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Abstract In this article, a novel hybrid genetic algorithm is proposed. The selection
operator, crossover operator and mutation operator of the genetic algorithm have effec-
tively been improved according to features of Sudoku puzzles. The improved selection
operator has impaired the similarity of the selected chromosome and optimal chromo-
some in the current population such that the chromosome with more abundant genes
is more likely to participate in crossover; such a designed crossover operator has pos-
sessed dual effects of self-experience and population experience based on the concept
of tactfully combining PSO, thereby making the whole iterative process highly direc-
tional; crossover probability is a random number and mutation probability changes
along with the fitness value of the optimal solution in the current population such
that more possibilities of crossover and mutation could then be considered during the
algorithm iteration. The simulation results show that the convergence rate and stability
of the novel algorithm has significantly been improved.

Keywords Genetic algorithm · Sudoku puzzles · Convergence rate · Optimization

1 Introduction

Genetic algorithm (GA) [3] is an optimization method for self-organization and
self-adaption concerning simulation of evolution process of species in Nature and
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Fig. 1 A starting point of the
Sudoku puzzle, where 38
locations contains a static digit
that are given

Fig. 2 A solution for the
Sudoku puzzle given in Fig. 1,
The given numbers marked in
bold

mechanism of decomposing problems, and particle swarm optimization (PSO) algo-
rithm [6] is an optimal technology based on swarm intelligence. Both GA and PSO
have widely been applied in computer science, artificial intelligence, IT and engineer-
ing practice. This article studies if the Sudoku puzzles can be solved effectively with
a novel genetic algorithm.

Sudoku puzzles are composed of a 9 × 9 grid, namely of 81 positions, which are
then divided into nine 3 × 3 sub-grids. Once Sudoku puzzle is ready to play there are
initially some static numbers (givens) that are not allowed to be changed or moved
during a process of solving Sudoku puzzles, the solution of Sudoku puzzles is such that
each row, column and 3 × 3 sub-grids contains each integer {1, 2, 3, 4, 5, 6, 7, 8, 9}
once and only once [4]. Figure 1 shows a Sudoku puzzle example having a unique
solution [11] for testing this article’s algorithm. It contains 38 givens, the correspond-
ing solution for Sudoku puzzle can be achieved by filling up the remaining 43 empty
spaces. The solution of this Sudoku is shown in Fig. 2. Note that givens has remained
in their original positions.

Sudoku puzzles has been claimed to be very popular and even addictive because
they are very challenging but have relatively simple rules [17]. Playing Sudoku puz-
zles on 12 November 2004 was first posted inside of a newspaper ‘Times”, becoming
a daily fixed content of this newspaper, and later it become hugely popular all over the
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world, particularly in America and Europe [18]. At present, the research on Sudoku
puzzles focuses mainly on two aspects: minimum number of given numbers in Sud-
oku puzzles having a unique solution and method of solving Sudoku puzzles having
a unique solution. What are the possible minimal grids required upon which Sudoku
puzzles would lose any solution even if you move any one of numbers out of the
grids. This problem is one of the most recreational mathematics in Sudoku puzzles;
unfortunately, the problem mentioned herein has not been solved so far. However,
as estimated by mathematicians this figure could be 17 [4]. For those resolutions of
Sudoku puzzles having a unique solution the strategy applied for manually solving
the puzzles would cover Singles Candidature, Hidden Singles Candidature and Naked
Pairs, etc. As for manually solving the puzzles the solution integrated with the help
of computer would be valuable in the research. Many methods regarding the solving
Sudoku puzzles with the help of computer have been put forward.

Nicolau and Ryan [14] have used quite a different approach to solve Sudoku: their
Genetic Algorithms using Grammatical Evolution (GAuGE) optimizes the sequence
of logical operations that are then applied to find the solution. They [15] developed a
system named GAuGE for Sudoku, which uses a position independent representation.
Each phenotype variable is encoded as a genotype string along with an associated
phenotype position to learn linear relationships between variables. To solve the Sud-
oku puzzles with one solution only (well formed puzzles), GAuGE use five strategies:
Last remaining, Slice and Dice, Column Fill, Row Fill, Raising Numbers. But only
use this five strategies can’t fill all the spaces of all the well formed puzzles purely on
logic. Solving well formed puzzles, you will often find each space has two fit numbers
at least, then you can’t solve the solution using the strategies above only. So GAuGE
can’t find the solution of #116 and #117 in [15] forever.

Moraglio et al. [9] have solved Sudoku puzzles using genetic algorithm with product
geometrical crossover. Their method solves easy Sudoku efficiently but it has limited
efficiency for those Sudoku puzzles with medium and superior difficulties. Moraglio
et al. [10] also used the geometric particle swarm optimization (GPSO) for solving
Sudoku puzzles, but their results are not so good as those by genetic algorithm. The
success rate of one-time operation by the former is only 14–72% while it is 100% by
the latter.

Geem [2] have used harmony search (HS) algorithm to solve Sudoku puzzle. Their
results showed that HS could successfully solve the easy Sudoku but it failed to find
the global optimum for hard level with 26 given values. The HS model was instead
entrapped in one of local optima with the penalty of 14 after 1,064 function evaluations.
Moreover HS perform quite sensitive to the parameters of HMS, HMCR, PAR.

Li [7] introduced graph search strategy on the basis of knowledge representation
and deduction base in artificial intelligence for solving Sudoku puzzles.

Perez and Marwala [16] have used many different methods: cultural genetic algo-
rithm, repulsive particle swarm optimization, quantum simulated annealing, and
genetic algorithm/simulated annealing hybrid (HGASA) for solving Sudoku. Their
results showed that the HGASA method was the most efficient of them when solving
Sudoku.

Mantere and Koljonen [11–13] have tried various evolutionary algorithm (EA)
methods, i.e., genetic algorithm (GA), cultural algorithm (CA), ant colony optimization

123



244 X. Q. Deng, Y. D. Li

(ACO) and genetic algorithm/ant colony optimization hybrid (GA/ACO) for solving
Sudoku. Their results revealed that GA/ACO was more efficient than any of the other
three methods and the analysis of the hybrid method and its parameter settings helped
improve the GA and CA methods, too, and their results also improved by 14.2 and
19.4%, respectively.

Mantere and Koljonen [11], however, proposed a new idea for solving Sudoku puz-
zles based on genetic algorithm which is innovatively valuable and novelty as well
in the light of research, but with a slow rate of convergence. In order to enhance the
convergence speed of the genetic algorithm, Li and Deng [8] have improved the var-
ious important operators of the genetic algorithm in a bold way, so that the solved
Sudoku puzzles had higher reliability, better stability and quicker convergence speed.
But the crossover probability and mutation probability of improved genetic algorithm
(IGA) [8] are constant during the optimization, thus to affect the stability and prac-
ticability of the algorithm and to restrict the convergence speed to a certain degree.
In view of the features for solving Sudoku puzzles, this article effectively improves
the selection operator, crossover operator and mutation operator. Furthermore, the
information exchange pattern of particle swarm optimization is tactfully used in the
crossover operator, such a designed crossover operator has possessed dual effects of
self-experience and population experience, making the whole iteration process more
directional.

2 Genetic algorithm for solving Sudoku puzzles

2.1 Fitness function

The key point for solving Sudoku puzzles by successfully using genetic algorithm
is how to construct a fitness function and how to encode a solution (chromosome)of
Sudoku puzzles. In addition to basic rules of Sudoku, the givens must be observed
during the solving process. Therefore the solution of a Sudoku puzzle must be sat-
isfied with the following four conditions: (1) each row has to contain each integer
from 1 to 9; (2) each column has to contain each integer from 1 to 9; (3) each 3 × 3
sub-grids must contain each integer from 1 to 9; (4) the given numbers must stay in
the original positions. By selecting an appropriate solving strategy, condition (4) is
always fulfilled. Additionally, one of the condition (1) to (3) can be controlled. Hence,
only two conditions are subject to optimization. We chose to implement our GA so
that condition (3) and (4) are intrinsically fulfilled and only the condition (1) and (2)
are optimized. Thus, for Sudoku puzzle shown in Fig. 1 the remained 43 empty spaces
are randomly filled up under the precondition of satisfying the condition (3) and (4)
so as to achieve a feasible solution of Sudoku puzzle. Such a feasible solution is not
necessary to satisfy the conditions (1) and (2), the fitness function is defined according
to the content of satisfying both conditions as follows:

w =
9∑

i=1

(ri + ci ) (1)
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Fig. 3 Encoding chromosome corresponding to a given Sudoku puzzle

Fig. 4 Associated chromosome corresponding to a given Sudoku puzzle

where ri is number of repeated integer on the i row while ci is numbers of repeated
integer on the i column. The value of w is non-negative integer, the smaller the value
of w is, the higher the fitness of the corresponding feasible solution, thus when w is
0, the corresponding feasible solution becomes optimal solution for the given Sudoku
puzzle.

2.2 Encoding chromosome

Encoded numbers each grid of Sudoku puzzle in an order from left to right and from
top to bottom, the Sudoku puzzle are then encoded according to a sequence from a
smaller encoded number to a larger encoded number [11], so as to express the feasible
solution (chromosome) of Sudoku puzzle using an integer array of 81 numbers, which
is then divided into nine sub-blocks of nine numbers, each sub-block corresponding
to one 3 × 3 sub-grid from left to right and from top to bottom, accordingly. The
corresponding chromosomes in Fig. 1 are shown in Fig. 3.

In which zero represents a number ready for filling up, non-zero is the given numbers
in the sub-grid. Number corresponding to non-zero location would be changed into
1.The correspondent associated chromosome could be achieved as shown in Fig. 4.
The associated chromosome is used for checking fixed positions, if there is a number
that is not equal to zero that number cannot be changed during the optimization, only
the positions that have zero are free to be changed, thereby ensuring unchangeable of
the original Sudoku puzzle in the procedure of mutation.

2.3 Genetic operator analysis

Both cross-point position and mutation probability of IGA [8] are constant that means
any change of Sudoku puzzles both crossover probability and mutation probability
must be redefined, thus to affect the stability and practicability of the algorithm. Small
mutation probability in the later period of iterator in [8] cannot keep the abundant
of gen. Thus, once the solutions fall in the nearby of a local optimal solution, the
algorithm will fall into local optimal solution easily (see in Figs. 7, 8). Finally the
selection operator as given by Li and Deng [8] based on the principle of the survival of
the fittest would make the probability of selecting chromosome with smaller encoded
number as parental type too high. All the operator of the IGA above will make the
algorithm easily fall in local optimal solution.

On the basis of analysis above each genetic operator of IGA will further been
improved according to characteristic of Sudoku puzzles in this article. In order to avoid
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the problem of determining the probability of crossover and mutation, a “random”
technology is used in this article (see Sects. 3.2, 3.3 for more detail). Also two strate-
gies: “divide into group” and “add final fitness value to the optimal solution of present
generation” are used in the selection operator to reduce the probability of falling into
local optimal solution and change the direction of evolution in time (see Sect. 3.1 for
more detail). Furthermore, the information exchange pattern of particle swarm opti-
mization is used in the crossover operator, such a crossover operator has possessed
dual effects of self-experience and population experience, making the whole iteration
process more directional. As the genetic algorithm designed in this paper integrates
with the principle of the particle swarm optimization, the new algorithm is called
hybrid genetic algorithm (HGA).

3 Hybrid genetic algorithm

A feasible solution for a given Sudoku puzzle could be achieved by randomly fill-
ing it up under the precondition of satisfying condition (3). Repeat this procession to
achieve 41 feasible solutions, which corresponds to 41 chromosomes, choose the best
21 chromosomes, thus the initialization of population is completed.

3.1 Selection operator

Any population will generate 20 chromosomes, then there are 41 chromosomes for us
to choose. As we know, each chromosome has its corresponding fitness function value
wi , i ∈ {1, 2, 3 . . . 21}. All of best 21 chromosomes are then encoded with numerical
data linearly ordered by magnitude against the value of wi in which the chromosome
with smallest value is encoded as 1 while with largest value as 21. The 21 chromo-
somes with encoded numbers in the range of 1–21 are selected to generate the next
generation of population. Then we will choose 20 pairs of chromosomes from this
generation with the principle show as Table 1.

Where the value of “identifier” is a newly generated chromosome, presently.
“Upper_bound” is a variable, “randint(1,1,[2,Upper_bound])” will generate a ran-
dom integer in a range of 2-Upper_bound, “acc(1) = acc(1) + 0.25” represents the
increase of fitness by 0.25 for optimal chromosome in the current population before
selection conducted (namely a chromosome with the encoded number 1), remaining
the chromosome into the next generation. Since the smaller fitness of population is
the less of numbers more optimal than the optimal feasible solution of the current
population, the more difficult to find the more optimal solution with crossover opera-
tor. In order to avoid falling of local optimal with algorithm the fitness of the optimal
chromosome must be added with 0.25, such that the optimal chromosome after four
times of iteration remains unchangeable, resulting in an increase of fitness of optimal
chromosome started from the 5th iteration by 1, therefore, the near-optimum chro-
mosome (with difference of fitness by 1 to the optimal chromosome) will replace
the optimal chromosome, such that the representative of genes of the population is
changed in crossover operation, namely evolutionary direction of population genes is
thereby changed, too.
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Table 1 Selection operator of HGA

Not only such a selection strategy can ensure the optimal chromosome in population
certainly appeared in the next generation, but also in the process of selecting 20 pairs of
parental chromosomes, the 20 item of chromosomes will be divided into four levels of
priority, each of being 2–5, 6–10, 11–15, 16–21, respectively (where k = 2, 3, . . . ,21
is an encoded number of chromosome). Any chromosome in each group is selected as
a parental generation with times being 6/20 +5/15+5/10+5/5, 6/20 +5/15+5/10, 6/20
+5/15, 6/20, respectively. Any two chromosomes having the same level of priority
have the identical priority during selection, such that the similarity of selected chro-
mosome would be weakened, thereby the probability of chromosome having more
abundant gene for selection is reasonably enlarged. In addition, two chromosomes
selected as a parental type would finally become a single chromosome. When X1 and
X2 as parental types are identical, the selection operator would be repeated until both
chromosomes become different.

3.2 Crossover operator

The action of crossover operator is to search the better combination of genes, i.e.
chromosome, on the basis of current population genes. Crossover and mutation opera-
tors cannot directly be used for solving Sudoku puzzles using genetic algorithm since
an illegal state would be generated from 3 × 3 sub-blocks. Multiple point cross-
over is applied in this article. The cross-points corresponding a 3 × 3 sub-block
in the same location would exchange randomly between two selected chromosome
(solution). In order to enlarge the searching range the numbers of cross-points is no
longer an assigned constant, but a random variable k. K sub-blocks are taken from X1
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Fig. 5 The process of crossover

chromosome arbitrarily, where k is any one of integers from 1 to 8, and the rest (9 − k)

sub-blocks are taken from X2 chromosome to form a new chromosome.
Although a better chromosome can be achieved from crossover among the bet-

ter chromosomes in the view of Probability Statistics, this tendency is, however, not
obvious. Renewal of particle state in PSO is implemented using three aspects of infor-
mation, current position, empirical position and neighboring empirical position of the
particles to adjust its state [1], in this article, this information exchange mode of PSO
is applied in crossover operator of GA, the renewal of chromosome is affected by dual
effects of self-experience and population experience, thereby making the crossover
operator highly directional. In this article the self-experience is originated from two
selected parental chromosomes, the optimal chromosome in the current population
represents the population experience. Since two selected chromosomes are different
one another, thus their encoded numbers are different, either, where max represents for
a larger number of encoded chromosome while min for a smaller number of encoded
chromosome and best for optimal chromosome (i.e. chromosome with number 1),
λ1 and λ2 are the numbers of sub-blocks taken from one chromosome which are a
random natural number in the range of 1–8, ⊗λ1 is defined in crossover operation with
coefficient λ1, thus the crossover operator could be represented as follows:

xi = (best ⊗λ1 max) ⊗λ2 min λ1 �= λ2 i = 2, 3, . . . , 21 (2)

Figure 5 indicates the implementing process of crossover operator. For the random
natural numbers λ1, λ2 which are in the range of 1–8 and the three selected parental
chromosomes (best, max and min), first produce λ1 cross-points (i.e. λ1 sub-blocks)

123



A novel hybrid genetic algorithm for solving Sudoku puzzles 249

randomly in max. For the sub-blocks in these cross-points, get offspring temp-result
directly from the parental chromosome (max); for the sub-blocks of offspring temp-
result at other positions, select them from the sub-blocks at the positions correspond-
ing to the parental chromosome (best) in proper order. For offspring temp-result and
parental chromosomes (min), likewise, first produce λ2 cross-points randomly in min;
for the sub-blocks in these cross-points, get offspring cross- result directly from the
parental chromosome (min); for the sub-blocks of the offspring cross-result at other
positions, select them from the sub-blocks at the positions corresponding to the off-
spring temp-result.

In order to make the chromosome formed with crossover operation diversity the
crossover operation should be carried out repeatedly if the chromosome is identical to
the parental types with crossover operator until a new chromosome appears. 20 new
chromosomes will be achieved after 20 pairs of chromosomes crossed over.

3.3 Mutation operator

The action of mutation operator is to make genes of chromosome more abundant
during evolutional process, thus to reduce the probability of falling local search. The
mutation operation is performed as swap of two points inside a sub-block to make sure
each 3 × 3 sub-blocks is satisfied with condition (3) all along. The associated chro-
mosome as shown in Fig. 4 is used to check if the position is appropriate for mutation.
If the digit is not a zero, the corresponding location is illegal to exchange, thus the
given digits will not changed during optimization. Because the difference of initialized
genes is relatively larger at the early stage of evolution the mutation probability is not
necessarily larger. Under the action of crossover operator the integral population fit-
ness gradually becomes smaller, and chromosomes become more and more identical,
in this case an adequate increase of probability of mutation will avoid the population
to be precocious. However, when the adaption of population decreases again the popu-
lation would still appear precocious, it will cause vibration of population fitness if the
probability of mutation becomes larger again. Therefore, the probability of mutation
of chromosome with encoded numbers of 2–6 at this article is enlarged to enlarge the
distance between chromosomes and with encoded numbers of 7–21 is diminished to
decrease the distance between chromosomes, thereby control the vibration of popula-
tion fitness within a certain range and avoid population precocious while introducing
more abundant genes. The detailed mutation probability is shown in Table 2. Figure 6
indicates the implementing process of mutation operator.

Where swap represents digit of mutation resulted from each chromosome, identifier
is an encoded number of chromosome in mutational operation. randint (1, 1, [1, 5]),
a random integer of 1–5 generated.

4 Step-by-step description of the HGA

The procedure of the HGA can be described in the following:
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Table 2 Mutation operator of
HGA

Fig. 6 The process of mutation

Step1 (Initialization) The initialization process is repeated to achieve 41 feasible solu-
tions for a given Sudoku puzzle by randomly filling it up under the precondition
of satisfying condition (3). Set the current generation G = 0.

Step2 (Encoding chromosome) Chromosome (feasible solutions) are encoded accord-
ing to the method introduced in Sect. 2.2.

Step3 (Calculate fitness and sort) Calculate fitness of the chromosome according to
formula (1) and all of 41 chromosomes are then encoded with numerical data
linearly ordered by magnitude against the value of wi in which the chromosome
with smallest value is encoded as 1 while with largest value as 41.

Step4 (Selection) The 21 chromosomes with encoded numbers in the range of
1–21 are selected as a first generation of population, and the selection operator
shown in Table 1 was performed to generate the offspring.

Step5 (Crossover) Perform crossover operator shown in formula (2).
Step6 (Mutation) Perform mutation operator shown in Table 2.
Step7 G = G + 1
Step8 (Termination criterion) If wi = 0, stop. Otherwise, go to step 3.
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5 Simulation experiment and results

5.1 The comparison results of HGA, IGA and GA

In this section, the performance of HGA is studied by solving Sudoku puzzles shown
in Fig. 1 with solution as shown in Fig. 2.The main task in the simulation experiments
was to test the convergence performances of each algorithm, and HGA is compared
with IGA [8] and GA [11]. The simulation experimental results are shown in Table 3.
It can be seen from Table 3 that HGA can solve a global optimal solution for Sudoku
faster than IGA and GA in solving easy rating puzzle.

5.2 The comparison results of HGA and HS

In order to compare the performance of HGA and HS, HGA was applied to solving
the Sudoku puzzles taken from Fig. 1 (easy level) and Fig. 3 (hard level) of Geem
[2]. Table 4 presents solve times of the easy Sudoku puzzle. It can be seen that the
average solve time of HGA is only 1.75 s without defining any parameters in advance.
But from Table 1 of Geem [2], we can see that HS performs quite sensitive to the
parameters of HMS, HMCR, PAR. The best combinations of parameters are different
for different Sudoku puzzle. In this case, even the best combination will cost 3 s. In
the case of the hard Sudoku puzzle with 26 given values, HS is instead entrapped in
one of local optimal with penalty of 14 after 1,064 function evaluations. But HGA can

Table 3 Comparison results of
HGA, IGA and GA

Algorithm type Optimal solution Generations

HGA (in this article) See Fig. 2 196

IGA (in literature [8]) See Fig. 2 550

GA (in literature [11]) See Fig. 2 3,500

Table 4 Ten runs of solving
easy Sudoku with HGA

Number Iterations Times

1 40 1.57

2 60 2.18

3 51 1.79

4 73 2.46

5 32 1.20

6 69 2.45

7 28 1.07

8 48 1.74

9 29 1.10

10 41 1.45

Average 48.3 1.75
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search the global optimal in 20% or got one of local optima with penalty of 10 after
811 function evaluations. Obviously HGA has a better result than HS.

5.3 Analysis on convergence of the algorithm

We randomly drew 14 Sudoku puzzles from website http://www.llang.net/Sudoku/
[5] to do an experiment, 10 from the puzzle bank with ordinary difficulty and 4 from
the puzzle bank with difficulty. Each puzzle has a unique solution and all the puzzles
are respectively marked as four different difficulty rating: Easy, Challenging, Diffi-
culty and Super difficult (see Table 5). Use the HGA in Sect. 4 above to operate 10
experiments for each puzzle of the former 10, 100 experiments in all; for the latter 4,
operate 6 experiments for each, 24 experiments in all.

Table 5 gives the generations needed by each experiment algorithm convergence.
From the experiment data of Table 5, we know that for the 10 Sudoku puzzles with
easy and challenging, the success rate of HGA one-time operation is 60–100%, with
the average level as 80%, so the success rate is rather high. But the success rate of
GPSO [10] one-time operation is only 14–72%.

Table 6 indicates the results of the 100 experiments for the 10 puzzles with easy and
challenging, with each line standing for the average convergence process of the results
of 10 experiments for each puzzle. The last line shows the average convergence of the
average results of the 10 puzzles, representing the convergence of the algorithm for
the Sudoku puzzles with easy and challenging. When the fitness value is 0, it shows
that we get a global optimal solution, and the average generation for the global optimal
solution is 465 generations.

Table 7 indicates the results of 24 experiments for 4 puzzles, with each line standing
for the average convergence process of the results of 6 experiments for each puzzle.
The last line shows the average convergence of the average results for four puzzles,
representing the algorithm’s convergence for the Sudoku puzzles with difficulty and
super difficulty. The success rate of one-time operation for the four difficult puzzles
is lower than 20%, but HGA can always operate to the level 2, with average 648 gen-
erations needed. The data in Tables 6 and 7 shows HGA has a quicker convergence
speed.

Table 8 indicates the comparison results of HGA, IGA and GA for solving Sudoku
puzzles with different difficulty rating. From Table 8, we can see that HGA is better
than IGA and GA in statistical for any difficulty rating puzzle. So the operator of this
article has popularity for Sudoku puzzles.

Figure 7 shows the average convergence process of HGA and IGA in solving easy
and challenging rating puzzle. From Fig. 7 it is easy to see that HGA has a quicker con-
vergence speed than IGA for Sudoku puzzles with easy and challenging. Furthermore,
the less the fitness value is, the more obvious tendency is.

Figure 8 shows the average convergence process of HGA and IGA in solving dif-
ficulty and super difficulty rating puzzle. From Fig. 8, we can see that HGA and IGA
can’t research and find the optimal solutions because the puzzles with difficulty and
super difficulty have more local convergence point. But HGA can research less fitness
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Table 6 Convergence process of HGA in solving easy and challenging rating puzzle

0 10 9 8 7 6 5 4 3 2 1 0

1 15 41 32 22 32 34 55 59 205

2 13 26 19 22 35 56 68 130 94 295

3 11 12 12 28 37 52 61 86 116 357

4 11 9 11 16 20 17 45 135 129 324

5 15 11 21 18 24 36 54 90 355 473

6 8 9 13 10 15 38 23 41 71 468

7 12 10 14 16 19 21 35 84 67 542

8 10 11 16 17 17 22 59 121 138 614

9 20 27 29 34 26 93 134 164 210 792

10 27 32 33 36 51 92 106 267 341 575

Statistical 14 19 20 22 28 46 64 112 158 465

Table 7 Convergence process of HGA in solving difficulty and super difficulty rating puzzle

0 10 9 8 7 6 5 4 3 2 1 0

11 29 60 68 83 336 339 387 896 1,906

12 24 37 33 52 92 159 279 319 1,205

13 35 20 75 63 156 161 201 460 720

14 33 31 54 53 81 115 352 657

Statistical 31 37 58 48 185 246 631 648

Table 8 Comparison results of
HGA, IGA and GA

Algorithm type E, C D, SD Population size

HGA (in this article) 579 19,450 21

IGA (in literature [8]) 1,112 – 21

GA (in literature [11]) 839–9,100 52,211 21

value than IGA. So the ability to avoid falling local convergence for HGA is better
than IGA.

From the experiments above done, we can conclude as below: First, this article takes
a 3×3 sub-block as a crossover point, with the crossover probability as a random num-
ber. In this way, the searching direction for each iteration searching process is more
flexible and the searching scope is wider, making up for the shortage that it is difficult
to search and find the more optimal solution due to the sparse solution space in this
article (the convergence process shown in Tables 6 and 7 indicates that the crossover
operator can find the more optimal solution more quickly). Secondly, the crossover
probability is a random number which is exempted from probability determination,
thus enhancing the algorithm’s practicability. Finally, the mutation probability in this
article changes along with the fitness value of the optimal solution in the current pop-
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Fig. 7 Curve of average convergence in solving easy and challenging rating puzzle

Fig. 8 Curve of average convergence in solving difficulty and super difficulty rating puzzle
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ulation in order to maintain the diversity of population gene, which makes it possible
for the crossover operator to search and find the solution different with the current pop-
ulation and greatly enhance HGA algorithm’s stability for different Sudoku puzzles,
and greatly speed up the algorithm’s convergence speed.

6 Conclusions and future work

The selection operator, crossover operator and mutation operator of the IGA are fur-
ther improved with respect to drawback of IGA. First, the novel HGA uses group
as a division for priority level in selection operator, thereby impairing the similar-
ity of the selected chromosome and optimal chromosome, so that the probability of
chromosome having more abundant genes for selection is reasonably enlarged; sec-
ondly, the crossover operator has been endowed with dual effect of self-experience
and population experience based on the concept of combining particle swarm optimi-
zation, thereby making the whole iteration directional; the secondary probability of
mutation will increase along with decrease of fitness, particularly at a later stage of
iteration, a reasonable adjustment for mutation probability is conducted according to
the fitness value of the optimal chromosomes in the current population, upon which
the algorithm reliability could greatly be improved. Finally, under the circumstance
of no better chromosome achieved after 4 times of iteration it should be replaced by
a near-optimal chromosome in time so as to change evolution direction of population
timely, thereby to avoid falling local problem.

Simulation experimental results showed that not only the novel algorithm can accu-
rately solve a global optimal solution, but also significantly enhance the convergence
rate and stability of the algorithm, becoming one of the effective global optimization
methods.

Though HGA algorithm has very good results for easy and challenging Sudoku
puzzles, it is not so ideal for difficult and super difficult Sudoku puzzles. This awaits
our deeper study on this algorithm in the future work to make it more suitable to solve
the difficult and super difficult Sudoku puzzles.
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