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Abstract. This paper presents a theoretical analysis of sample selection bias cor-
rection. The sample bias correction technique commonly used in machine learn-
ing consists of reweighting the cost of an error on each training point of a biased
sample to more closely reflect the unbiased distribution. This relies on weights
derived by various estimation techniques based on finite samples. We analyze the
effect of an error in that estimation on the accuracy of the hypothesis returned by
the learning algorithm for two estimation techniques: a cluster-based estimation
technique and kernel mean matching. We also report the results of sample bias
correction experiments with several data sets using these techniques. Our analy-
sis is based on the novel concept ofdistributional stabilitywhich generalizes the
existing concept of point-based stability. Much of our workand proof techniques
can be used to analyze other importance weighting techniques and their effect on
accuracy when using a distributionally stable algorithm.

1 Introduction

In the standard formulation of machine learning problems, the learning algorithm re-
ceives training and test samples drawn according to the samedistribution. However,
this assumption often does not hold in practice. The training sample available isbi-
asedin some way, which may be due to a variety of practical reasonssuch as the cost
of data labeling or acquisition. The problem occurs in many areas such as astronomy,
econometrics, and species habitat modeling.

In a common instance of this problem, points are drawn according to the test dis-
tribution but not all of them are made available to the learner. This is called thesample
selection bias problem. Remarkably, it is often possible to correct this bias by using
large amounts of unlabeled data.

The problem of sample selection bias correction for linear regression has been ex-
tensively studied in econometrics and statistics (Heckman, 1979; Little & Rubin, 1986)
with the pioneering work of Heckman (1979). Several recent machine learning publi-
cations (Elkan, 2001; Zadrozny, 2004; Zadrozny et al., 2003; Fan et al., 2005; Dudı́k
et al., 2006) have also dealt with this problem. The main correction technique used in
all of these publications consists of reweighting the cost of training point errors to more
closely reflect that of the test distribution. This is in facta technique commonly used in
statistics and machine learning for a variety of problems ofthis type (Little & Rubin,
1986). With the exact weights, this reweighting could optimally correct the bias, but, in
practice, the weights are based on an estimate of the sampling probability from finite
data sets. Thus, it is important to determine to what extent the error in this estimation



can affect the accuracy of the hypothesis returned by the learning algorithm. To our
knowledge, this problem has not been analyzed in a general manner.

This paper gives a theoretical analysis of sample selectionbias correction. Our anal-
ysis is based on the novel concept ofdistributional stabilitywhich generalizes the point-
based stability introduced and analyzed by previous authors (Devroye & Wagner, 1979;
Kearns & Ron, 1997; Bousquet & Elisseeff, 2002). We show thatlarge families of learn-
ing algorithms, including all kernel-based regularization algorithms such as Support
Vector Regression (SVR) (Vapnik, 1998) or kernel ridge regression (Saunders et al.,
1998) are distributionally stable and we give the expression of their stability coefficient
for both thel1 andl2 distance.

We then analyze two commonly used sample bias correction techniques: a cluster-
based estimation technique and kernel mean matching (KMM) (Huang et al., 2006b).
For each of these techniques, we derive bounds on the difference of the error rate of
the hypothesis returned by a distributionally stable algorithm when using that estima-
tion technique versus using perfect reweighting. We brieflydiscuss and compare these
bounds and also report the results of experiments with both estimation techniques for
several publicly available machine learning data sets. Much of our work and proof tech-
niques can be used to analyze other importance weighting techniques and their effect
on accuracy when used in combination with a distributionally stable algorithm.

The remaining sections of this paper are organized as follows. Section 2 describes in
detail the sample selection bias correction technique. Section 3 introduces the concept
of distributional stability and proves the distributionalstability of kernel-based regular-
ization algorithms. Section 4 analyzes the effect of estimation error using distribution-
ally stable algorithms for both the cluster-based and the KMM estimation techniques.
Section 5 reports the results of experiments with several data sets comparing these esti-
mation techniques.

2 Sample Selection Bias Correction

2.1 Problem

Let X denote the input space andY the label set, which may be{0, 1} in classification
or any measurable subset ofR in regression estimation problems, and letD denote the
true distributionoverX × Y according to which test points are drawn. In the sample
selection bias problem, some pairsz=(x, y) drawn according toD are not made avail-
able to the learning algorithm. The learning algorithm receives a training sampleS of
m labeled pointsz1, . . . , zm drawn according to abiased distributionD′ overX × Y .
This sample bias can be represented by a random variables taking values in{0, 1}:
whens = 1 the point is sampled, otherwise it is not. Thus, by definitionof the sample
selection bias, the support of the biased distributionD′ is included in that of the true
distributionD.

As in standard learning scenarios, the objective of the learning algorithm is to select
a hypothesish out of a hypothesis setH with a small generalization errorR(h) with
respect to the true distributionD, R(h) = E(x,y)∼D[c(h, z)], wherec(h, z) is the cost
of the error ofh on pointz ∈ X × Y .

While the sampleS is collected in some biased manner, it is often possible to derive
some information about the nature of the bias. This can be done by exploiting large



amounts of unlabeled data drawn according to the true distributionD, which is often
available in practice. Thus, in the following letU be a sample drawn according toD
andS ⊆ U a labeled but biased sub-sample.

2.2 Weighted Samples

A weighted sampleSw is a training sampleS of m labeled points,z1, . . . , zm drawn
i.i.d. fromX × Y , that is augmented with a non-negative weightwi ≥ 0 for each point
zi. This weight is used to emphasize or de-emphasize the cost ofan error onzi as in
the so-calledimportance weightingor cost-sensitive learning(Elkan, 2001; Zadrozny
et al., 2003). One could use the weightswi to derive an equivalent but larger unweighted
sampleS′ where the multiplicity ofzi would reflect its weightwi, but most learning
algorithms, e.g., decision trees, logistic regression, AdaBoost, Support Vector Machines
(SVMs), kernel ridge regression, can directly accept a weighted sampleSw. We will
refer to algorithms that can directly takeSw as input asweight-sensitive algorithms.

The empirical error of a hypothesish on a weighted sampleSw is defined as

R̂w(h) =

m∑

i=1

wi c(h, zi). (1)

Proposition 1. LetD′ be a distribution whose support coincides with that ofD and let
Sw be a weighted sample withwi = PrD(zi)/ PrD′(zi) for all pointszi in S. Then,

E
S∼D′

[R̂w(h)] = R(h) = E
z∼D

[c(h, z)]. (2)

Proof. Since the sample points are drawn i.i.d.,

E
S∼D′

[R̂w(h)] =
1

m

∑

z

E
S∼D′

[wic(h, zi)] = E
z1∼D′

[w1c(h, z1)]. (3)

By definition ofw and the fact that the support ofD andD′ coincide, the right-hand
side can be rewritten as follows

∑

D′(z1) 6=0

PrD(z1)

PrD′(z1)
Pr
D′

(z1) c(h, z1) =
∑

D(z1) 6=0

Pr
D

(z1) c(h, z1) = E
z1∼D

[c(h, z1)]. (4)

This last term is the definition of the generalization errorR(h). ⊓⊔

2.3 Bias Correction

The probability of drawingz = (x, y) according to the true but unobserved distribution
D can be straightforwardly related to the observed distributionD′. By definition of the
random variables, the observed biased distributionD′ can be expressed byPrD′ [z] =
PrD[z|s = 1]. We will assume that all pointsz in the support ofD can be sampled with
a non-zero probability so the support ofD andD′ coincide. Thus for allz ∈ X × Y ,
Pr[s = 1|z] 6= 0. Then, by the Bayes formula, for allz in the support ofD,

Pr
D

[z] =
Pr[z|s = 1] Pr[s = 1]

Pr[s = 1|z]
=

Pr[s = 1]

Pr[s = 1|z]
Pr
D′

[z]. (5)



Thus, if we were given the probabilitiesPr[s = 1] andPr[s = 1|z], we could derive the
true probabilityPrD from the biased onePrD′ exactly and correct the sample selection
bias.

It is important to note that this correction is only needed for the training sampleS,
since it is the only source of selection bias. With a weight-sensitive algorithm, it suffices
to reweight each samplezi with the weightwi = Pr[s=1]

Pr[s=1|zi]
. Thus,Pr[s = 1|z] need

not be estimated for all pointsz but only for those falling in the training sampleS. By
Proposition 1, the expected value of the empirical error after reweighting is the same as
if we were given samples from the true distribution and the usual generalization bounds
hold for R̂(h) andR(h).

When the sampling probability is independent of the labels,as it is commonly as-
sumed in many settings (Zadrozny 2004; 2003),Pr[s = 1|z] = Pr[s = 1|x], and
Equation 5 can be re-written as

Pr
D

[z] =
Pr[s = 1]

Pr[s = 1|x]
Pr
D′

[z]. (6)

In that case, the probabilitiesPr[s = 1] andPr[s = 1|x] needed to reconstitutePrD
from PrD′ do not depend on the labels and thus can be estimated using theunlabeled
points inU . Moreover, as already mentioned, for weight-sensitive algorithms, it suffices
to estimatePr[s = 1|xi] for the pointsxi of the training data; no generalization is
needed.

A simple case is when the points are defined over a discrete set.3 Pr[s = 1|x] can
then be estimated from the frequencymx/nx, wheremx denotes the number of times
x appeared inS ⊆ U andnx the number of timesx appeared in the full data setU .
Pr[s = 1] can be estimated by the quantity|S|/|U |. However, sincePr[s = 1] is a
constant independent ofx, its estimation is not even necessary.

If the estimation of the sampling probabilityPr[s = 1|x] from the unlabeled data
setU were exact, then the reweighting just discussed could correct the sample bias
optimally. Several techniques have been commonly used to estimate the reweighting
quantities. But, these estimate weights are not guaranteedto be exact. The next sec-
tion addresses how the error in that estimation affects the error rate of the hypothesis
returned by the learning algorithm.

3 Distributional Stability

Here, we will examine the effect on the error of the hypothesis returned by the learning
algorithm in response to a change in the way the training points are weighted. Since the
weights are non-negative, we can assume that they are normalized and define a distribu-
tion over the training sample. This study can be viewed as a generalization of stability
analysis where a single sample point is changed (Devroye & Wagner, 1979; Kearns
& Ron, 1997; Bousquet & Elisseeff, 2002) to the more general case ofdistributional
stabilitywhere the sample’s weight distribution is changed.

Thus, in this section the sample weightW of SW defines a distribution overS. For
a fixed learning algorithmL and a fixed sampleS, we will denote byhW the hypothesis

3 This can be as a result of a quantization or clustering technique as discussed later.



returned byL for the weighted sampleSW . We will denote byd(W ,W ′) a divergence
measure for two distributionsW andW ′. There are many standard measures for the
divergences or distances between two distributions, including the relative entropy, the
Hellinger distance, and thelp distance.

Definition 1 (Distributional β-Stability). A learning algorithmL is said to bedistri-
butionallyβ-stablefor the divergence measured if for any two weighted samplesSW
andSW′ ,

∀z ∈ X × Y, |c(hW , z) − c(hW′ , z)| ≤ β d(W ,W ′). (7)

Thus, an algorithm is distributionally stable when small changes to a weighted sample’s
distribution, as measured by a divergenced, result in a small change in the cost of an
error at any point. The following proposition follows directly from the definition of
distributional stability.

Proposition 2. LetL be a distributionallyβ-stable algorithm and lethW (hW′) denote
the hypothesis returned byL when trained on the weighted sampleSW (resp.SW′ ).
Let WT denote the distribution according to which test points are drawn. Then, the
following holds

|R(hW) − R(hW′)| ≤ β d(W ,W ′). (8)

Proof. By the distributional stability of the algorithm,

E
z∼WT

[|c(z, hW) − c(z, hW′)|] ≤ β d(W ,W ′), (9)

which implies the statement of the proposition. ⊓⊔

3.1 Distributional Stability of Kernel-Based Regularization Algorithms

Here, we show that kernel-based regularization algorithmsare distributionallyβ-stable.
This family of algorithms includes, among others, Support Vector Regression (SVR)
and kernel ridge regression. Other algorithms such as thosebased on the relative entropy
regularization can be shown to be distributionallyβ-stable in a similar way as for point-
based stability. Our results also apply to classification algorithms such as Support Vector
Machine (SVM) (Cortes & Vapnik, 1995) using a margin-based loss functionlγ as in
(Bousquet & Elisseeff, 2002).

We will assume that the cost functionc is σ-admissible, that is there existsσ ∈ R+

such that for any two hypothesesh, h′ ∈ H and for allz = (x, y) ∈ X × Y ,

|c(h, z) − c(h′, z)| ≤ σ|h(x) − h′(x)|. (10)

This assumption holds for the quadratic cost and most other cost functions when the hy-
pothesis set and the set of output labels are bounded by someM ∈ R+: ∀h ∈ H, ∀x ∈
X, |h(x)| ≤ M and∀y ∈ Y, |y| ≤ M . We will also assume thatc is differentiable. This
assumption is in fact not necessary and all of our results hold without it, but it makes
the presentation simpler.

Let N : H → R+ be a function defined over the hypothesis set. Regularization-
based algorithms minimize an objective of the form

FW (h) = R̂W(h) + λN(h), (11)



whereλ ≥ 0 is a trade-off parameter. We denote byBF the Bregman divergence asso-
ciated to a convex functionF , BF (f‖g) = F (f)−F (g)−〈f − g,∇F (g)〉, and define
∆h as∆h = h′ − h.

Lemma 1. Let the hypothesis setH be a vector space. Assume thatN is a proper
closed convex function and thatN is differentiable. Assume thatFW admits a minimizer
h ∈ H andFW′ a minimizerh′ ∈ H . Then, the following bound holds,

BN (h′‖h) + BN (h‖h′) ≤ σ l1(W ,W ′)

λ
sup
x∈S

|∆h(x)|. (12)

Proof. SinceBFW
= B bRW

+ λBN and BF
W′

= B bR
W′

+ λBN , and a Bregman

divergence is non-negative,λ
(
BN(h′‖h)+BN(h‖h′)

)
≤ BFW

(h′‖h)+BF
W′

(h‖h′).
By the definition ofh andh′ as the minimizers ofFW andFW′ ,

BFW
(h′‖h) + BF

W′
(h‖h′) = R̂FW

(h′) − R̂FW
(h) + R̂F

W′
(h) − R̂F

W′
(h′). (13)

Thus, by theσ-admissibility of the cost functionc, using the notationWi = W(xi) and
W ′

i = W ′(xi),

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤ R̂FW

(h′) − R̂FW
(h) + R̂FW′ (h) − R̂FW′ (h

′)

=

m∑

i=1

[
c(h′, zi)Wi − c(h, zi)Wi + c(h, zi)W ′

i − c(h′, zi)W ′
i

]

=

m∑

i=1

[
(c(h′, zi) − c(h, zi))(Wi −W ′

i)

]

≤
m∑

i=1

[
σ|∆h(xi)||Wi −W ′

i|
]
≤ σl1(W ,W ′) sup

x∈S
|∆h(x)|,

(14)

which establishes the lemma. ⊓⊔

Givenx1, . . . , xm ∈ X and a positive definite symmetric (PDS) kernelK, we denote
by K ∈ R

m×m the kernel matrix defined byKij = K(xi, xj) and byλmax(K) ∈ R+

the largest eigenvalue ofK.

Lemma 2. Let H be a reproducing kernel Hilbert space with kernelK and let the
regularization functionN be defined byN(·) = ‖·‖2

K . Then, the following bound holds,

BN (h′‖h) + BN (h‖h′) ≤ σλ
1
2
max(K) l2(W ,W ′)

λ
‖∆h‖2. (15)

Proof. As in the proof of Lemma 1,

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤

m∑

i=1

[
(c(h′, zi) − c(h, zi))(Wi −W ′

i)

]
. (16)

By definition of a reproducing kernel Hilbert spaceH , for any hypothesish ∈ H ,
∀x ∈ X, h(x) = 〈h, K(x, ·)〉 and thus also for any∆h = h′ − h with h, h′ ∈ H , ∀x ∈



X, ∆h(x) = 〈∆h, K(x, ·)〉. Let∆Wi denoteW ′
i −Wi, ∆W the vector whose compo-

nents are the∆Wi’s, and letV denoteBN (h′‖h) + BN (h‖h′). Usingσ-admissibility,
V ≤ σ

∑m
i=1 |∆h(xi)∆Wi| = σ

∑m
i=1 | 〈∆h, ∆WiK(xi, ·)〉 |. Let ǫi ∈ {−1, +1}

denote the sign of〈∆h, ∆WiK(xi, ·)〉. Then,

V ≤ σ

〈
∆h,

m∑

i=1

ǫi∆WiK(xi, ·)
〉

≤ σ‖∆h‖K ‖
m∑

i=1

ǫi∆WiK(xi, ·)‖K

= σ‖∆h‖K

( m∑

i,j=1

ǫiǫj∆Wi∆WjK(xi, xj)
)1/2

= σ‖∆h‖K

[
∆(Wǫ)⊤K∆(Wǫ)

] 1
2 ≤ σ‖∆h‖K‖∆W‖2λ

1
2
max(K).

(17)

In this derivation, the second inequality follows from the Cauchy-Schwarz inequality
and the last inequality from the standard property of the Rayleigh quotient for PDS
matrices. Since‖∆W‖2 = l2(W ,W ′), this proves the lemma. ⊓⊔
Theorem 1. Let K be a kernel such thatK(x, x) ≤ κ < ∞ for all x ∈ X . Then, the
regularization algorithm based onN(·) = ‖·‖2

K is distributionallyβ-stable for thel1

distance withβ ≤ σ2κ2

2λ , and for thel2 distance withβ ≤ σ2κλ
1
2
max(K)
2λ .

Proof. ForN(·) = ‖·‖2
K , we haveBN (h′‖h) = ‖h′−h‖2

K, thusBN (h′‖h)+BN (h‖h′) =
2‖∆h‖2

K and by Lemma 1,

2‖∆h‖2
K ≤ σ l1(W ,W ′)

λ
sup
x∈S

|∆h(x)| ≤ σ l1(W ,W ′)

λ
κ||∆h||K . (18)

Thus‖∆h‖K ≤ σκ l1(W,W′)
2λ . By σ-admissibility ofc,

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ|∆h(x)| ≤ κσ‖∆h‖K . (19)

Therefore,

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ2κ2 l1(W ,W ′)

2λ
, (20)

which shows the distributional stability of a kernel-basedregularization algorithm for
thel1 distance. Using Lemma 2, a similar derivation leads to

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ2κλ
1
2
max(K) l2(W ,W ′)

2λ
, (21)

which shows the distributional stability of a kernel-basedregularization algorithm for
thel2 distance. ⊓⊔
Note that the standard setting of a sample with no weight is equivalent to a weighted
sample with the uniform distributionWU : each point is assigned the weight1/m. Re-
moving a single point, sayx1, is equivalent to assigning weight0 to x1 and1/(m− 1)
to others. LetWU ′ be the corresponding distribution, then

l1(WU ,WU ′) =
1

m
+

m−1∑

i=1

∣∣∣∣
1

m
− 1

m − 1

∣∣∣∣ =
2

m
. (22)



Thus, in the case of kernel-based regularized algorithms and for thel1 distance, stan-
dard uniformβ-stability is a special case of distributionalβ-stability. It can be shown
similarly thatl2(WU ,WU ′) = 1√

m(m−1)
.

4 Effect of Estimation Error for Kernel-Based Regularization
Algorithms

This section analyzes the effect of an error in the estimation of the weight of a train-
ing example on the generalization error of the hypothesish returned by a weight-
sensitive learning algorithm. We will examine two estimation techniques: a straight-
forward histogram-based or cluster-based method, and kernel mean matching (KMM)
(Huang et al., 2006b).

4.1 Cluster-Based Estimation

A straightforward estimate of the probability of sampling is based on the observed
empirical frequencies. The ratio of the number of times a point x appears inS and
the number of times it appears inU is an empirical estimate ofPr[s = 1|x]. Note
that generalization to unseen pointsx is not needed since reweighting requires only
assigning weights to the seen training points. However, in general, training instances
are typically unique or very infrequent since features are real-valued numbers. Instead,
features can be discretized based on a partitioning of the input spaceX . The partitioning
may be based on a simple histogram buckets or the result of a clustering technique. The
analysis of this section assumes such a prior partitioning of X .

We shall analyze how fast the resulting empirical frequencies converge to the true
sampling probability. Forx ∈ U , let Ux denote the subsample ofU containing exactly
all the instances ofx and letn = |U | andnx = |Ux|. Furthermore, letn′ denote the
number of unique points in the sampleU . Similarly, we defineSx, m, mx andm′ for
the setS. Additionally, denote byp0 = minx∈U Pr[x] 6= 0.

Lemma 3. Let δ > 0. Then, with probability at least1 − δ, the following inequality
holds for allx in S:

∣∣∣Pr[s = 1|x] − mx

nx

∣∣∣ ≤

√
log 2m′ + log 1

δ

p0n
. (23)

Proof. For a fixedx ∈ U , by Hoeffding’s inequality,

Pr
U

h˛̨
Pr[s = 1|x] −

mx

nx

˛̨
≥ ǫ
i

=

nX

i=1

Pr
x

h
|Pr[s = 1|x] −

mx

i
| ≥ ǫ | nx = i

i
Pr[nx = i]

≤

nX

i=1

2e
−2iǫ2 Pr

U
[nx = i].

Sincenx is a binomial random variable with parametersPrU [x] = px andn, this last
term can be expressed more explicitly and bounded as follows:

2

nX

i=1

e
−2iǫ2 Pr

U
[nx = i] ≤ 2

nX

i=0

e
−2iǫ2

 
n

i

!
p

i
x(1 − px)n−i = 2(pxe

−2ǫ2 + (1 − px))n

= 2(1 − px(1 − e
−2ǫ2))n ≤ 2 exp(−pxn(1 − e

−2ǫ2)).



Since forx ∈ [0, 1], 1 − e−x ≥ x/2, this shows that forǫ ∈ [0, 1],

Pr
U

[∣∣Pr[s = 1|x] −
mx

nx

∣∣ ≥ ǫ

]
≤ 2e

−pxnǫ2

. (24)

By the union bound and the definition ofp0,

Pr
U

[
∃x ∈ S :

∣∣Pr[s = 1|x] − mx

nx

∣∣ ≥ ǫ
]
≤ 2m′e−p0nǫ2 .

Settingδ to match the upper bound yields the statement of the lemma. ⊓⊔

The following proposition bounds the distance between the distributionW correspond-
ing to a perfectly reweighted sample (SW ) and the one corresponding to a sample that
is reweighted according to the observed bias (ScW). For a sampled pointxi = x, these
distributions are defined as follows:

W(xi) =
1

m

1

p(xi)
and Ŵ(xi) =

1

m

1

p̂(xi)
, (25)

where, for adistinctpointx equal to thesampledpointxi, we definep(xi) = Pr[s =
1|x] andp̂(xi) = mx

nx
.

Proposition 3. LetB = max
i=1,...,m

max(1/p(xi), 1/p̂(xi)). Then, thel1 andl2 distances

of the distributionsW andŴ can be bounded as follows,

l1(W , Ŵ) ≤ B2

√
log 2m′ + log 1

δ

p0n
andl2(W , Ŵ) ≤ B2

√
log 2m′ + log 1

δ

p0nm
. (26)

Proof. By definition of thel2 distance,

l22(W , Ŵ) =
1

m2

m∑

i=1

(
1

p(xi)
− 1

p̂(xi)

)2

=
1

m2

m∑

i=1

(
p(xi) − p̂(xi)

p(xi)p̂(xi)

)2

≤ B4

m
max

i
(p(xi) − p̂(xi))

2.

It can be shown similarly thatl1(W , Ŵ) ≤ B2 maxi |p(xi) − p̂(xi)|. The application
of the uniform convergence bound of Lemma 3 directly yields the statement of the
proposition. ⊓⊔

The following theorem provides a bound on the difference between the generalization
error of the hypothesis returned by a kernel-based regularization algorithm when trained
on the perfectly unbiased distribution, and the one trainedon the sample bias-corrected
using frequency estimates.

Theorem 2. Let K be a PDS kernel such thatK(x, x) ≤ κ < ∞ for all x ∈ X . Let
hW be the hypothesis returned by the regularization algorithmbased onN(·) = ‖·‖2

K

usingSW , andhcW the one returned after training the same algorithm onScW . Then,



for anyδ > 0, with probability at least1 − δ, the difference in generalization error of
these hypotheses is bounded as follows

|R(hW) − R(hcW)| ≤ σ2κ2B2

2λ

√
log 2m′ + log 1

δ

p0n

|R(hW) − R(hcW)| ≤ σ2κλ
1
2
max(K)B2

2λ

√
log 2m′ + log 1

δ

p0nm
.

(27)

Proof. The result follows from Proposition 2, the distributional stability and the bounds
on the stability coefficientβ for kernel-based regularization algorithms (Theorem 1),
and the bounds on thel1 andl2 distances between the correct distributionW and the
estimateŴ. ⊓⊔

Let n0 be the number of occurrences, inU , of the least frequent training example.
For large enoughn, p0n ≈ n0, thus the theorem suggests that the difference of error
rate between the hypothesis returned after an optimal reweighting versus the one based

on frequency estimates goes to zero as
√

log m′

n0
. In practice,m′ ≤ m, the number of

distinct points inS is small, a fortiori,log m′ is very small, thus, the convergence rate
depends essentially on the rate at whichn0 increases. Additionally, ifλmax(K) ≤ m
(such as with Gaussian kernels), thel2-based bound will provide convergence that is at
least as fast.

4.2 Kernel Mean Matching

The following definitions introduced by Steinwart (2002) will be needed for the pre-
sentation and discussion of the kernel mean matching (KMM) technique. LetX be a
compact metric space and letC(X) denote the space of all continuous functions over
X equipped with the standard infinite norm‖ · ‖∞. Let K : X × X → R be a PDS
kernel. There exists a Hilbert spaceF and a mapΦ : X → F such that for allx, y ∈ X ,
K(x, y) = 〈Φ(x), Φ(y)〉. Note that for a given kernelK, F andΦ are not unique and
that, for these definitions,F does not need to be a reproducing kernel Hilbert space
(RKHS).

Let P denote the set of all probability distributions overX and letµ : P → F be
the function defined by

∀p ∈ P , µ(p) = E
x∼p

[Φ(x)]. (28)

A functiong : X → R is said to beinducedby K if there existsw ∈ F such that for all
x ∈ X , g(x) = 〈w, Φ(x)〉. K is said to beuniversalif it is continuous and if the set of
functions induced byK are dense inC(X).

Theorem 3 (Huang et al. (2006a)).LetF be a separable Hilbert space and letK be a
universal kernel with feature spaceF and feature mapΦ : X → F . Then,µ is injective.

Proof. We give a full proof of the main theorem supporting this technique in the ap-
pendix. The proof given by Huang et al. (2006a) does not seem to be complete. ⊓⊔



The KMM technique is applicable when the learning algorithmis based on a universal
kernel. The theorem shows that for a universal kernel, the expected value of the fea-
ture vectors induced uniquely determines the probability distribution. KMM uses this
property to reweight training points so that the average value of the feature vectors for
the training data matches that of the feature vectors for a set of unlabeled points drawn
from the unbiased distribution.

Let γi denote the perfect reweighting of the sample pointxi and γ̂i the estimate
derived by KMM. LetB′ denote the largest possible reweighting coefficientγ and let
ǫ be a positive real number. We will assume thatǫ is chosen so thatǫ ≤ 1/2. Then, the
following is the KMM constraint optimization

min
γ

G(γ) = ‖ 1

m

m∑

i=1

γiΦ(xi) −
1

n

n∑

i=1

Φ(x′
i)‖

subject toγi ∈ [0, B′] ∧
∣∣ 1

m

m∑

i=1

γi − 1
∣∣ ≤ ǫ.

(29)

Let γ̂ be the solution of this optimization problem, then1m
∑m

i=1 γ̂i = 1 + ǫ′ with
−ǫ ≤ ǫ′ ≤ ǫ. For i ∈ [1, m], let γ̂′

i = γ̂i/(1 + ǫ′). The normalized weights used in
KMM’s reweighting of the sample are thus defined byγ̂′

i/m with 1
m

∑m
i=1 γ′

i = 1.
As in the previous section, givenx1, . . . , xm ∈ X and a strictly positive def-

inite universal kernelK, we denote byK ∈ R
m×m the kernel matrix defined by

Kij = K(xi, xj) and byλmin(K) > 0 the smallest eigenvalue ofK. We also denote
by cond(K) the condition number of the matrixK: cond(K) = λmax(K)/λmin(K).
WhenK is universal, it is continuous over the compactX × X and thus bounded, and
there existsκ < ∞ such thatK(x, x) ≤ κ for all x ∈ X .

Proposition 4. LetK be a strictly positive definite universal kernel. Then, for anyδ >
0, with probability at least1 − δ, thel2 distance of the distributionŝγ′/m andγ/m is
bounded as follows:

1

m
‖(γ̂′ − γ)‖2 ≤ 2ǫB′

√
m

+
2κ

1
2

λ
1
2

min(K)

√
B′2

m
+

1

n

(
1 +

√
2 log

2

δ

)
. (30)

Proof. Since the optimal reweightingγ verifies the constraints of the optimization, by
definition ofγ̂ as a minimizer,G(γ̂) ≤ G(γ). Thus, by the triangle inequality,

‖ 1

m

m∑

i=1

γ̂iΦ(xi) −
1

m

m∑

i=1

γiΦ(xi)‖ ≤ G(γ̂) + G(γ) ≤ 2G(γ). (31)

Let L denote the left-hand side of this inequality:L = 1
m‖∑m

i=1(γ̂i − γi)Φ(xi)‖. By

definition of the norm in the Hilbert space,L = 1
m

√
(γ̂ − γ)⊤K(γ̂ − γ). Then, by the

standard bounds for the Rayleigh quotient of PDS matrices,L ≥ 1
mλ

1
2

min(K)‖(γ̂−γ)‖2.
This combined with Inequality 31 yields

1

m
‖(γ̂ − γ)‖2 ≤ 2G(γ)

λ
1
2

min(K)
. (32)



Thus, by the triangle inequality,

1

m
‖(γ̂′ − γ)‖2 ≤ 1

m
‖(γ̂′ − γ̂)‖2 +

1

m
‖(γ̂ − γ)‖2

≤ |ǫ′|/m

1 + ǫ′
‖γ‖2 +

2G(γ)

λ
1
2

min(K)

≤ 2|ǫ′|B′√m

m
+

2G(γ)

λ
1
2

min(K)
≤ 2ǫB′

√
m

+
2G(γ)

λ
1
2

min(K)
.

(33)

It is not difficult to show using McDiarmid’s inequality thatfor anyδ > 0, with proba-
bility at least1 − δ, the following holds (Lemma 4, (Huang et al., 2006a)):

G(γ) ≤ κ
1
2

√
B′2

m
+

1

n

(
1 +

√
2 log

2

δ

)
. (34)

This combined with Inequality 33 yields the statement of theproposition. ⊓⊔

The following theorem provides a bound on the difference between the generalization
error of the hypothesis returned by a kernel-based regularization algorithm when trained
on the true distribution, and the one trained on the sample bias-corrected KMM.

Theorem 4. LetK be a strictly positive definite symmetric universal kernel.Lethγ be
the hypothesis returned by the regularization algorithm based onN(·) = ‖·‖2

K using
Sγ/m andhbγ′ the one returned after training the same algorithm onSbγ′/m. Then, for
anyδ > 0, with probability at least1− δ, the difference in generalization error of these
hypotheses is bounded as follows

|R(hγ)−R(hbγ′)| ≤ σ2κλ
1
2
max(K)

λ

(
ǫB′
√

m
+

κ
1
2

λ
1
2

min(K)

√
B′2

m
+

1

n

(
1 +

√
2 log

2

δ

))
.

For ǫ = 0, the bound becomes

|R(hγ) − R(hbγ′)| ≤ σ2κ
3
2 cond

1
2 (K)

λ

√
B′2

m
+

1

n

(
1 +

√
2 log

2

δ

)
. (35)

Proof. The result follows from Proposition 2 and the bound of Proposition 4. ⊓⊔

Comparing this bound forǫ = 0 with the l2 bound of Theorem 4, we first note that
B andB′ are essentially related modulo the constantPr[s = 1] which is not included
in the cluster-based reweighting. Thus, the cluster-basedconvergence is of the order

O(λ
1
2
max(K)B2

√
log m′

p0nm ) and the KMM convergence of the orderO(cond
1
2 (K) B√

m
).

Taking the ratio of the former over the latter and noticingp−1
0 ≈ O(B), we obtain the

expressionO

(√
λmin(K)B log m′

n

)
. Thus, forn > λmin(K)B log(m′) the convergence

of the cluster-based bound is more favorable, while for other values the KMM bound
converges faster.



5 Experimental Results

In this section, we will compare the performance of the cluster-based reweighting tech-
nique and the KMM technique empirically. We will first discuss and analyze the prop-
erties of the clustering method and our particular implementation.

The analysis of Section 4.1 deals with discrete points possibly resulting from the
use of a quantization or clustering technique. However, dueto the relatively small size
of the public training sets available, clustering could leave us with few cluster represen-
tatives to train with. Instead, in our experiments, we only used the clusters to estimate
sampling probabilities and applied these weights to the full set of training points. As
the following proposition shows, thel1 andl2 distance bounds of Proposition5 do not
change significantly so long as the cluster size is roughly uniform and the sampling
probability is the same for all points within a cluster. We will refer to this as theclus-
tering assumption. In what follows, letPr[s = 1|Ci] designate the sampling probability
for all x ∈ Ci. Finally, defineq(Ci) = Pr[s = 1|Ci] andq̂(Ci) = |Ci ∩ S|/|Ci ∩ U |.

Proposition 5. LetB = max
i=1,...,m

max(1/q(Ci), 1/q̂(Ci)). Then, thel1 andl2 distances

of the distributionsW andŴ can be bounded as follows,

l1(W, cW) ≤ B
2

s
|CM |k(log 2k + log 1

δ
)

q0nm
l2(W, cW) ≤ B

2

s
|CM |k(log 2k + log 1

δ
)

q0nm2
,

whereq0 = min q(Ci) and|CM | = maxi |Ci|.

Proof. By definition of thel2 distance,

l
2

2(W, cW) =
1

m2

kX

i=1

X

x∈Ci

„
1

p(x)
−

1

p̂(x)

«2

=
1

m2

kX

i=1

X

x∈Ci

„
1

q(Ci)
−

1

q̂(Ci)

«2

≤
B4|CM |

m2

kX

i=1

max
i

(q(Ci) − q̂(Ci))
2
.

The right-hand side of the first line follows from the clustering assumption and the
inequality then follows from exactly the same steps as in Proposition 5 and factoring
away the sum over the elements ofCi. Finally, it is easy to see that themaxi(q(Ci) −
q̂(Ci)) term can be bounded just as in Lemma 3 using a uniform convergence bound,
however now the union bound is taken over the clusters ratherthan unique points. ⊓⊔

Note that when the cluster size is uniform, then|CM |k = m, and the bound above leads
to an expression similar to that of Proposition5.

We used the leaves of a decision tree to define the clusters. A decision tree selects
binary cuts on the coordinates ofx ∈ X that greedily minimize a node impurity mea-
sure, e.g., MSE for regression (Breiman et al., 1984). Points with similar features and
labels are clustered together in this way with the assumption that these will also have
similar sampling probabilities.

Several methods for bias correction are compared in Table 1.Each method assigns
corrective weights to the training samples. Theunweightedmethod uses weight1 for
every training instance. Theideal method uses weight 1

Pr[s=1|x] , which is optimal but



Table 1. Normalized mean-squared error (NMSE) for various regression data sets using un-
weighted, ideal, clustered and kernel-mean-matched training sample reweightings.

DATA SET |U | |S| ntest UNWEIGHTED IDEAL CLUSTERED KMM
ABALONE 2000 724 2177 .654±.019 .551±.032 .623±.034 .709±.122
BANK 32NH 4500 2384 3693 .903±.022 .610±.044 .635±.046 .691±.055
BANK 8FM 4499 1998 3693 .085±.003 .058±.001 .068±.002 .079±.013
CAL -HOUSING 16512 9511 4128 .395±.010 .360±.009 .375±.010 .595±.054
CPU-ACT 4000 2400 4192 .673±.014 .523±.080 .568±.018 .518±.237
CPU-SMALL 4000 2368 4192 .682±.053 .477±.097 .408±.071 .531±.280
HOUSING 300 116 206 .509±.049 .390±.053 .482±.042 .469±.148
KIN 8NM 5000 2510 3192 .594±.008 .523±.045 .574±.018 .704±.068
PUMA8NH 4499 2246 3693 .685±.013 .674±.019 .641±.012 .903±.059

requires the sampling distribution to be known. Theclusteredmethod uses weight
|Ci ∩ U |/|Ci ∩ S|, where the clustersCi are regression tree leaves with a minimum
count of 4 (larger cluster sizes showed similar, though declining, performance). The
KMM method uses the approach of Huang et al. (2006b) with a Gaussian kernel and
parametersσ =

√
d/2 for x ∈ R

d, B = 1000, ǫ = 0. Note that we know of no
principled way to do cross-validation with KMM since it cannot produce weights for a
held-out set (Sugiyama et al., 2008).

The regression datasets are from LIAAD4 and are sampled withP [s = 1|x] = ev

1+ev

wherev = 4w·(x−x̄)
σw·(x−x̄)

, x ∈ R
d andw ∈ R

d chosen at random from[−1, 1]d. In our
experiments, we chose ten random projectionsw and reported results with thew, for
each data set, that maximizes the difference between the unweighted and ideal methods
over repeated sampling trials. In this way, we selected biassamplings that are good
candidates for bias correction estimation.

For our experiments, we used a version of SVR available from LibSVM5 that can
take as input weighted samples, with parameter valuesC = 1, andǫ = 0.1 combined
with a Gaussian kernel with parameterσ =

√
d/2. We report results using normalized

mean-squared error (NMSE):1ntest

∑ntest

i=1
(yi−ŷi)

2

σ2
y

, and provide mean and standard

deviations for ten-fold cross-validation.
Our results show that reweighting with more reliable counts, due to clustering, can

be effective in the problem of sample bias correction. Theseresults also confirm the
dependence that our theoretical bounds exhibit on the quantity n0. The results obtained
using KMM seem to be consistent with those reported by the authors of this technique.6

6 Conclusion

We presented a general analysis of sample selection bias correction and gave bounds
analyzing the effect of an estimation error on the accuracy of the hypotheses returned.
The notion of distributional stability and the techniques presented are general and can

4 www.liaad.up.pt/˜ltorgo/Regression/DataSets.html.
5 www.csie.ntu.edu.tw/˜cjlin/libsvmtools.
6 We thank Arthur Gretton for discussion and help in clarifying the choice of the parameters and

design of the KMM experiments reported in (Huang et al., 2006b), and for providing the code
used by the authors for comparison studies.



be of independent interest for the analysis of learning algorithms in other settings. In
particular, these techniques apply similarly to other importance weighting algorithms
and can be used in other contexts such that of learning in the presence of uncertain
labels. The analysis of the discriminative method of (Bickel et al., 2007) for the problem
of covariate shift could perhaps also benefit from this study.
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A Proof of Theorem 3

Proof. Assume thatµ(p) = µ(q) for two probability distributionsp andq in P . It is
known that ifEx∼p[f(x)] = Ex∼q[f(x)] for anyf ∈ C(X), thenp = q. Letf ∈ C(X)
and fix ǫ > 0. SinceK is universal, there exists a functiong induced byK such that
‖f − g‖∞ ≤ ǫ. Ex∼p[f(x)] − Ex∼q[f(x)] can be rewritten as

E
x∼p

[f(x) − g(x)] + E
x∼p

[g(x)] − E
x∼q

[g(x)] + E
x∼q

[g(x) − f(x)]. (36)

Since
∣∣Ex∼p[f(x) − g(x)]

∣∣ ≤ Ex∼p |f(x) − g(x)| ≤ ‖f − g‖∞ ≤ ǫ and similarly∣∣Ex∼q[f(x) − g(x)]
∣∣ ≤ ǫ,

∣∣∣∣ E
x∼p

[f(x)] − E
x∼q

[f(x)]

∣∣∣∣ ≤
∣∣∣∣ E
x∼p

[g(x)] − E
x∼q

[g(x)]

∣∣∣∣+ 2ǫ. (37)

Sinceg is induced byK, there existsw ∈ F such that for allx ∈ X , g(x) = 〈w, Φ(x)〉.
SinceF is separable, it admits a countable orthonormal basis(en)n∈N. For n ∈ N,
let wn = 〈w, en〉 andΦn(x) = 〈Φ(x), en〉. Then,g(x) =

∑∞
n=0 wnΦn(x). For each

N ∈ N, consider the partial sumgN(x) =
∑N

n=0 wnΦn(x). By the Cauchy-Schwarz
inequality,

|gN (x)| ≤ ‖
N∑

n=0

wnen‖1/2
2 ‖

N∑

n=0

Φn(x)en‖1/2
2 ≤ ‖w‖1/2

2 ‖Φ(x)‖1/2
2 . (38)

SinceK is universal, it is continuous and thusΦ is also continuous (Steinwart, 2002).
Thusx 7→ ‖Φ(x)‖2 is a continuous function over the compactX and admits an upper
boundB ≥ 0. Thus,|gN (x)| ≤

√
‖w‖2B. The integral

∫ ∣∣√‖w‖2B
∣∣dp is clearly well

defined and equals
√
‖w‖2B. Thus, by the Lebesgue dominated convergence theorem,

the following holds:

E
x∼p

[g(x)] =

∫ ∞∑

n=0

wnΦn(x)dp(x) =

∞∑

n=0

wn

∫
Φn(x)dp(x). (39)

By definition ofEx∼p[Φ(x)], the last term is the inner product ofw and that term. Thus,

E
x∼p

[g(x)] =

〈
w, E

x∼p

[
Φ(x)

]〉
= 〈w, µ(p)〉 . (40)

A similar equality holds with the distributionq, thus,

E
x∼p

[g(x)] − E
x∼q

[g(x)] = 〈w, µ(p) − µ(q)〉 = 0.

Thus, Inequality 37 can be rewritten as
∣∣∣∣ E
x∼p

[f(x)] − E
x∼q

[f(x)]

∣∣∣∣ ≤ 2ǫ, (41)

for all ǫ > 0. This impliesEx∼p[f(x)] = Ex∼q[f(x)] for all f ∈ C(X) and the
injectivity of µ. ⊓⊔


