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Abstract. This paper presents a theoretical analysis of sample &eidiits cor-
rection. The sample bias correction technique commonlg irsenachine learn-
ing consists of reweighting the cost of an error on eachitrgipoint of a biased
sample to more closely reflect the unbiased distributions Tdélies on weights
derived by various estimation technigues based on finitgkmnWe analyze the
effect of an error in that estimation on the accuracy of thgoltlyesis returned by
the learning algorithm for two estimation techniques: stdubased estimation
technique and kernel mean matching. We also report thetsesuample bias
correction experiments with several data sets using tleesmigues. Our analy-
sis is based on the novel conceptidtributional stabilitywhich generalizes the
existing concept of point-based stability. Much of our warld proof techniques
can be used to analyze other importance weighting techsigue their effect on
accuracy when using a distributionally stable algorithm.

1 Introduction

In the standard formulation of machine learning probleins,learning algorithm re-
ceives training and test samples drawn according to the shstrébution. However,
this assumption often does not hold in practice. The trgisample available ibi-
asedin some way, which may be due to a variety of practical reasook as the cost
of data labeling or acquisition. The problem occurs in mamasa such as astronomy,
econometrics, and species habitat modeling.

In a common instance of this problem, points are drawn adegitd the test dis-
tribution but not all of them are made available to the learfkis is called thesample
selection bias problemRemarkably, it is often possible to correct this bias bygsi
large amounts of unlabeled data.

The problem of sample selection bias correction for linegression has been ex-
tensively studied in econometrics and statistics (Heckrh@n9; Little & Rubin, 1986)
with the pioneering work of Heckman (1979). Several receatime learning publi-
cations (Elkan, 2001; Zadrozny, 2004; Zadrozny et al., 26@3 et al., 2005; Dudik
et al., 2006) have also dealt with this problem. The maineatdion technique used in
all of these publications consists of reweighting the céstaoning point errors to more
closely reflect that of the test distribution. This is in fadechnique commonly used in
statistics and machine learning for a variety of problemthi type (Little & Rubin,
1986). With the exact weights, this reweighting could optijmcorrect the bias, but, in
practice, the weights are based on an estimate of the sapiabability from finite
data sets. Thus, it is important to determine to what extengetror in this estimation



can affect the accuracy of the hypothesis returned by thailgg algorithm. To our
knowledge, this problem has not been analyzed in a generaiena

This paper gives a theoretical analysis of sample selebtascorrection. Our anal-
ysis is based on the novel conceptiatributional stabilitywhich generalizes the point-
based stability introduced and analyzed by previous asttidevroye & Wagner, 1979;
Kearns & Ron, 1997; Bousquet & Elisseeff, 2002). We showltrge families of learn-
ing algorithms, including all kernel-based regularizataigorithms such as Support
Vector Regression (SVR) (Vapnik, 1998) or kernel ridge esgion (Saunders et al.,
1998) are distributionally stable and we give the expressidheir stability coefficient
for both thel; andl, distance.

We then analyze two commonly used sample bias correctitmigges: a cluster-
based estimation technique and kernel mean matching (KNHYa(g et al., 2006b).
For each of these techniques, we derive bounds on the differef the error rate of
the hypothesis returned by a distributionally stable atgor when using that estima-
tion technique versus using perfect reweighting. We brigifsguss and compare these
bounds and also report the results of experiments with b&ttmation techniques for
several publicly available machine learning data sets.ivbiour work and proof tech-
niques can be used to analyze other importance weightitgitpees and their effect
on accuracy when used in combination with a distributignstihble algorithm.

The remaining sections of this paper are organized as fellBection 2 describes in
detail the sample selection bias correction techniquei@®e8 introduces the concept
of distributional stability and proves the distributioisébility of kernel-based regular-
ization algorithms. Section 4 analyzes the effect of ediwneerror using distribution-
ally stable algorithms for both the cluster-based and the\K&ktimation techniques.
Section 5 reports the results of experiments with sevetal skts comparing these esti-
mation techniques.

2 Sample Selection Bias Correction

2.1 Problem

Let X denote the input space aldthe label set, which may b, 1} in classification
or any measurable subset®fin regression estimation problems, andetlenote the
true distributionover X x Y according to which test points are drawn. In the sample
selection bias problem, some pairs: (x, y) drawn according t@ are not made avail-
able to the learning algorithm. The learning algorithm reega training samplé' of
m labeled pointgy, . .., z,, drawn according to hiased distributiorD’ over X x Y.
This sample bias can be represented by a random varaialeing values in{0, 1}:
whens =1 the point is sampled, otherwise it is not. Thus, by definibéthe sample
selection bias, the support of the biased distribufitris included in that of the true
distributionD.

As in standard learning scenarios, the objective of thenlagralgorithm is to select
a hypothesis: out of a hypothesis sd with a small generalization errd?(h) with
respect to the true distributiaR, R(h) = E(, ,)~plc(h, z)], wherec(h, z) is the cost
of the error ofh on pointz € X x Y.

While the samplé is collected in some biased manner, it is often possible tivele
some information about the nature of the bias. This can be tgnexploiting large



amounts of unlabeled data drawn according to the true lligion D, which is often
available in practice. Thus, in the following I&t be a sample drawn according I
andS C U alabeled but biased sub-sample.

2.2 Weighted Samples

A weighted samplé,, is a training sample&' of m labeled pointszy, ..., z,, drawn
i.i.d. from X x Y, thatis augmented with a non-negative weight> 0 for each point
z;. This weight is used to emphasize or de-emphasize the c@st efror onz; as in
the so-calledmportance weightingr cost-sensitive learnin¢Elkan, 2001; Zadrozny
etal., 2003). One could use the weightso derive an equivalent but larger unweighted
sampleS’ where the multiplicity ofz; would reflect its weightv;, but most learning
algorithms, e.g., decision trees, logistic regressioraBabst, Support Vector Machines
(SVMs), kernel ridge regression, can directly accept a fteid samples,,. We will
refer to algorithms that can directly talsg, as input asveight-sensitive algorithms

The empirical error of a hypothesison a weighted samplg,, is defined as

h) = iwi c(h, z;). (1)
i=1

Proposition 1. LetD’ be a distribution whose support coincides with thaloénd let
S be a weighted sample with; = Prp(z;)/ Prp(z;) for all pointsz; in S. Then,

E_[Ru(h)] = R(h) = E [c(h,z)]. (@)

S~D’ z~D

Proof. Since the sample points are drawn i.i.d.,

E [Ru(h) ==Y E [welh,z)] = E_[wie(h, 21)) 3)

S~D’ m S~D’ z1~D’
z

By definition of w and the fact that the support &f and D’ coincide, the right-hand
side can be rewritten as follows

Prp(z1) B B
Z Prp/(21) ,( z1) e(h, 21) = Z %r(zl)c(h,zl) = ZED[C(}L’ZI)]' 4)
D’ (21)#£0 D(21)0

This last term is the definition of the generalization etRgh). O

2.3 Bias Correction

The probability of drawing = (z, y) according to the true but unobserved distribution
D can be straightforwardly related to the observed distitiouD’. By definition of the
random variable, the observed biased distributi@H can be expressed Brp/[z] =
Prp[z|s = 1]. We will assume that all pointsin the support of> can be sampled with

a non-zero probability so the supportBfandD’ coincide. Thus foralk € X x Y,
Pr[s = 1]z] # 0. Then, by the Bayes formula, for allin the support oD,

_ Prlz|]s=1]Pr[s=1]  Pr[s =1]
e T e RPEETRR st ®)



Thus, if we were given the probabiliti®s[s = 1] andPr[s = 1|z], we could derive the
true probabilityPrp from the biased onBrp: exactly and correct the sample selection
bias.

It is important to note that this correction is only neededthe training samplé,
since it is the only source of selection bias. With a weigdrisitive algorithm, it suffices

to reweight each samplg with the weightw; = %. Thus,Pr[s = 1|z] need
not be estimated for all pointsbut only for those falling in the training sampte By
Proposition 1, the expected value of the empirical err@raétweighting is the same as
if we were given samples from the true distribution and thealigeneralization bounds
hold for R(k) andR(h).

When the sampling probability is independent of the lakedsit is commonly as-
sumed in many settings (Zadrozny 2004; 20@3)s = 1|2] = Pr[s = 1|z], and
Equation 5 can be re-written as

_ Pr[s=1]
%Y[Z] = m gﬂz]- (6)

In that case, the probabilitid3r[s = 1] andPr[s = 1|z] needed to reconstituferp
from Prp, do not depend on the labels and thus can be estimated usingltizeled
points inUU. Moreover, as already mentioned, for weight-sensitiveidlgms, it suffices
to estimatePr[s = 1|z;] for the pointsz; of the training data; no generalization is
needed.

A simple case is when the points are defined over a discrefePsét = 1|2] can
then be estimated from the frequeney. /n,., wherem, denotes the number of times
x appeared it C U andn, the number of times appeared in the full data sét.
Pr[s = 1] can be estimated by the quantjty|/|U|. However, sincePr[s = 1] is a
constant independent of its estimation is not even necessary.

If the estimation of the sampling probabiliBr[s = 1|z] from the unlabeled data
setU were exact, then the reweighting just discussed could cothe sample bias
optimally. Several techniques have been commonly usedtimate the reweighting
quantities. But, these estimate weights are not guarantebd exact. The next sec-
tion addresses how the error in that estimation affects ttar eate of the hypothesis
returned by the learning algorithm.

3 Distributional Stability

Here, we will examine the effect on the error of the hypothesiurned by the learning
algorithm in response to a change in the way the trainingtpaire weighted. Since the
weights are non-negative, we can assume that they are ripethahd define a distribu-
tion over the training sample. This study can be viewed asargdization of stability
analysis where a single sample point is changed (Devroye &néla 1979; Kearns
& Ron, 1997; Bousquet & Elisseeff, 2002) to the more genesakoofdistributional
stability where the sample’s weight distribution is changed.

Thus, in this section the sample weight of Sy, defines a distribution ove§. For
a fixed learning algorithnh and a fixed samplg, we will denote byh,y the hypothesis

% This can be as a result of a quantization or clustering teghnas discussed later.



returned byL for the weighted sampl§,,. We will denote byd(W, ') a divergence
measure for two distributiong) andV’'. There are many standard measures for the
divergences or distances between two distributions, dictuthe relative entropy, the
Hellinger distance, and tHg distance.

Definition 1 (Distributional 3-Stability). A learning algorithmL is said to bedistri-
butionally 3-stablefor the divergence measudkif for any two weighted samples,,
and Sy,

Vee X xY, |e(hw,z) —clhw,z)| < BdW,W). (7)

Thus, an algorithm is distributionally stable when smalicges to a weighted sample’s
distribution, as measured by a diverged¢ceesult in a small change in the cost of an
error at any point. The following proposition follows ditgcfrom the definition of
distributional stability.

Proposition 2. Let L be a distributionally3-stable algorithm and lek,y, (hy,) denote
the hypothesis returned bly when trained on the weighted samg, (resp.Sw-).
Let Wy denote the distribution according to which test points arawh. Then, the
following holds

|R(hyw) — R(hw)| < BdW, W"). (8)

Proof. By the distributional stability of the algorithm,
ZN@\} [le(z, hw) — e(z, hw)|] < BdOWV, W), 9)
which implies the statement of the proposition. a

3.1 Distributional Stability of Kernel-Based Regularization Algorithms

Here, we show that kernel-based regularization algoritaraglistributionallys-stable.
This family of algorithms includes, among others, Suppattdr Regression (SVR)
and kernel ridge regression. Other algorithms such as thexsed on the relative entropy
regularization can be shown to be distributiongligtable in a similar way as for point-
based stability. Our results also apply to classificatigoathms such as Support Vector
Machine (SVM) (Cortes & Vapnik, 1995) using a margin-basess|functiori, as in
(Bousquet & Elisseeff, 2002).

We will assume that the cost functieris o-admissiblethat is there exists € R
such that for any two hypothesksh’ € H and for allz = (z,y) € X x Y,

le(h, 2) = e(h', 2)| < o|h(z) — B (z)]. (10)

This assumption holds for the quadratic cost and most oth&fanctions when the hy-
pothesis set and the set of output labels are bounded by bmeR . : Vh € H,Vx €
X, |h(z)| < M andvy € Y, |y| < M. We will also assume thatis differentiable. This
assumption is in fact not necessary and all of our resultd without it, but it makes
the presentation simpler.

Let N: H — Ry be a function defined over the hypothesis set. Regularizatio
based algorithms minimize an objective of the form

Fy(h) = Rw(h) + AN(h), (12)



where)\ > 0 is a trade-off parameter. We denote By the Bregman divergence asso-
ciated to a convex functioR, Br(f|lg) = F(f)— F(g9) — (f — g, VF(g)), and define
AhasAh =h' — h.

Lemma 1. Let the hypothesis séf be a vector space. Assume thsitis a proper
closed convex function and thatis differentiable. Assume th&t, admits a minimizer
h € H and F\y» a minimizerh’ € H. Then, the following bound holds,

7LV, V) sup |Ah(z)]. (12)

By (W'||h) + By (h||h) <
A zeS

Proof. Since Br,,, = BEW + ABy and Bp,, = BEW, + ABy, and a Bregman

divergence is non-negative( By (1| h) + Bx (h||/')) < Bp,, (W'||h) + Bg,,, (h||1).
By the definition ofh andh’ as the minimizers of)y and Fy-,

Bry, (1||h) + Br,, (h|[W') = Rr, () = Ry (B) + Ry, (h) = R, (). (13)

Thus, by ther-admissibility of the cost function, using the notatiomV; = W(«;) and
W= W' (),

A(BN<h’Hh> + By(h|I)) < Rp, (1) — Ry, (h) + R, (h) = R, (')

= Z (W, 2i)Wi = c(h, zi))Wi + c(h, z)WV] — (B, zi) W]
=1 "
“r , (14)
= 30 |l z) = ez s = W)
=1 "
< |olAn(z;)| Wi — W{@ < oly (W, W) sup | Ah(z)),
i—1 L zES
which establishes the lemma. a
Givenzy,...,z, € X and a positive definite symmetric (PDS) keriél we denote

by K € R™*"™ the kernel matrix defined bi;; = K (z;, ;) and by yax(K) € Ry
the largest eigenvalue @&.

Lemma 2. Let H be a reproducing kernel Hilbert space with kerngl and let the
regularization functionV be defined bV (-) = [-||%. Then, the following bound holds,

N (K) L2 (W, W)
By

By(W'||h) + Bn (h||1') < [ Ah][2. (15)

Proof. As in the proof of Lemma 1,

m

A(Br(||R) + B (b)) Z[ bz -W)]. ()

i=1

By definition of a reproducing kernel Hilbert spaég for any hypothesid € H,
Vo € X, h(x) = (h, K(z,-)) and thus also for anph = b’ — h with h, ' € H,Vx €



X, Ah(z) = (Ah, K (x,-)). Let AW, denoteW, — W;, AW the vector whose compo-
nents are theAW;’s, and letV denoteBy (h'||h) + By (h||h'). Usingo-admissibility,
V < oY |AR(z) AW = o> [ (AR, AWK (x4, 7)) | Lete; € {—1,+1}
denote the sign of Ah, AW, K (z;,-)). Then,

V<o <Ah, > AWK (a, ->> < oAbk 1Y AWK (1, )
=1 =1
= oAbk (Y i, AWAW, K (21, 2,))

ij=1

= o] Abl| [AW TKAWE)]* < o Ahl| e[| AW [[2A (K.

(17)

In this derivation, the second inequality follows from thauchy-Schwarz inequality
and the last inequality from the standard property of thel&gl quotient for PDS
matrices. Sinc§ AW||, = lo(W, W), this proves the lemma. O

Theorem 1. Let K be a kernel such thak'(z,x) < k < oo forall z € X. Then, the
regularization algorithm based oV (-) = ||-||% is distributionally 3-stable for thel;

1
distance with3 < 2%~ and for thel, distance with3 < 7"2“‘5‘?(1{),

Proof. ForN(-) = ||-||%, we haveBy (h'||h) = ||h'—h||%, thusBy (h'||h)+Bn (h||h') =
2||Ah||%- and by Lemma 1,

/ /
TLOVIV) () < OV V)
A zES A

2| An|% < k|| AR k- (18)

Thus|| Ah|x < Z0¥ W) By 5-admissibility ofc,
Vze X xY,|c(h,z) —c(h,z)| < o|Ah(z)| < kol|Ah| k. (19)
Therefore, )
l /
Vee X xY,le(l,2) —c(h, 2)] < W
which shows the distributional stability of a kernel-basedularization algorithm for
thel; distance. Using Lemma 2, a similar derivation leads to

(20)

T2k AR (K) 12 OV, W)

Vze X xY,|c(W,z) —c(h,z)| < o , (21)
which shows the distributional stability of a kernel-basegularization algorithm for
thel, distance. O

Note that the standard setting of a sample with no weight isvatent to a weighted
sample with the uniform distributionV,,: each point is assigned the weightn. Re-
moving a single point, say;, is equivalent to assigning weighto x; and1/(m — 1)
to others. LeWV,,» be the corresponding distribution, then

11 2 22)

LW, Wur) = 1=




Thus, in the case of kernel-based regularized algorithrdd@nthe/; distance, stan-
dard uniformg-stability is a special case of distributionaistability. It can be shown

similarly thatlo (Wi, Wiy ) = ﬁ

4 Effect of Estimation Error for Kernel-Based Regularization
Algorithms

This section analyzes the effect of an error in the estimatiothe weight of a train-

ing example on the generalization error of the hypothésieturned by a weight-

sensitive learning algorithm. We will examine two estiroatitechniques: a straight-
forward histogram-based or cluster-based method, anctkarean matching (KMM)

(Huang et al., 2006b).

4.1 Cluster-Based Estimation

A straightforward estimate of the probability of samplirsgbiased on the observed
empirical frequencies. The ratio of the number of times apoiappears inS and
the number of times it appears i is an empirical estimate dPr[s = 1|z]. Note
that generalization to unseen pointds not needed since reweighting requires only
assigning weights to the seen training points. Howeverginegal, training instances
are typically unique or very infrequent since features asd-valued numbers. Instead,
features can be discretized based on a partitioning of the BpaceX . The partitioning
may be based on a simple histogram buckets or the result oéteding technique. The
analysis of this section assumes such a prior partitioniny.o

We shall analyze how fast the resulting empirical frequescionverge to the true
sampling probability. For € U, let U, denote the subsample &f containing exactly
all the instances aof and letn. = |U| andn, = |U.|. Furthermore, let’ denote the
number of unique points in the samgle Similarly, we defineS,,, m, m, andm’ for
the setS. Additionally, denote by, = min, ey Prz] # 0.

Lemma 3. Letd > 0. Then, with probability at least — §, the following inequality

holds for allz in S:
log 2m’ + log +
Prfs = 1]a] - 72 | < |/ 1082m T log 5 23)
Ny bon

Proof. For a fixedr € U, by Hoeffding’s inequality,

I?JrUPr[s: 1lz] — 7:—;! > e} :zn:lzrDPr[s: 1|z] — %| >e€|ng :i} Pr[ne = 1]

i=1
= —2ie? o

< 226 Pl’]r[nz =1
i=1

Sincen,, is a binomial random variable with paramet@ns;[z] = p, andn, this last
term can be expressed more explicitly and bounded as fallows

n .2 n . 2 . . 2
2y e Pring =i <2 > e e <7;>p7;(1 —pa)" T =2(pee > + (1 pa))"
=1

i=0

= 2(1 — po(1 — e727))™ < 2exp(—pan(l — e 2)).



Since forz € [0,1],1 — e~® > /2, this shows that fo¢ € [0, 1],
Pr“Pr[s =1|z] — &’ > e} < 2e7 e’ (24)
U Ny
By the union bound and the definition of,
Pr [H:E €8 :|Prfs = 1[z] — %’ > 6] < 2m/ePone’
U Ny
Settingo to match the upper bound yields the statement of the lemma. a

The following proposition bounds the distance between tsiilution)V correspond-
ing to a perfectly reweighted samplé,(,) and the one corresponding to a sample that
is reweighted according to the observed bisig;§. For a sampled point; = z, these
distributions are defined as follows:

W(as) = Ezﬁ and W(z,) = %p(;)’ (25)

where, for adistinctpointz equal to thesampledpoint z;, we definep(z;) = Pr[s =
1]z] andp(x;) = 2=,

Ng

Proposition 3. LetB = max max(1/p(x;),1/p(x;)). Then, thd; andl, distances

of the distributiongV andV can be bounded as follows,

. log 2m/ + log L _ Noe 2m’ + loa L
LW, W) < B? log2m’ + log 5 andl,(W, W) < B> w. (26)
pon ponm

Proof. By definition of thel, distance,

4
< B o) - )

It can be shown similarly thdt (W, W) < B%max; |p(z;) — p(x;)|. The application
of the uniform convergence bound of Lemma 3 directly yields statement of the
proposition. a

The following theorem provides a bound on the differencevben the generalization
error of the hypothesis returned by a kernel-based regaléon algorithm when trained
on the perfectly unbiased distribution, and the one traorethe sample bias-corrected
using frequency estimates.

Theorem 2. Let K be a PDS kernel such thdt (z,z) < k < oo forall z € X. Let
hw be the hypothesis returned by the regularization algorithased onV () = ||-||%
using Sy, andhy;; the one returned after training the same algorithm 8. Then,



for anyé > 0, with probability at leastl — 4, the difference in generalization error of
these hypotheses is bounded as follows

o?52B? [log2m/ + log
2A pon

|R(hw) — R(hg)| <
(27)

1

o2k hax(K) B2 [log2m/ + log 5

R(hw) — R(hg)| < 2.
[R(hw) — Rihyy)| < 722 P
Proof. The result follows from Proposition 2, the distributionttsility and the bounds
on the stability coefficien for kernel-based regularization algorithms (Theorem 1),
and the bounds on the and/, distances between the correct distributidhand the
estimate. O

Let ny be the number of occurrences, i of the least frequent training example.
For large enough, pon = ng, thus the theorem suggests that the difference of error
rate between the hypothesis returned after an optimal ghtieg versus the one based

on frequency estimates goes to zero, é’:‘f% In practice;n’ < m, the number of

distinct points inS' is small, a fortiorilog m’ is very small, thus, the convergence rate
depends essentially on the rate at whighincreases. Additionally, if\,.x(K) < m
(such as with Gaussian kernels), thebased bound will provide convergence that is at
least as fast.

4.2 Kernel Mean Matching

The following definitions introduced by Steinwart (2002)Ivie needed for the pre-
sentation and discussion of the kernel mean matching (KMddhnique. LetX be a
compact metric space and I€{X) denote the space of all continuous functions over
X equipped with the standard infinite nofm ||~. Let K: X x X — R be a PDS
kernel. There exists a Hilbert spakeand a ma: X — F such thatforalk,y € X,
K(z,y) = (&(x),P(y)). Note that for a given kerndk, F' and® are not unique and
that, for these definitions;’ does not need to be a reproducing kernel Hilbert space
(RKHS).

Let P denote the set of all probability distributions ovErand lety: P — F be
the function defined by

VpeP, wup)= E [®(z)] (28)

A functiong: X — R is said to bénducedby K if there existav € F' such that for all
xz € X, g(r) = (w,P(x)). K is said to bauniversalif it is continuous and if the set of
functions induced bys are dense i'(X).

Theorem 3 (Huang et al. (2006a)).et I be a separable Hilbert space and IEtbe a
universal kernel with feature spa¢eand feature mag@: X — F'. Then is injective.

Proof. We give a full proof of the main theorem supporting this tegbe in the ap-
pendix. The proof given by Huang et al. (2006a) does not sedye tomplete. O



The KMM technique is applicable when the learning algoriikrbased on a universal
kernel. The theorem shows that for a universal kernel, tipeeted value of the fea-
ture vectors induced uniquely determines the probabilgjrihution. KMM uses this
property to reweight training points so that the averageevalf the feature vectors for
the training data matches that of the feature vectors fot afsenlabeled points drawn
from the unbiased distribution.

Let v, denote the perfect reweighting of the sample painand~; the estimate
derived by KMM. LetB’ denote the largest possible reweighting coefficieand let
e be a positive real number. We will assume thié chosen so that< 1/2. Then, the
following is the KMM constraint optimization

, 1 & 1<
min GO =Ill— > yid(w:) — - > o)
=1 . 1=1 (29)
. P
: - 1] <e
subjectto%e[O,B]/\\mZWZ 1 <e

i=1

Let 5 be the solution of this optimization problem, then>"" | 5; = 1 + € with
—e < € < e Fori € [1,m], lety, = 7;/(1 + €). The normalized weights used in
KMM'’s reweighting of the sample are thus definedqgym with L 3" 4/ =1.

As in the previous section, given,,...,z,, € X and a strictly positive def-
inite universal kernelK, we denote byK € R™*™ the kernel matrix defined by
K;; = K(z;,z;) and by min(K) > 0 the smallest eigenvalue &. We also denote
by cond(K) the condition number of the matriK: cond(K) = Ayax(K)/Amin (K).
When K is universal, it is continuous over the compattx X and thus bounded, and
there exists: < oo such thatk (z,z) < s forall z € X.

Proposition 4. Let K be a strictly positive definite universal kernel. Then, foya >
0, with probability at leastl — 4, thel, distance of the distributions’ /m and~y/m is
bounded as follows:

2¢B’ 22 B2 1

/ 2
\/ﬁ-l-m o +E(1+ 210g5>. (30)

Proof. Since the optimal reweighting verifies the constraints of the optimization, by
definition ofy as a minimizerG(y) < G(v). Thus, by the triangle inequality,

I
— — <
—[I7 =l <

”% >_Fidb(:) - % > %®(xi)ll < GA) + G(y) < 2G(v). (31)
=1 i=1

Let L denote the left-hand side of this inequalify:= || Y"1, (3; — vi)®(x;)||. By
definition of the norm in the Hilbert spact,= -1 /(5 — 7) TK(y — 7). Then, by the

standard bounds for the Rayleigh quotient of PDS matribe;_s,%)\im(K)H F=)l2-
This combined with Inequality 31 yields

Lyg -y < 2600 32)
r2nin(K)



Thus, by the triangle inequality,

1, 1, 1
EH(V’—V)IMS—|\(7’—7)|\2+—II( 7=z

|6’|/m (7)
2|6’|B vm (7) 2¢B’ 20(7)
< < n .
TN VK

It is not difficult to show using McDiarmid’s inequality th&dr anyé > 0, with proba-
bility at leastl — ¢, the following holds (Lemma 4, (Huang et al., 2006a)):

1 /B2 1 2
G(y) < k2 —+—(1—|—\/210g—). (34)
m n 1)
This combined with Inequality 33 yields the statement ofgih&position. a

The following theorem provides a bound on the differencevben the generalization
error of the hypothesis returned by a kernel-based regaléon algorithm when trained
on the true distribution, and the one trained on the sample-torrected KMM.

Theorem 4. Let K be a strictly positive definite symmetric universal kerhekh., be
the hypothesis returned by the regularization algorithnsdzhonN (-) = [|-||% using
S, /m and hs the one returned after training the same algorithm.$p,,,. Then, for

anyéd > 0, with probability at least — 9, the difference in generalization error of these

hypotheses is bounded as follows

0% kiAEax(K) [ B’ k¥ [B? 1 2
—R(h=)| < L LAmaxi7A) AR e 2.
|R(h)—R(hs)| < 3 =+ TV + n(1+1/210g5>

min

For e = 0, the bound becomes

23cond?(K) [B2 1 2
R(h,) — R(hsy)| < SR7cond®(K) JB7 1 (1+\/210g5). (35)

A m

Proof. The result follows from Proposition 2 and the bound of Prajpms4. a0

Comparing this bound for = 0 with the l; bound of Theorem 4, we first note that

B and B’ are essentially related modulo the consfrfs = 1] which is not included

in the cluster-based reweighting. Thus, the cluster-basesergence is of the order
1

O(Nhax(K)B?y /= l°gm ) and the KMM convergence of the ordex(cond 2 (K)%).

Taking the ratio of the former over the latter and notlc;uag1 ~ O(B), we obtain the

expression) |/ 2mnlB)Blosm’ ) Thyg, forn > A, (K) B log(m') the convergence

of the cluster-based bound is more favorable, while for otadues the KMM bound
converges faster.



5 Experimental Results

In this section, we will compare the performance of the eubiased reweighting tech-
nique and the KMM technique empirically. We will first dissusnd analyze the prop-
erties of the clustering method and our particular impletaton.

The analysis of Section 4.1 deals with discrete points pssesulting from the
use of a quantization or clustering technique. However,tdube relatively small size
of the public training sets available, clustering could/kas with few cluster represen-
tatives to train with. Instead, in our experiments, we orggdithe clusters to estimate
sampling probabilities and applied these weights to thiesttl of training points. As
the following proposition shows, thig and/, distance bounds of Propositiérdo not
change significantly so long as the cluster size is roughlform and the sampling
probability is the same for all points within a cluster. Wdlwefer to this as theslus-
tering assumptiorin what follows, letPr[s = 1|C;] designate the sampling probability
for all z € C;. Finally, defineg(C;) = Pr[s = 1|C;] andg(C;) = |C; N S|/|C; N U].

Proposition 5. LetB = max max(1/¢(C;),1/¢(C;)). Then, thé; andl, distances

.....

of the distributiong/ andV can be bounded as follows,

o VAV)<B2\/|CM|/<:(1og2k:+1og§) oW W)<B2\/|CM|/<:(log2k’+log%)

gonm gonm?

whereqy = min ¢(C;) and|Cys| = max; |C;].

Proof. By definition of thel, distance,

BOV,W) = QZZ< T ))2‘#,%2(42)‘4(2»)2

i=1xzeC;

B |CM| Z Ci))2-

The right-hand side of the first line follows from the clustgrassumption and the
inequality then follows from exactly the same steps as irpBsdion 5 and factoring
away the sum over the elements@f Finally, it is easy to see that theax;(¢(C;) —
4(C;)) term can be bounded just as in Lemma 3 using a uniform conmeegaound,
however now the union bound is taken over the clusters r#tla@runique points. O

Note that when the cluster size is uniform, théh, |k = m, and the bound above leads
to an expression similar to that of Propositian

We used the leaves of a decision tree to define the clusterscisidn tree selects
binary cuts on the coordinates ofe X that greedily minimize a node impurity mea-
sure, e.g., MSE for regression (Breiman et al., 1984). Boiith similar features and
labels are clustered together in this way with the assumiikiat these will also have
similar sampling probabilities.

Several methods for bias correction are compared in Tatlifadh method assigns
corrective weights to the training samples. Trveightednethod uses weight for
every training instance. Thdeal method uses weigigm, which is optimal but



Table 1. Normalized mean-squared error (NMSE) for various regoessiata sets using un-
weighted, ideal, clustered and kernel-mean-matchedigsample reweightings.

DATA SET Ul |S| ntest UNWEIGHTED IDEAL CLUSTERED KMM
ABALONE 2000 724 217y .654t.019 .55%.032 .623t.034 .709.122
BANK 32NH 4500 2384 36983 .903+.022 .610:.044 .635:.046 .69H.055
BANK8FM 4499 1998 36983 .085+.003 .058:.001 .068:.002 .079.013
CAL-HOUSING 16512 9511 4128 .395+.010 .36G:.009 .375:.010 .595t.054
CPU-ACT 4000 2400 419 .673+.014 .523:.080 .568:.018 .518t.237

P

5

P

B

CPU-SMALL 4000 2368 419 .682+.053 .47#.097 .408:.071 .53H.280
HOUSING 300 116 206 .509+.049 .39Q:.053 .482£.042 .469-.148
KIN8NM 5000 2510 319p .5944+-.008 .523t.045 .574t.018 .704:.068
PUMASNH 4499 2246 3693 .685+.013 .674:.019 .641.012 .903:.059

requires the sampling distribution to be known. Tdlasteredmethod uses weight
|C; NU|/|C; N S|, where the cluster§; are regression tree leaves with a minimum
count of 4 (larger cluster sizes showed similar, thoughidig, performance). The
KMM method uses the approach of Huang et al. (2006b) with as&ian kernel and
parameters = +/d/2 for z € R4, B = 1000, ¢ = 0. Note that we know of no
principled way to do cross-validation with KMM since it castrproduce weights for a
held-out set (Sugiyama et al., 2008).

The regression datasets are from LIAASNd are sampled witR[s = 1|z] = %

wherev = M, r € R? andw € R? chosen at random from-1, 1]%. In our

Ow-(x—z

experiments, we chose ten random projectienand reported results with the, for
each data set, that maximizes the difference between theighted and ideal methods
over repeated sampling trials. In this way, we selected &éesplings that are good
candidates for bias correction estimation.

For our experiments, we used a version of SVR available frdn$VYM° that can
take as input weighted samples, with parameter vadiies 1, ande = 0.1 combined
with a Gaussian kernel with parameter= /d/2. We report results using normalized

mean-squared error (NMSE)l:tl—t Dot (1’;73)2 and provide mean and standard
os 2
deviations for ten-fold cross-validation.
Our results show that reweighting with more reliable copdt® to clustering, can
be effective in the problem of sample bias correction. Theselts also confirm the
dependence that our theoretical bounds exhibit on the tiyant The results obtained

using KMM seem to be consistent with those reported by thiecastof this techniqué.

6 Conclusion

We presented a general analysis of sample selection bissction and gave bounds
analyzing the effect of an estimation error on the accurdd¢hehypotheses returned.
The notion of distributional stability and the techniquesgented are general and can

4 www.liaad.up.pt/ltorgo/Regression/DataSets.html.

5 www.csie.ntu.edu.tw/ cjlin/libsvmtools.

6 We thank Arthur Gretton for discussion and help in clariythe choice of the parameters and
design of the KMM experiments reported in (Huang et al., 2)pénd for providing the code
used by the authors for comparison studies.



be of independent interest for the analysis of learningrétlyms in other settings. In
particular, these techniques apply similarly to other intgioce weighting algorithms
and can be used in other contexts such that of learning in thgepce of uncertain
labels. The analysis of the discriminative method of (Bl@tel., 2007) for the problem
of covariate shift could perhaps also benefit from this study
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A Proof of Theorem 3

Proof. Assume thaj:(p) = pu(q) for two probability distribution® andq in P. It is
known thatifE,,[f(x)] = Ez~q[f(x)] forany f € C(X), thenp = ¢. Letf € C(X)
and fixe > 0. SinceK is universal, there exists a functigninduced byK such that
| f — glloo < €. Epnplf(z)] — Eznglf ()] can be rewritten as

E[f@) = 9@+ E o) - Efo@)+ E o) - f@)].  (36)

Since|Exp[f(2) — 9(@)]| < Eanp|f(2) — g(x)] < |If — glloe < € and similarly
‘wavq[f(x) —g(x) ‘ <e

E [f(z)] - E [f(z)]

T~p xr~q

<| E [g(@)] - E [g(2)] +2¢. (37)

r~p xr~q

Sincey is induced byK, there existsw € F' such thatforalk € X, g(z) = (w, D(x)).
Since F' is separable, it admits a countable orthonormal b&si$,cyn. Forn € N,
letw, = (w,e,) and®, (z) = (#(x),e,). Then,g(z) = >.,° , w,P,(z). For each
N € N, consider the partial sumy (x) = ij:o wpPy (). By the Cauchy-Schwarz
inequality,

N N
1/2 1/2 1/2 1/2
lgn @] < 1Y waenlly?1Y " du(@)enlly” < Jwlly*I12)]5%. (38)
n=0 n=0

SinceK is universal, it is continuous and thdsis also continuous (Steinwart, 2002).
Thusz — ||®(x)||2 is a continuous function over the compattand admits an upper

boundB > 0. Thus,|gn (z)| < /[lw]2B. The integralf|/[[w]>B|dp is clearly well

defined and equaly/||w||2 B. Thus, by the Lebesgue dominated convergence theorem,
the following holds:

Elo@)] = [ S wnn@)iple) =Y wa [ @uw)ipla). (39
n=0 n=0
By definition ofE,..,[#(z)], the last term is the inner productefand that term. Thus,

B o) = (@, B [#(0)] ) = tw. ) (40)

Tovp
A similar equality holds with the distributiog, thus,
L l9(@)] = E lg(@)] = (w, u(p) - p(q)) = 0.

Thus, Inequality 37 can be rewritten as

E [f(z)] = E [f(z)]

for all ¢ > 0. This impliesE,,[f(z)] = Es[f(x)] for all f € C(X) and the
injectivity of p. a

< 2e, (41)



