of R; finally, the sample mean and sample standard deviation are estimated as the 

mean and standard deviation of fλ
−1 N′ μ, σ2 . The application of the BC method in this 

work uses Monte-Carlo simulation to compute the mean and standard deviation of 

fλ
−1 N′ μ, σ2 .

Recall that N′(μ,σ2) is the symmetrically truncated N(μ,σ2) with support [f(0),2μ − f(0)]. In 

fact, N′ μ, σ2 fλ = 1
−1 N′ μ, σ2 , and LN μ, σ2 fλ = 0

−1 N′ μ, σ2 . Therefore, both the normal 

distribution truncated within the support [f(0),2μ − f(0)] and log-normal distribution are 

special cases of fλ
−1 N′ μ, σ2 .

Design of Simulation Study

We conducted a simulation study to systematically compare the performance of the existing 

and proposed approaches when the truth is known.

To be consistent with the work already conducted in this area, we generated data from the 

same distributions considered in previous studies13–17. As used by Bland14, we used the 

normal distribution with μ = 5 and σ = 1, the log-normal distribution with μ = 5 and σ = 

0.25, the log-normal distribution with μ = 5 and σ = 0.5, and the log-normal distribution μ = 

5 and σ = 1 in our primary analyses to investigate the effect of skewness on the performance 

of the sample mean and standard deviation estimators. In sensitivity analyses, we considered 

the following distributions used in several other studies13, 15–17: the normal distribution with 

μ = 50 and σ = 17, the log-normal distribution with μ = 4 and σ = 0.3, the exponential 

distribution with λ = 10, the beta distribution with α = 9 and β = 4, and the Weibull 

distribution with λ = 2 and k = 35.
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For each distribution, a sample of size n was drawn to simulate data from a primary study. 

Then, the appropriate summary statistics (i.e., S1, S2, or S3) were calculated from this 

sample. The Luo/Wan, QE, and BC methods were each applied to the summary data in order 

to estimate the sample mean and standard deviation.

We used the following sample sizes in our simulations: 25, 50, 75, 100, 150, 200, 250, 300, 

350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1 000. A total of 1 000 

repetitions were performed for each combination of data generation parameters under 

scenarios S1, S2, and S3.

As used in previous studies13, 15, 16, the average relative error (ARE) was used as a 

performance measure. For repetition i(i = 1, …, 1 000), let xi and s i denote estimates of the 

sample mean and standard deviation, respectively, and let xi and si denote the true sample 

mean and standard deviation, respectively. The ARE of the sample mean and standard 

deviation estimators is defined by

ARE x = 1
1000 ∑i = 1

1000 xi − xi
xi

, ARE s = 1
1000 ∑i = 1

1000 si − si
si

.

As used in Luo et al.17, we also used the relative mean squared error (RMSE) to evaluate the 

performance of all methods. Letting μ denote the true distribution mean and σ denote the 

true distribution standard deviation, the RMSE of the sample mean and standard deviation 

estimators is given by

RMSE x =
1

1000 ∑i = 1
1000 xi − μ 2

1
1000 ∑i = 1

1000 xi − μ 2 , RMSE s =
1

1000 ∑i = 1
1000 si − σ 2

1
1000 ∑i = 1

1000 si − σ 2 .

Results of Simulation Study

In the following subsections, we present the results of the simulation study using the set of 

outcome distributions considered by Bland14, as these distributions were selected to 

investigate the effect of skewness on the estimators. The results of the sensitivity analyses 

where we used the set of outcome distribution used by other authors13, 15–17 is given in 

Section 1 of Supplementary Material.

Because the simulation results in scenarios S1 and S3 were similar, the S3 simulation results 

are presented in Section 2 of Supplementary Material for parsimony. Additionally, as the 

focus of this paper is on the analysis of non-normal data, all simulation results where data 

were generated from a normal distribution are presented in Section 3 of Supplementary 

Material. We placed the simulation results when using RMSE as the performance measure in 

Section 4 of the Supplementary Material, as similar trends were observed when using ARE.
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Comparison of Methods Under Scenario S1

Figure 1 displays the ARE of all sample mean and standard deviation estimators under 

scenario S1. As the skewness (i.e., the σ parameter) of the log-normal distribution increased, 

the magnitude of the AREs generally increased for the sample mean and standard deviation 

estimators, but was inconsequential for the BC method. Moreover, all methods had 

considerably larger AREs for estimating the sample standard deviation compared to 

estimating the sample mean.

For estimating the sample mean, the BC method performed best under each distribution and 

nearly all sample sizes (n) considered in Figure 1; the BC method was nearly unbiased, 

yielding AREs of magnitude less than 0.004, 0.008, and 0.020 in the Log-Normal(5,0.25), 

Log-Normal(5,0.5), and Log-Normal(5,1), cases, respectively. Contrary to the Luo et al. 

sample mean estimator which became more biased as n increased (e.g., ARE = −0.22 for 

Luo et al. when n = 1 000 in Log-Normal(5,1)), the performance of the QE sample mean 

estimator improved as n increased. The QE sample mean estimator became preferred over 

the Luo et al. sample mean estimator when n ≥ 300. However, the QE method always 

performed worse than the BC method in regards to ARE in Figure 1.

The BC method performed best for estimating the sample standard deviation, achieving 

AREs of magnitude less than 0.03 in nearly all scenarios investigated in Figure 1. Although 

the QE standard deviation estimator performed better as n increased, this method typically 

resulted in larger AREs compared to the BC method. Additionally, the QE standard 

deviation estimator yielded large ARE values when sample sizes were small (i.e., n ≤ 50), 

especially for skewed outcomes.

Model selection for the QE method generally performed well. When the outcome 

distribution was Log-Normal(5,0.25), the QE method selected the log-normal distribution 

between 58.1% (when n = 25) to 82.3% (when n = 1 000) of repetitions. Moreover, the QE 

method had comparable performance in the repetitions where it did not select the log-normal 

distribution (e.g., AREs ranging between −0.01 and 0.01 for estimating the sample mean and 

between 0.07 and 0.11 for estimating the standard deviation in these repetitions). Model 

selection improved for the QE method as n and the skewness of the log-normal distribution 

increased. For example, in the Log-Normal(5,1) case, the QE method selected the log-

normal distribution in at least 99% of the repetitions for all n ≥ 50.

Comparison of Methods Under Scenario S2

Figure 2 gives the ARE of all methods under scenario S2. As in scenario S1, we found that 

(i) the skewness of the underlying distribution strongly affected the performance of the 

sample mean and standard deviation estimators, and (ii) the sample mean estimators 

typically had AREs with smaller magnitude.

The BC and QE sample mean estimators performed substantially better than the Luo et al. 

sample mean estimator in all scenarios investigated in Figure 2. As the skewness of the log-

normal distribution increased, the gap in performance between the Luo et al. sample mean 

estimator and the BC and QE sample mean estimators increased. For instance, when the 

outcome distribution was Log-Normal(5,1), the ARE of the Luo et al. sample mean 
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estimator was approximately −0.29 for most values of n whereas the QE sample mean 

estimator had AREs of magnitude less than 0.005 for most n. Although the QE and BC 

methods performed comparably for the Log-Normal(5,0.25) distribution, the QE sample 

mean estimator became preferred over the BC method as the skewness increased.

Similar trends held for the corresponding sample standard deviation estimators. The QE and 

BC methods performed considerably better than the Wan et al. sample standard deviation 

estimator in nearly all scenarios in Figure 2. There were no clear trends concerning the 

relative performance between the QE and BC standard deviation estimators.

Lastly, model selection performance was similar to that observed in S1. In the Log-

Normal(5,0.25) case, the QE method selected the log-normal distribution in the majority of 

repetitions under all values of n. The performance of the QE method slightly worsened in 

repetitions where the log-normal solution was not selected (e.g., AREs ranging between 

−0.02 to −0.01 for estimating the sample mean and between −0.08 and −0.03 for estimating 

the sample standard deviation in these repetitions) As n and the skewness of the underlying 

log-normal distribution increased, the log-normal distribution was increasingly selected by 

the QE method. For instance, in the Log-Normal(5,1) case, the QE method selected the log-

normal distribution in at least 90% of the repetitions for all n ≥ 250.

Example

In this section, we illustrate the use of the existing and proposed methods when applied to a 

real-life meta-analysis of a continuous, skewed outcome. Specifically, we used data 

collected for an individual participant data (IPD) meta-analysis of the diagnostic accuracy of 

the Patient Health Questionnaire-9 (PHQ-9) depression screening tool.24, 25 We chose to use 

data from an IPD meta-analysis because 1) S1, S2, and S3 summary data can be obtained 

from each study and 2) the true study-specific sample means and standard deviations are 

available.

Our analysis focused on the patient scores of the PHQ-9, which is a self-administered 

screening tool for depression. PHQ-9 scores are measured on a scale from 0 to 27, where 

higher scores are indicative of higher depressive symptoms. Previous studies have found that 

the distribution of PHQ-9 scores in the general population is right-skewed26–28.

For each of the 58 primary studies, we calculated the sample median, minimum and 

maximum values, and first and third quartiles of the PHQ-9 scores of all patients in order to 

mimic the scenarios where an aggregate data meta-analysis extracts S1, S2, or S3 summary 

data. Then, we applied the existing and proposed methods to this summary data to estimate 

study-specific sample means and standard deviations – we refer to these as the “derived 

estimated sample means and standard deviations”. Section 5 of Supplementary Material 

presents the study-specific S3 summary data.

Some primary studies used weighted sampling. When extracting S1, S2, and S3 summary 

data from these studies, weighted sample quantiles were used.29 Additionally, weighted 

sample means and standard deviations were used as the true values for the sample mean and 

standard deviation, respectively, for studies with weighted sampling.
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As PHQ-9 scores are integer-valued, PHQ-9 scores of 0 were observed in most of the 

primary studies. However, a minimum value and/or first quartile value of 0 result in 

complications for the QE method when estimating the parameters of the log-normal 

distribution, as the parameter constraints for the QE method implicitly assume that the 

extracted summary data are strictly positive. Therefore, when applying all methods, a value 

of 0.5 was added to the extracted summary data. After estimating the sample mean and 

standard deviation from the shifted summary data, 0.5 was subtracted from the estimated 

sample mean.

We compared the derived estimated sample means and standard deviations to the true 

sample means and standard deviations (Table 1). The QE and BC methods were 

considerably less biased than the Luo et al. method for estimating the sample mean under 

S1, S2, and S3. The QE sample mean estimator performed best under S1 and the BC sample 

mean estimator performed best under S2 and S3. Trends were less conclusive for estimating 

the standard deviation. The QE method standard deviation estimator was the least biased 

under S1 and S3 and the standard deviation estimator of Wan et al. was the least biased under 

S2.

We meta-analyzed the PHQ-9 scores using the true study-specific sample means and 

standard deviations (Figure 3) and compared this to a meta-analysis using the derived 

estimated study-specific sample means and standard deviations (Table 2). The restricted 

maximum likelihood method was used to estimate heterogeneity in all meta-analyses.30 The 

QE and BC methods were less biased for estimating the pooled mean compared to the 

existing methods in S1, S2, and S3. The QE method had relative error closest to zero for 

estimating the pooled mean in S1 and S3 and the BC method had relative error closest to 

zero in S2. As one may expect, QE and BC methods performed best in S3 for estimating the 

pooled mean, yielding relative errors of −0.0054 and 0.0074, respectively.

The primary studies were highly heterogeneous. When using the true study-specific sample 

means and standard deviations, the I2 = 98.15%.31 The Luo/Wan, QE, and BC methods 

yielded similar estimates of I2; using 98.15% as the true value of I2, all three methods had 

relative errors between −0.02 and 0.02 for estimating I2 in S1, S2, and S3.

Lastly, we investigated the skewness of the PHQ-9 scores. To mimic how data analysts may 

evaluate skewness based on available summary data, we used Bowley’s coefficient to 

quantify skewness, as it only depends on S2 summary data.32 Bowley’s coefficient values 

range from −1 to 1, where positive values indicate right skew and negative values indicate 

left skew. The average value of Bowley’s coefficient taken over all 58 primary studies was 

0.18, indicating moderate right skewness. Moreover, the QE method suggested non-

normality in many of the primary studies. When given S2 data, the QE method selected the 

normal distribution for 21% of studies, the log-normal for 22% of studies, the gamma for 

26% of studies, and the Weibull for 31% of studies.

We performed additional analyses to explore the sensitivity of the addition of 0.5 to all 

summary data. When adding 0.1 or 0.01 to all summary data, all methods obtained similar 

results.
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Discussion

We proposed two methods to estimate the sample mean and standard deviation from 

commonly reported quantiles in meta-analysis. Because studies typically report the sample 

median and other sample quantiles when data are skewed, our analyses focused on the 

application of the proposed QE and BC methods to skewed data. We compared the QE and 

BC methods to the widely used methods of Wan et al.15 and Luo et al.17 in a simulation 

study and in a real-life meta-analysis.

We found that the QE and BC sample mean estimators performed well, typically yielding 

average relative error values approaching zero as the sample size increased. In the simulation 

study and the empirical evaluation, the QE and BC sample mean estimators performed better 

than the methods of Luo et al. in nearly all scenarios.

Although the BC sample standard deviation estimator performed best or comparably to the 

best performing method in the primary analyses of the simulation study, the sensitivity 

analyses and empirical evaluations did not clearly indicate a best performing approach for 

estimating the sample standard deviation. For all methods, the magnitude of the relative 

errors for estimating the sample standard deviation was typically higher than for estimating 

the sample mean.

In practice, the existing and proposed methods enable data analysts to incorporate studies 

that report medians in meta-analysis. Therefore, we compared the performance of the 

methods at the meta-analysis level using data from a real-life individual patient data meta-

analysis. In this analysis, the methods that performed best for estimating the sample mean 

often resulted in the most accurate pooled mean estimates as well. As the QE and BC 

methods performed best for estimating the sample mean, these methods also performed best 

at the meta-analysis level.

In our empirical assessments, we assumed that all primary studies reported S1, S2, or S3 

summary data. Often in aggregate data meta-analyses, however, only a fraction of primary 

studies report S1, S2, or S3 summary data and the other primary studies report sample means 

and standard deviations. Therefore, the results of our analyses at the meta-analysis level 

reflect the extremes in performance between the existing and proposed sample mean and 

standard deviation estimators. In practice, in meta-analyses where all or nearly all primary 

studies report medians, directly meta-analyzing medians may be better suited.20, 21

Repeated applications of the BC method to the same summary data will result in slightly 

different estimates of the sample mean and standard deviation. This is because the BC 

method uses Monte-Carlo simulation to perform the inverse transformation (i.e., to solve 

equations (1) and (2)). We considered using deterministic numerical integration methods to 

perform the inverse transformation. However, we found that they often failed to converge 

when the transformation parameter λ was close to zero or negative (i.e., λ ≤ 0.01). 

Therefore, we opted for Monte-Carlo simulation for this step.

Our analyses focused on skewed data. As expected, when data were generated from a 

normal distribution, the Luo et al. sample mean estimators and the Wan et al. sample 
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standard deviation estimators performed best (see Section 3 of Supplementary Material). 

However, most methods performed reasonably well in the normal case and the differences in 

performance amongst the methods were often inconsequential (e.g., AREs of magnitude less 

than 0.01 for the Luo et al., QE, and BC sample mean estimators in the Normal(5,1) case). 

When making the same assumption of normality when applying the QE method (i.e., by 

only fitting the normal distribution), the performance of the method improved but were still 

not superior to the Luo et al. and Wan et al. methods (data not shown).

Kwon and Reis16, 33 proposed methods for estimating the sample mean and standard 

deviation from the same sets of summary data considered in this work that are based on 

applying approximate Bayesian computation (ABC). Unlike the methods of Luo et al. and 

Wan et al. which assume that the outcome variable is normally distributed, the ABC 

methods can be applied under different parametric assumptions of the underlying 

distribution (i.e., normal and skewed distributions). We considered including the ABC 

methods in this paper. However, we found that several implementation decisions strongly 

affected the performance of the method in the simulation study and empirical assessments. 

As investigating how to best implement the ABC methods would be beyond the scope of this 

paper, we decided not to include these methods in this paper and intend to study this in 

greater detail in future work.

This work has several limitations. Although the settings in our simulation study were based 

on those used in previous studies13–17 to make a fair comparison between methods, these 

settings are not exhaustive and results may vary in other settings. Additionally, our 

simulation study focused solely on the performance of the methods for estimating the 

sample mean and standard deviation. In future work, we intend to conduct a simulation 

study investigating the performance of the methods at the meta-analysis level (e.g., for 

estimating the pooled effect measure and heterogeneity).

Strengths of this work include (i) including a greater number of outcome distributions and 

performance measures compared to the simulation studies conducted by previous 

authors13–15, 17, and (ii) empirically evaluating the accuracy of the methods using real-life 

data.

In summary, we recommend the QE and BC methods for estimating the sample mean and 

standard deviation when data are suspected to be non-normal, as they often outperformed the 

existing methods in the analyses presented herein. To make these methods widely accessible, 

we developed the R package ‘estmeansd’ (available on CRAN)19 which implements these 

methods and launched a webpage (available at https://smcgrath.shinyapps.io/estmeansd/) 

that provides a graphical user interface for using these methods. We also encourage 

researchers performing meta-analysis to explore the sensitivity of their conclusions to the 

choice of method for estimating sample means and standard deviations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

In the QE method, the parameters of a candidate distribution are estimated by minimizing 

the objective function, S(θ). This section describes the implementation of minimization 

algorithm.

We set the initial values for the parameters in the optimization algorithm as follows. First, 

we apply the methods of Luo et al.17 and Wan et al.15 to estimate the sample mean and 

standard deviation, respectively, from S1, S2, or S3. Then, we apply the method of moments 

estimator of the candidate distribution using the estimated sample mean and standard 

deviation. The method of moments estimates of the parameters are used as the initial values 

of the parameters.

To minimize S(θ), we apply the limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm with box constraints (L-BFGS-B), which is implemented in the built-in ‘optim’ 

function in the statistical programming language R. Reasonable constraints for the 

parameters are imposed to improve the convergence of the algorithm (e.g., enforcing μ ∈ 
[Qmin,Qmax] for the Normal(μ,σ2) distribution in S1). The particular constraints are given in 

Table A1. These parameter constraints are based on the uniform prior bounds in the ABC 

method of Kwon and Reis16. In the simulation study, we found that the solution to the 

minimization problem was insensitive to perturbations of the parameter constraint values, 

provided the algorithm converged.

The algorithm is considered to converge when the objective function is reduced by a factor 

of less than 107 of machine tolerance. In each application of the QE method in the 

simulation study, the algorithm converged for at least three distributions. If the algorithm 

failed to converge for a given candidate distribution, that candidate distribution was excluded 

from the model selection procedure.

McGrath et al. Page 17

Stat Methods Med Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table A1:

Parameter constraints for the L-BFGS-B algorithm.

Scenario Candidate Distribution θ1 θ2

S1 Normal μ ∈ (Qmin, Qmax) σ ∈ (10−3, 50)

Log-Normal μ ∈ (log(Qmin), log(Qmax)) σ ∈ (10−3, 50)

Gamma α ∈ (10−3, 100) β ∈ (10−3, 100)

Beta α ∈ (10−3, 40) β ∈ (10−3, 40)

Weibull λ ∈ (10−3, 100) k ∈ (10−3, 100)

S2 & S3 Normal μ ∈ (Q1, Q3) σ ∈ (10−3, 50)

Log-Normal μ ∈ (log(Q1), log(Q3)) σ ∈ (10−3, 50)

Gamma α ∈ (10−3, 100) β ∈ (10−3, 100)

Beta α ∈ (10−3, 40) β ∈ (10−3, 40)

Weibull λ ∈ (10−3, 100) k ∈ (10−3, 100)

Appendix B

To estimate sample mean and standard deviation using the BC method, the use of Box-Cox 

transformations requires the solutions to the following problems.

The first problem is defined as follows. In S1, given Qmin, Q2, and Qmax such that Qmin < Q2 

< Qmax, find the finite power λ of transformation such that

fλ Qmax − fλ Q2 = fλ Q2 − fλ Qmin

Equivalently, this problem can be restated as finding λ such that

fλ Qmax − fλ Q2
fλ Q2 − fλ Qmin

− 1
2

is minimized to zero. Similarly, given Q1, Q2, and Q3 such that Q1 < Q2 < Q3, the 

corresponding minimization problem in S2 is finding λ such that

fλ Q3 − fλ Q2
fλ Q2 − fλ Q1

− 1
2

is minimized to zero. Given Qmin, Q1, Q2, Q3, and Qmax such that Qmin < Q2 <Qmax and Q1 

< Q2 < Q3, the corresponding minimization problem in S3 is finding λ such that the 

following expression is minimized,

fλ Q3 − fλ Q2
fλ Q2 − fλ Q1

− 1
2

+
fλ Qmax − fλ Q2
fλ Q2 − fλ Qmin

− 1
2

.
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To find λ, we use the built-in function ‘optimize’ in R. This function uses a combination of 

golden section search and successive parabolic interpolation for one-dimensional 

optimization.

The second problem arises when λ < 0 because in this case the mean and/or standard 

deviation are likely to be infinite. For example, λ = −1 results in a Cauchy distribution 

which has undefined mean and standard deviation. Therefore, we let λ = 0 in this case so 

that λ is non-negative. By doing so, we implicitly assumed that the underlying distribution 

cannot be more heavy-tailed than a log-normal distribution. If this assumption does not hold, 

then estimating the mean and standard deviation of the underlying distribution may not be 

appropriate.

References

1. Higgins JP and Green S. Cochrane handbook for systematic reviews of interventions 5.1.0. The 
Cochrane Collaboration 2011: 33–49.

2. Sohn H Improving Tuberculosis Diagnosis in Vulnerable Populations: Impact and Cost-
Effectiveness of Novel, Rapid Molecular Assays. [dissertation]. Montreal: McGill University; 2016.

3. Qin Z Delays in Diagnosis and Treatment of Pulmonary Tuberculosis, and Patient Care-Seeking 
Pathways in China: A Systematic Review and Meta-Analysis. [master’s thesis]. Montreal: McGill 
University; 2015.

4. Mitchell E, Macdonald S, Campbell NC, et al. Influences on pre-hospital delay in the diagnosis of 
colorectal cancer: a systematic review. Br J Cancer 2008; 98: 60–70. [PubMed: 18059401] 

5. Siemieniuk RA, Meade MO, Alonso-Coello P, et al. Corticosteroid Therapy for Patients 
Hospitalized With Community-Acquired Pneumonia: A Systematic Review and Meta-analysis. Ann 
Intern Med 2015; 163: 519–528. [PubMed: 26258555] 

6. Dasari BV, Tan CJ, Gurusamy KS, et al. Surgical versus endoscopic treatment of bile duct stones. 
Cochrane Database Syst Rev 2013: CD003327.

7. Grocott MP, Dushianthan A, Hamilton MA, et al. Perioperative increase in global blood flow to 
explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth 
2013; 111: 535–548. [PubMed: 23661403] 

8. Maffiuletti NA, Roig M, Karatzanos E, et al. Neuromuscular electrical stimulation for preventing 
skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med 
2013; 11: 137. [PubMed: 23701811] 

9. Xie X, Pan L, Ren D, et al. Effects of continuous positive airway pressure therapy on systemic 
inflammation in obstructive sleep apnea: a meta-analysis. Sleep Med 2013; 14: 1139–1150. 
[PubMed: 24054505] 

10. Cucchetti A, Cescon M, Ercolani G, et al. A comprehensive meta-regression analysis on outcome 
of anatomic resection versus nonanatomic resection for hepatocellular carcinoma. Ann Surg Oncol 
2012; 19: 3697–3705. [PubMed: 22722807] 

11. de Kieviet JF, Piek JP, Aarnoudse-Moens CS, et al. Motor development in very preterm and very 
low-birth-weight children from birth to adolescence: a meta-analysis. JAMA 2009; 302: 2235–
2242. [PubMed: 19934425] 

12. Chen K, Xu XW, Zhang RC, et al. Systematic review and meta-analysis of laparoscopy-assisted 
and open total gastrectomy for gastric cancer. World J Gastroenterol 2013; 19: 5365–5376. 
[PubMed: 23983442] 

13. Hozo SP, Djulbegovic B and Hozo I. Estimating the mean and variance from the median, range, 
and the size of a sample. BMC Med Res Methodol 2005; 5: 13. [PubMed: 15840177] 

14. Bland M Estimating mean and standard deviation from the sample size, three quartiles, minimum, 
and maximum. International Journal of Statistics in Medical Research 2014; 4: 57–64.

McGrath et al. Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample 
size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135. [PubMed: 
25524443] 

16. Kwon D and Reis IM. Simulation-based estimation of mean and standard deviation for meta-
analysis via Approximate Bayesian Computation (ABC). BMC Med Res Methodol 2015; 15: 61. 
[PubMed: 26264850] 

17. Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, 
mid-range, and/or mid-quartile range. Stat Methods Med Res 2018; 27: 1785–1805. [PubMed: 
27683581] 

18. Blom G Statistical estimates and transformed beta-variables. New York,: Wiley, 1958, p.176.

19. McGrath S, Zhao X, Steele R, et al. estmeansd: Estimating the Sample Mean and Standard 
Deviation from Commonly Reported Quantiles in Meta-Analysis. R package version 0.1.0 https://
CRAN.R-project.org/package=estmeansd. 2019.

20. McGrath S, Sohn H, Steele R, et al. Meta-analysis of the difference of medians. Biom J 2019 
2019/9/26.

21. McGrath S, Zhao X, Qin ZZ, et al. One-sample aggregate data meta-analysis of medians. Stat Med 
2019; 38: 969–984. [PubMed: 30460713] 

22. Brent R Algorithms for minimization without derivatives. Courier Corporation, 2013.

23. Box GE and Cox DR. An analysis of transformations. Journal of the Royal Statistical Society 
Series B (Methodological) 1964; 26: 211–252.

24. Thombs BD, Benedetti A, Kloda LA, et al. The diagnostic accuracy of the Patient Health 
Questionnaire-2 (PHQ-2), Patient Health Questionnaire-8 (PHQ-8), and Patient Health 
Questionnaire-9 (PHQ-9) for detecting major depression: protocol for a systematic review and 
individual patient data meta-analyses. Syst Rev 2014; 3: 124. [PubMed: 25348422] 

25. Levis B, Benedetti A, Thombs BD, et al. The diagnostic accuracy of the Patient Health 
Questionnaire-9 (PHQ-9) for detecting major depression. BMJ In Press.

26. Tomitaka S, Kawasaki Y, Ide K, et al. Stability of the Distribution of Patient Health 
Questionnaire-9 Scores Against Age in the General Population: Data From the National Health 
and Nutrition Examination Survey. Front Psychiatry 2018; 9: 390. [PubMed: 30190687] 

27. Kocalevent RD, Hinz A and Brahler E. Standardization of the depression screener patient health 
questionnaire (PHQ-9) in the general population. Gen Hosp Psychiatry 2013; 35: 551–555. 
[PubMed: 23664569] 

28. Rief W, Nanke A, Klaiberg A, et al. Base rates for panic and depression according to the Brief 
Patient Health Questionnaire: a population-based study. J Affect Disord 2004; 82: 271–276. 
[PubMed: 15488257] 

29. Cormen TH, Leiserson CE, Rivest RL, et al. Introduction to algorithms. MIT press, 2009.

30. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in 
simulated random-effects meta-analyses. Res Synth Methods 2018.

31. Higgins JP and Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 
1539–1558. [PubMed: 12111919] 

32. Kenney JF and Keeping ES. Mathematics of Statistics, Part 1. 3rd ed Princeton, NJ: Van Nostrand, 
1962.

33. Kwon D and Reis IM. Approximate Bayesian computation (ABC) coupled with Bayesian model 
averaging method for estimating mean and standard deviation. arXiv preprint arXiv:160703080 
2016.

McGrath et al. Page 20

Stat Methods Med Res. Author manuscript; available in PMC 2021 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=estmeansd
https://CRAN.R-project.org/package=estmeansd


Figure 1: 
ARE of the Luo/Wan (red line, hollow circle), QE (blue line, solid triangle), and BC (green 

line, solid circle) methods in scenario S1. The panels in the left and right columns present 

the ARE of the sample mean estimators and sample standard deviation estimators, 

respectively.
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Figure 2: 
ARE of the Luo/Wan (red line, hollow circle), QE (blue line, solid triangle), and BC (green 

line, solid circle) methods in scenario S2. The panels in the left and right columns present 

the ARE of the sample mean estimators and sample standard deviation estimators, 

respectively.
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Figure 3: 
Forest plot from the meta-analysis of mean PHQ-9 scores. The study-specific estimates 

represent the true sample means and their 95% CIs. The pooled estimate shown was 

obtained using the true-study-specific sample means and standard deviations. In the “Mean 

PHQ-9” column, the true study-specific sample means and their 95% CIs as well as the 

pooled mean and its 95% CI are given.
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Table 1:

ARE of the methods when applied to estimate the sample means and standard deviations of the 58 primary 

studies. In each column, the ARE value closest to zero is in bold. The presented ARE values were rounded to 

two decimal places.

ARE for x ARE for s
S1 S2 S3 S1 S2 S3

Luo/Wan −0.14 −0.15 −0.10 −0.15 −0.01 −0.08

QE −0.05 0.06 0.00 −0.15 0.34 −0.08

BC −0.08 0.00 0.00 −0.25 0.06 0.11
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Table 2:

Estimates of the pooled mean PHQ-9 score and their 95% CIs when using the study-specific derived estimated 

sample means and standard deviations. For the pooled estimates under the “S1”, “S2”, and “S3” columns, all 

methods were applied assuming S1, S2, and S3 summary data, respectively, were extracted from all 58 primary 

studies, and the derived estimated study-specific sample means were meta-analyzed. When using the true 

study-specific sample means and standard deviations, the pooled estimate was 6.53 [95% CI: 5.97, 7.09]. In 

each column, the pooled estimate closest to the true value (i.e., 6.53) is in bold.

S1 S2 S3

Luo/Wan 5.76 [5.15, 6.37] 5.68 [5.06, 6.29] 5.97 [5.36, 6.58]

QE 6.26 [5.67, 6.85] 6.88 [6.22, 7.53] 6.49 [5.92, 7.07]

BC 6.09 [5.48, 6.69] 6.59 [5.91, 7.28] 6.58 [6.01, 7.14]
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