
Beam Splitter Input-Output Relations

The beam splitter has played numerous roles in many aspects of optics. For example, in

quantum information the beam splitter plays essential roles in teleportation, bell measure-

ments, entanglement and in fundamental studies of the photon.

Electric fields E1 and E2 enter input ports 1 and 2, respectively. Field 1 evolves as

E1 → TE3 + RE4, where T,R are the transmission and reflection coefficients for the beam

splitter. Note that |T |2 is the transmitted intensity. Similarly, E2 → RE3 + TE4. The

transformation matrix is then given by





E1

E2



 →





T R

R T









E3

E4



 (1)

The elements of the beam splitter transformation matrix B are determined using the

assumption that the beamsplitter is lossless. While a beamsplitter is never lossless, it is a

good approximation for most applications. A lossless device implies that the transformation

matrix B is unitary, which means that B−1B = B†B = 1 ⇒ B−1 = B†. Recall that the

matrix elements of B†
i,j = B∗

j,i. Hence, we arrive at





T R

R T









T ∗ R∗

R∗ T ∗



 =





1 0

0 1



 , (2)

which yields

|T |2 + |R|2 = 1 (3)

R∗T + RT ∗ = 0. (4)

The transmission and reflection coefficients are complex numbers T = |T |eiθ and R =

|R|eiφ. For simplicity, let θ = 0. Eqn. (4) then becomes 2TRCosφ = 0, which is satisfied by

φ = π/2. For a 50/50 beam splitter (meaning 50% reflection and transmission) the complex

amplitude is then 1/
√

2. The 50/50 beam splitter matrix is then given by

B =
1√
2





1 i

i 1



 (5)
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Problem: prove to yourself that this matrix is unitary. Is this solution unique? In other

words, other than a global phase, are there other unitary matrices which satisfy the specified

assumptions?

SINGLE PHOTON INPUT

Now suppose one photon is in the input of port 1 of the input ports of the beam splitter.

This is written as

â1
†|0〉 = |1〉1|0〉2 (6)

where the last ket denotes that the vacuum state enters the other port of the beam splitter.

Assuming a 50/50 beam splitter, then after the beam splitter the state is written as

|1〉1|0〉2 =
1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4 (7)

This state is entangled, although one cannot measure the entanglement since the single

photon is entangled along with the vacuum. More fundamentally, we can read this as the

single photon has amplitudes in two different locations. The expectation value of the number

operator in output mode 3 is then

〈N̂3〉 =

(

1√
2

3〈1|4〈0| −
i√
2

3〈0|4〈1|
)

â†
3â3

(

1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4

)

=
1

2
(8)

Similarly, the expectation value for number operator in mode 4 is the same for a 50/50 beam

splitter. This simply implies that the average number of photons in either one of the output

ports is 50%, as expected. However, the expectation value

〈N̂3N̂4〉 =

(

1√
2

3〈1|4〈0| −
i√
2

3〈0|4〈1|
)

â†
3â3â

†
4â4

(

1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4

)

= 0 (9)

This is a measure of the degree of second order coherence. This is simply a statement that

a photon cannot be measured in two places simultaneously.

The expectation value of the electric field is

〈Ê3(χ)〉 =

(

1√
2

3〈1|4〈0| −
i√
2

3〈0|4〈1|
)

(
1

2
â3e

−iχ +
1

2
â†

3e
iχ)

(

1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4

)

= 0

(10)
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This result is expected for an individual arm for the mean field. The electric field variance

is then found to be

〈Ê2
3(χ)〉 =

(

1√
2

3〈1|4〈0| −
i√
2

3〈0|4〈1|
)

(
1

2
â3e

−iχ +
1

2
â†

3e
iχ)2

(

1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4

)

=
1

4

(

1√
2

3〈1|4〈0| −
i√
2

3〈0|4〈1|
)

(2â†
3â3 + 1)

(

1√
2
|1〉3|0〉4 +

i√
2
|0〉3|1〉4

)

=
1

2
(11)

Find

〈Ê3(χ3)Ê4(χ4)〉 (12)

The result of this calculation shows that the amplitudes of the output have a high degree of

first order coherence.

MACH-ZEHNDER INTERFEROMETER

Now assume that two 50/50 beam splitters are in series, such that the outputs of one

beam splitter are the inputs of the other beam splitter. Further, assume that the path

lengths are identical. Lastly, assume that the single photon consisting of only a single plane

wave mode enters only one port of the beam splitter. Then, after the first beam splitter the

field operators evolve as

â1
†|0〉 → 1√

2
(â†

3 + iâ†
4)|0〉 (13)

Using the assumption that the path lengths between the two beam splitters is identical,

which for all intents and purposes is an obsurd assumption, we obtain

1√
2
(â†

3 + iâ†
4)|0〉 →

1

2
(â†

5 + iâ†
6 + i(iâ†

5 + â†
6))|0〉 = â†

6|0〉 (14)

where the global phase i was dropped. This shows that the photon can still have unit

probability of leaving only one port of the interferometer. Dropping the assumption of equal

path length, suppose now that one of the arms is longer than the other. Since the photon is

an infinite plane wave mode, then this assumption means that there will be a relative phase
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picked up.

â1
†|0〉

→ 1√
2
(â†

3 + iâ†
4)|0〉

→ 1√
2
(â†

3 + ieiφâ†
4)|0〉

→ 1

2
(â†

5 + iâ†
6 + ieiφ(iâ†

5 + â†
6))|0〉

=
1

2

(

(1 − eiφ)â†
5 + i((1 + eiφ))â†

6

)

|0〉 (15)

Thus, by manipulating the path lengths between the two beam splitters, it is possible to

control from which port the photon leaves. For φ = 0 the photon leaves port 6 and for

φ = π, which corresponds to a halfwavelength shift, the photon leaves port 5. The visibility

of the fringes obtained by scanning the phase from 0 to 2π represents the degree of first

order coherence.

SINGLE PHOTON INPUT REVISITED: DENSITY MATRIX FORMALISM

As has been seen, the method outlined so far is algebraically unfriendly. However, matrix

representations of all of the transformations as well as expectation values using the den-

sity matrix formalism greatly enhance the simplicity as well as the possible measurement

outcomes. To start off, we define a state density matrix. Any two state system can be

represented by a wavefunction of the form

|Ψ〉 = α|0〉 + β|1〉 (16)

where α and β are complex amplitudes of the two states 0 and 1. Owing to the fact that a

global phase is irrelevant, we can rewrite the system as

|Ψ〉 = α|0〉 + βeiφ(t)|1〉 (17)

where α and β are now considered to be real. It is important to note that the phase factor

φ(t) evolves with time. The density matrix is thus defined as

ρ = |Ψ〉〈Ψ| (18)
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Instead of writing the superposition state in terms of the states, we rewrite the state as

position and column vectors, namely

|Ψ〉 =





α

βeiφ(t)



 (19)

and

〈Ψ| =
(

α βe−iφ(t)

)

(20)

Hence,

ρ = |Ψ〉〈Ψ| =





α

βeiφ(t)





(

α βe−iφ(t)

)

=





α2 αβe−iφ(t)

αβeiφ(t) β2



 (21)

Thus, it can be seen that if the temporal fluctuation of the phase is very fast, then the

“ensemble average” of the density matrix is represented by a diagonal density matrix. This

is referred to as a statistical mixture, meaning the the diagonal elements denote the proba-

bility that a given state will be measured, while the off diagonal elements denote the degree

of coherence in the system. In other words, the wavefunction is not a coherent superposi-

tion on the time scale of the measurement of a given observable. A superposition state is

considered to be coherent, if the relative phase fluctuations are small on the time scale of

the measurement of the observable.

The next topic we will consider is the evolution of a density matrix. Since a wavefunction

evolves through operator application Â|Ψ〉, then the density matrix must evolve as ÂρÂ†.

Beamsplitter with single photon input revisited

As an important and simple example consider again the single photon input into beam-

splitter. Since there will only ever be two possible spatial modes that the photon can be

in the basis states are |1, 0〉 and |0, 1〉, where the positions in the kets denote the number

states in the two modes. In other words, the first ket states that 1 photon is in mode one

and 0 photons are in mode two. If we assume that one photon is initially in mode 1, then

|Ψ〉 = |1, 0〉 =





1

0



 (22)
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where we have made the assumption that the amplitude of the |1, 0〉 ket occupies the first

element in the column vector. This means that the density matrix is

ρ =





1 0

0 0



 (23)

After passing through the beamsplitter the new density matrix is

BρB† =
1

2





1 i

i 1









0 0

0 1









1 −i

−i 1



 =
1

2





1 −i

i 1



 (24)

Now we can compute the expectation value of an observable by using the well known relation

〈A〉 = Tr[ρA] (25)

where A is the matrix of the observable determined by the expansion in the n dimensional

basis states |an〉

A =











〈a1|Â|a1〉 〈a1|Â|a2〉 · · ·
〈a2|Â|a1〉 〈a2|Â|a2〉 · · ·

...
...

. . .











(26)

The basis states for the single photon state is |0, 1〉 and |1, 0〉. The number operator matrix

is then

N1 =





〈1, 0|N̂1|1, 0〉 〈1, 0|N̂1|0, 1〉
〈0, 1|N̂1|1, 0〉 〈0, 1|N̂1|0, 1〉



 =





1 0

0 0



 . (27)

It should be noted here, that the operator N1 acts on the first term in the column vector. In

the previous section, after the beam splitter, the modes were labelled mode 3 and mode 4.

However, using matrix notation it is simpler to consider the terms in the column vector. For

example, taking the expectation value of N1 for any number of transformations determines

the expectation value of the “transmitted” mode of the beam splitter or the first term in

the column vector. The expectation value of the number operator after the beam splitter is

then

〈N1〉 = Tr[BρB†N1] =
1

2
Tr









1 i

−i 1









1 0

0 0







 =
1

2
(28)

Similarly

〈N2〉 = Tr[BρB†N2] =
1

2
Tr









1 i

−i 1









0 0

0 1







 =
1

2
(29)
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The electric field vector vanishes for every element in the matrix. Thus, the mean field is

zero. The electric field squared in a given output port is

E2
1 =





〈1, 0|Ê2
1 |1, 0〉 〈1, 0|Ê2

1 |0, 1〉
〈0, 1|Ê2

1 |1, 0〉 〈0, 1|Ê2
1 |0, 1〉



 =
1

4





3 0

0 1



 (30)

The expectation value of the electric field squared after the beam splitter is then

〈E2
1〉 = Tr[BρB†E2

1 ] =
1

8
Tr









1 i

−i 1









3 0

0 1







 =
1

2
(31)

PROVE that 〈E2
2〉 = 1

2
after the beam splitter.

Mach-Zehnder interferometer

All of the Mach-Zehnder interferometer statistics are easily represented in density matrix

formalism. Before proceeding, the phase shift matrix is introduced. The matrix which

determines the relative phase shift φ between the two modes is given by

P =





1 0

0 eiφ



 (32)

which means that the density matrix, incorporating the relative phase shift, is given by

ρ′′ = PBρB†P † =
1

2





1 0

0 eiφ









1 i

i 1









1 0

0 0









1 −i

−i 1









1 0

0 e−iφ



 =
1

2





1 −ie−iφ

ieiφ 1





(33)

Finally, the density matrix after the second beam splitter is given by

ρ′′′ = Bρ′′B† =
1

4





1 i

i 1









1 −ie−iφ

ieiφ 1









1 −i

−i 1





=
1

4





(1 − eiφ)2 i(−1 + e2iφ)

i(−1 + e2iφ) (1 + eiφ)2



 . (34)

It can be seen that the diagonal elements represent the probability that the photon will be

measured in the output of each port. One can also see that the two diagonal terms are the

sine and cosine squared of twice the phase angle 2φ. The fringe visibility is 100%.

Homework Problems. Find 〈N1〉, 〈E1〉 and 〈E2
1〉 for the Mach-Zehnder interferometer.
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FRINGE VISIBILITY AND WELCHER-WEG KNOWLEDGE

The Mach-Zehnder interferometer is a very interesting apparatus. It is extensively stud-

ied, because of its strange quantum mechanical properties. It represents the 2-mode equiv-

alent of Young’s continuous-mode double slit interferometer.

It is well known that welcher-weg or which-path knowledge about the photon destroys

its visibility. The more the knowledge, the less the visibility. What if there is no knowledge

about which path the photon takes? One must be very careful in making such a statement.

We will now consider three important examples. The first example will be to place an object

in one of the arms to prevent the amplitudes from arriving at the second beam splitter. The

second example will be to perform a measurement, by placing a detector in one of the arms.

The third example will be to entangle the which-path knowledge of the photon with the

quantum states of another photon. As guessed, all three of these methods destroy the fringe

visibility of photon.

Example 1: Obstructing Object

The first example will be to determine the effects of placing an obstructing object in one

of the arms of the interferometer. How does one mathematically represent this interaction?

Recall that the density matrix after the beam splitter (including the arbitrary relative phase

between the two paths) is

ρ′′ = PBρB†P † =
1

2





1 −ie−iφ

ieiφ 1



 (35)

The new density matrix after the obstructing object is the same as the density matrix of

only a single arm. In other words, after the beamsplitter, if one were to analyze only the

information in a single arm, this is equivalent to placing an obstructing object in one of the

two arms. The information in a single arm can be found by tracing over the states in the

other arm. The definition of the trace for a given matrix A is given by

Tr[A] =
∑

n

〈an|A|an〉 (36)
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Assume now that the obstructing object is placed in path 1. The reduced density matrix is

then

ρ′′
r = Tr1[ρ

′′] = 1〈0|ρ′′|0〉1 + 1〈1|ρ′′|1〉1 =
1

2
|1〉22〈1| +

1

2
|0〉22〈0| (37)

where the subscript r denotes that this is a reduced density matrix. The mathematical result

shows that there is a statistical mixture of vacuum and single photon. The well defined phase

relationship of the two mode state has been lost. It should also be pointed out that the

matrix representation of

ρ′′
r =

1

2





1 0

0 1



 (38)

does not have the same meaning as when the basis states are represented by the two mode

field. Therefore, using the beamsplitter, number, electric field and phase matrices as they

have been outlined so far are not relevant. Without the coherent relationship, the interfer-

ence at the second beam splitter is lost.

Example 2: Nondemolition Measurement

The next example we will study is the effect of making a “strong” nondemolition (does not

destroy the photon) which-way measurement on the photon. The quantum nondemolition

(QND) measurement has a back action, but that will be ignored for the moment. This

measurement is done by placing a detector between the two beam splitters in one of the

two paths. We will assume that the detector is in path 1. Assuming the detector has unit

probability of firing when a photon strikes it, then one can which way information about

the photon. If the photon is measured by the detector then the it is known that the photon

is in path 1. If no photon is detected by the detector then it is known that the photon is in

path 2. Therefore, a single detector is sufficient to gain which way information. Measuring

the photon direction places the reduced density matrix into one of two possible states

ρ′′
r = |0〉1|1〉21〈0|2〈1|ρ′′ =





0 0

0 1



 (39)

or

ρ′′
r = |1〉1|0〉21〈1|2〈0|ρ′′ =





1 0

0 0



 (40)
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after renormalization. One can the see that this measurement has “projected” the photon

into one of the two modes. The photon is then only propagating in one of the two modes,

except that the photon has been destroyed in one of the paths. The new density matrix is

the same as the initial pure state density matrix. Thus, for the first example, in which one

photon is measured in path 1, the transformation is

Bρ′′
rB

† =
1

2





1 i

i 1









1 0

0 0









1 −i

−i 1



 =
1

2





1 −i

i 1



 (41)

and if the photon is determined to be in path 2 the beamsplitter transformation yields

Bρ′′
rB

† =
1

2





1 i

i 1









0 0

0 1









1 −i

−i 1



 =
1

2





1 i

−i 1



 (42)

It can be seen that the visibility is thus

V =
Imax − Imin

Imax + Imin

=
1
2
− 1

2
1
2

+ 1
2

= 0 (43)

Example 3: Entanglement

Now, let us be a little clever and use entanglement to see if we can beat this predicament.

Suppose we have another photon with two quantum states |0〉3 and |1〉3 in mode 3. These

quantum states can be polarization or whatever we wish. Now suppose that we have a

device which can entangle the which-path information of the photon in the Mach-Zehnder

interferometer with the states of the other photon. Then, using the other photon, we can

extract which-way information of the photon. Recall that the basis states are |1, 0〉 and

|0, 1〉. The entangler (which is done after the beam splitter) performs the operation |1, 0, 0〉
and |0, 1, 1〉. Thus, after the beam splitter the density matrix has the same form as before

ρ′′
ent = PBρB†P † =

1

2





1 −ie−iφ

ieiφ 1



 (44)

but now it is important to realize that the additional entangled states have been incorporated

in the density matrix. One can now do one of two things with the entangled state. One

can choose to measure the state of the other photon in mode 3 or one can wait until after

the interferometer photon has passed through the interferometer. If one chooses to measure
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the state of the photon in mode 3 before the output of the interferometer is measured, the

reduced density matrix of the photon in the interferometer is given by

kρ′′
r = 3〈0|ρ′′

ent|0〉3 =





1 0

0 0



 (45)

or

ρ′′
r = 3〈1|ρ′′

ent|1〉3 =





0 0

0 1



 (46)

depending on the measurement outcome. Thus, we are left with the same result as before

and there will be no interference. What if we decide not to measure the photon in mode 3

until after the photon in the interferometer has completed its trajectory. In this case, we

must trace over mode 3 to determine what happens to the photon in the interferometer.

The reduced density matrix is then given by

ρ′′
r = Tr3[ρ

′′] = 3〈0|ρ′′|0〉3 + 3〈1|ρ′′|1〉3 =
1

2





1 0

0 1



 (47)

where the resulting reduced density matrix is described in the original basis. Application of

further beamsplitter operations are to no avail, because as can be seen, the reduced density

matrix is the identity matrix up to the factor of 1
2
, which means that BρrB

† = ρr or for

that matter any unitary transformation will leave the reduced density matrix unchanged.

By entangling the which path information to another two-state system, we have cursed the

photon to never interfere again, shame on us.

While we have explored only a few of the possible ways of gaining which-way information

about a photon in an interferometer, all paths have been unsuccessful. This intriguing fact

of nature forms the foundation of many important results. For example, this which way

information problem is the reason why we cannot clone a quantum state perfectly.


