
Utilizing SAS® and Groovy to combine multiple
RTF/PDF reports to one bookmarked PDF document

Xin Weiquan J&J Pharma; Wang John J&J Consumer

Abstract

As part of clinical trial reporting, large numbers of RTF/PDF outputs are
created and at the completion of a major milestone in a study, we are often
required by medical writers, clients, and regulatory agencies to combine all
reports in a user-friendly file format document for easy delivery and review
process. One solution is to combine them to a bookmarked PDF document
using Adobe Acrobat Software. However, manually generating a PDF
document from multiple SAS output files is a time consuming task.

This paper presents an alternative efficacy method that use Java script for
combining the multiple RTF/PDF documents into one bookmarked PDF
document. A SAS built-in mechanism dynamic language PROC GROOVY
which runs on the Java Virtual Machine (JVM) is used to quickly combine
the multiple documents into one cumulative file. We have replaced the
manual process by automating the ordering of multiple SAS outputs, and the
creation of bookmarks within the PDF document. If needed, this script can
be used independently.

Introduction

In Pharmaceuticals/CRO industries, the statistical analyses are presented in
multiple SAS outputs (i.e., tables, listings, and graphs (TLGs)).These results
are created from multiple SAS programs and are delivered to the medical
writers and clients for review. It may be impractical for clients to handle
each output file individually, especially in cases where there are a large
number of outputs. These single files can be created in different user-
friendly formats such as Microsoft® Word, HTML, and Portable Document
Format (PDF). It is easier to browse and print outputs that are consolidated

into one file, rather than handling each output individually. One solution is
through the creation of a single bookmarked PDF file.

The PDF standard allows users to exchange and view the electronic
documents across platforms and operating systems regardless of the
environment in which they are created. The FDA also prefers that electronic
submissions are created in the PDF format. It is easier for them to review
and provide comments using the track change option. Meanwhile, having all
the comments back in one document will make programmers’ job easier and
more time-saving.

While, the process of converting outputs is often not streamlined and is
implemented as a manual process, which always cost substantial time.
Unfortunately, SAS does not provide a function to combine multiple
RTF/PDF documents. Also, before the finalization of the study draft listings
and tables, they are reviewed frequently. In this article, we will illustrate an
efficacy method using SAS® 9.4 and GROOVY to generate a single PDF
file with user-defined sequence bookmark which can be very useful for
interactive navigation.

Technique & mechanism

The techniques presented following offer a good overview of basic data step
programming and basic Groovy script. As there are many methods that can
automatically transfer RTF files to PDF files, such as two separate software
applications (an ASCII-to-PostScript converter and Adobe Acrobat Distiller).
We will only focus on the implementation on the multiple PDF files in one
source folder. All files are combined when they are in the common file
format of PostScript.
For Groovy script, it is a dynamic language on the Java Virtual Machine
(JVM). In SAS system, Proc Groovy will execute Groovy code on the JVM,
and it can run statements in external files that are specified. It can parse
Groovy statements into Groovy Class objects, and run these objects or make
them available to other Groovy statements or Java DATA Step Objects. We
can also use Proc Groovy to update the CLASSPATH environment variable
with additional CLASSPATH strings or file refs to jar files.

A Flowchart of the main process involved in our method is shown below
(figure 1). We demonstrate the approach in three steps.

Step 1: The user manually enters or updates the name sequences of desired
SAS output files in a Microsoft® Excel spreadsheet which serve as a table of
contents (TOC).

Step 2: Scanning a folder using SAS File I/O functions to identify the PDF
files to be combined and creating the JSON file which can be read in the
JVM.

Step 3: Using Proc groovy to combine multiple PDF into a single one.

Steps in detail

Step 1

Generally, the TOC file is created based on the DPS which has a dual
purpose. First, it is used in the procedure of creating tables, listings, and
graphs in order to dynamically name each output file, and generate the text
and numbers in the title on each TLG. Second, the TOC can be used to
indicate which files are to be included in the final PDF document after all
the TLGs are created. The row order of each output file name in the TOC
dictates the sequence order of the output file presented in the final PDF
document.

The TOC hold several important parameters for each TLG file (Figure 2):

i) A variable as TLG number which identifies the file as a table, listing, or
graph.

ii) An identifier which indicate the elements of each TLGs;

iii) The text column which included associated title for each TLG;

iv) The population definition.

 All the TOC data is manually entered into a Microsoft® Excel spreadsheet
with one row per output file. The TOC spreadsheet contains all the relevant
parameters needed to combine all the output files. These parameters are the

output file names and the sequence- which are to appear in the overall PDF
document. If the user wants to change the order of any output file, the
corresponding spreadsheet row order is manually altered. Thus, the user is
flexible to change the sequence of files presented in the overall PDF
document by manually updating and saving the TOC spreadsheet.

Figure 2: example of TOC---titles.xls

Step 2

Then we can scan a folder using SAS File I/O functions to identify the PDF
files to be combined. And we will combine with TOC file to monitor the
complete status of the RTF files. Then we create a JSON file named as
toc.json which can be read in the JVM.

%*step 1: scan the name of RTF/PDF file in source folder;
x "dir /b &rptdrv\......\PDF*.PDF > &rptdrv\......\PDF\pdfname.txt";
filename inrtf " &rptdrv\......\PDF\ pdfname.txt";

data comprtfname0;
 infile inrtf truncover ;
 input rtfname $100.;
 run;
quit;

data comprtfname;
 set comprtfname0;
 rtfname=strip(upcase(rtfname));
 rtfname=tranwrd(rtfname,'PDF','RTF');
run;

%*step 2: import title from TOC spread sheet into SAS dataset;
proc import dbms=xls out=allrtfxls

 datafile="&rptdrv\Prod\DPS\titles.xls"
 replace;
run;

data allrtfxls_tit;
 set allrtfxls;
 where identifier='TITLE';
 length rtfname $100.;
 rtfname=strip(upcase(table_id))||'.RTF';
 keep table_id identifier text rtfname;
run;

%*Monitor the complete RTF files in study folder;
proc sql;
 create table compxlsrtf as
 select *
 from allrtfxls_tit
 where rtfname in (select distinct rtfname from comprtfname);
quit;

data toc(keep =TLF_ID TLF_Num TLF_Title);;
 set compxlsrtf;
 length TLF_ID TLF_Num $60 TLF_Title $200;
 TLF_ID=table_ID;
 TLF_Num=table_ID;
 TLF_Title=TEXT;
run;

%*generate the json file for use;
filename jsonfile "&outpath.\...\toc.json" encoding="utf-8";
proc json out=jsonfile pretty ;
 export toc;
run;
quit;

Step 3

While using the Proc Groovy, we firstly update the CLASSPATH
environment variable with additional CLASSPATH strings or referencing
several external jar files (e.g itext, pdfbox,etc).

e.g

add classpath="C:\Temp\groovy-2.4.5\embeddable\groovy-all-2.4.5.jar";
add classpath="&pboxdir.\pdfbox-1.8.10.jar;&pboxdir.\pdfbox-app-
1.8.10.jar;&pboxdir.\fontbox-1.8.10.jar";
……

Then we write Groovy script to combine multiple PDF files into a single one
and store it in the determinate folder as user defined, e.g., “PDFOUT ”. In
this process, the source folder which stores multiple PDF files and the JSON
file should be induced.

import java.io.IOException

import java.io.File
import java.util.HashMap
import groovy.io.FileType
import groovy.json.JsonSlurper

......

public class MergePDFBookmarks
{
 public static void mergePDFFiles(Map jsonobj, String pathname, String
pdfoutfullpath)
 {
 def mergePdf = new PDFMergerUtility();

 jsonobj.each{k,v->
 if (v instanceof List){
 v.each{it ->
 mergePdf.addSource(pathname + "/" + it["TLF_ID"] + ".pdf")
 }
 }
 }

 // Save and close the combined PDFs.
 println "Merging to PDF File: " + pdfoutfullpath + ".pdf"
 mergePdf.setDestinationFileName(pdfoutfullpath)
 mergePdf.mergeDocuments()
 }
public static void createBookmarks(Map jsonobj, String pathname, String
pdfoutfullpath)
 {
 // load the combined PDF document
 def pdfDocument = PDDocument.load(pdfoutfullpath)
 def totalPages = 0
 def outline = new PDDocumentOutline()
 pdfDocument.getDocumentCatalog().setDocumentOutline(outline)
 def pages = pdfDocument.getDocumentCatalog().getAllPages()
 def pagesOutline = new PDOutlineItem()

 pagesOutline.setTitle("Tables")
 outline.appendChild(pagesOutline)

 jsonobj.each{k,v->
 if (v instanceof List){
 v.each{it ->
 def pdfDoci = PDDocument.load(pathname + "/" + it["TLF_ID"] + ".pdf")
 def pdfDocPages = pdfDoci.getNumberOfPages()
 pdfDoci.close()

 totalPages = totalPages + pdfDocPages
 println it["TLF_NUM"] + ": " + it["TLF_TITLE"]
 def page = pages.get(totalPages - pdfDocPages);
 def dest = new PDPageFitWidthDestination()
 dest.setPage(page)

 def bookmark = new PDOutlineItem()
 bookmark.setDestination(dest)
 bookmark.setTitle(it["TLF_NUM"] + ":" + it["TLF_TITLE"])
 pagesOutline.appendChild(bookmark)
 }
 }
 }

 pagesOutline.openNode()

 outline.openNode()

 // Save and close the combined PDFs.
 pdfDocument.save(pdfoutfullpath)
 pdfDocument.close()
 }

 public static void main(String[] args) throws Exception
 {
def path = "……/PDF"
def toc = "……/toc.json"
def pdfout = "……/2016_PharmaSUG_present.pdf"
def jsonstr = new File(toc).getText('UTF-8').toString()
jsonstr = jsonstr.substring(1)

def jsonSlurper = new JsonSlurper()
def tocjson = jsonSlurper.parseText(jsonstr)

MergePDFBookmarks.mergePDFFiles(tocjson, path, pdfout)

MergePDFBookmarks.createBookmarks(tocjson, path, pdfout)

println "Combining all of the PDF are Completed!"
 }
}

The combined PDF file can be convenient to be reviewed by the interactive
navigation through the right bookmark. (Figure 3).

Figure 3: example of combined PDF

Discussion and Conclusion

This paper introduced a method to combine multiple PDF/RTF documents
using PROC GROOVY in SAS®, which can substantially save time than
traditional process and keep the accurate of the whole combination. The
techniques we presented offer a basic Groovy program and are easy to use
by programmers at all levels. The Groovy script can also be used
independently in the JAVA editor such as ECLIPS. To consider the limit of
the cost memory of JVM, we should pay attention to the situation when
there are too many PDF files to be combined. We may split multiple PDF
file into several parts and combine them together.

DISCLAIMER

The contents of this paper are the work of the authors and do not necessarily
represent the opinions, recommendations, or practices of their respective
organizations.

Acknowledge

SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute in the USA and other countries.
I would like to thank John. He gave me moral support and guided me in
different matters regarding the topic. I am equally grateful to George for
helping reviewing the paper to correct many explain and programming error.
I am very thankful to Prof…. for his proof reading and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the
authors at:

John Wang, Principle Scientist, JnJ
Weiquan Xin, Pharma programmer, JnJ.

25F, Shinmay Union Square
No.999 South Pudong Road
E-mail:wxin1@its.jnj.com

Figure 1: Flowchart process of combining multiple PDF files

Star

Step 1: Manually
create follow DPS

TOC SAS
Dataset

Step 2: Scan the
source folder
containing PDF
files and
combine with
TOC to create the
JSON file

Source folder

TOC
 Excel Sheet

TOC.JSON

Step 3: Use Proc
Groovy to
combine multiple
PDF files

